The Impacts of the Sterilization Method and the Electrospinning Conditions of Nanofibrous Biodegradable Layers on Their Degradation and Hemocompatibility Behavior

. 2024 Apr 09 ; 16 (8) : . [epub] 20240409

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38674949

Grantová podpora
NU20-02-00368 Czech Health Research Council (Ministry of Health of the Czech Republic)

The use of electrospun polymeric biodegradable materials for medical applications is becoming increasingly widespread. One of the most important parameters regarding the functionality of nanofiber scaffolds during implantation and the subsequent regeneration of damaged tissues concerns their stability and degradation behavior, both of which are influenced by a wide range of factors (the properties of the polymer and the polymer solution, the technological processing approach, the sterilization method, etc.). This study monitored the degradation of nanofibrous materials fabricated from degradable polyesters as a result of the sterilization method applied (ethylene oxide and gamma irradiation) and the solvent system used to prepare the spun polymer solution. Aliphatic polyesters PCL and PLCL were chosen for this study and selected with respect to the applicability and handling in the surgical setting of these nanofibrous materials for vascular bandaging. The results revealed that the choice of solvent system exerts a significant impact on degradation during sterilization, especially at higher gamma irradiation values. The subsequent enzyme-catalyzed degradation of the materials following sterilization indicated that the choice of the sterilization method influenced the degradation behavior of the materials. Whereas wave-like degradation was evident concerning ethylene oxide sterilization, no such behavior was observed following gamma-irradiation sterilization. With concern for some of the tested materials, the results also indicated the potential for influencing the development of degradation within the bulk versus degradation from the surface of the material. Both the sterilization method and the choice of the spinning solvent system were found to impact degradation, which was observed to be most accelerated in the case of PLCL (L-lactide-co-caprolactone copolymer) electrospun from organic acids and subsequently sterilized using gamma irradiation. Since we planned to use these materials in cardiovascular applications, it was decided that their hemocompatibility would also be tested. The results of these tests revealed that changes in the structures of the materials initiated by sterilization may exert thrombogenic and anticoagulant impacts. Moreover, the microscopic analysis suggested that the solvent system used in the preparation of the materials potentially affects the behavior of erythrocytes; however, no indication of the occurrence of hemolysis was detected.

Zobrazit více v PubMed

Dahlin R.L., Kasper F.K., Mikos A.G. Polymeric Nanofibers in Tissue Engineering. Tissue Eng. Part B Rev. 2011;17:349–364. doi: 10.1089/ten.teb.2011.0238. PubMed DOI PMC

Cui W., Zhou Y., Chang J. Electrospun nanofibrous materials for tissue engineering and drug delivery. Sci. Technol. Adv. Mater. 2010;11:014108. doi: 10.1088/1468-6996/11/1/014108. PubMed DOI PMC

Chen Y., Yuan Z., Sun W., Shafiq M., Zhu J., Chen J., Chen C. Vascular Endothelial Growth Factor-Recruiting Nanofiber Bandages Promote Multifunctional Skin Regeneration via Improved Angiogenesis and Immunomodulation. Adv. Fiber Mater. 2023;5:327–348. doi: 10.1007/s42765-022-00226-8. DOI

de Valence S., Tille J.-C., Mugnai D., Mrowczynski W., Gurny R., Möller M., Walpoth B.H. Long term performance of polycaprolactone vascular grafts in a rat abdominal aorta replacement model. Biomaterials. 2012;33:38–47. doi: 10.1016/j.biomaterials.2011.09.024. PubMed DOI

Horakova J., Mikes P., Lukas D., Saman A., Jencova V., Klapstova A., Svarcova T., Ackermann M., Novotny V., Kalab M., et al. Electrospun vascular grafts fabricated from poly( L -lactide-co- ε -caprolactone) used as a bypass for the rabbit carotid artery. Biomed. Mater. 2018;13:065009. doi: 10.1088/1748-605X/aade9d. PubMed DOI

Tara S., Kurobe H., Rocco K.A., Maxfield M.W., Best C.A., Yi T., Naito Y., Breuer C.K., Shinoka T. Well-organized neointima of large-pore poly(l-lactic acid) vascular graft coated with poly(l-lactic-co-ε-caprolactone) prevents calcific deposition compared to small-pore electrospun poly(l-lactic acid) graft in a mouse aortic implantation model. Atherosclerosis. 2014;237:684–691. doi: 10.1016/j.atherosclerosis.2014.09.030. PubMed DOI PMC

Yalcin Enis I., Gok Sadikoglu T. Design parameters for electrospun biodegradable vascular grafts. J. Ind. Text. 2018;47:2205–2227. doi: 10.1177/1528083716654470. DOI

Yuan Z., Sheng D., Jiang L., Shafiq M., Khan A.U.R., Hashim R., Chen Y., Li B., Xie X., Chen J., et al. Vascular Endothelial Growth Factor-Capturing Aligned Electrospun Polycaprolactone/Gelatin Nanofibers Promote Patellar Ligament Regeneration. Acta Biomater. 2021;140:233–246. doi: 10.1016/j.actbio.2021.11.040. PubMed DOI

Manavitehrani I., Fathi A., Badr H., Daly S., Negahi Shirazi A., Dehghani F. Biomedical Applications of Biodegradable Polyesters. Polymers. 2016;8:20. doi: 10.3390/polym8010020. PubMed DOI PMC

Zhang Q., Li Y., Lin Z.Y., Wong K.K., Lin M., Yildirimer L., Zhao X. Electrospun polymeric micro/nanofibrous scaffolds for long-term drug release and their biomedical applications. Drug Discov. Today. 2017;22:1351–1366. doi: 10.1016/j.drudis.2017.05.007. PubMed DOI

Bikiaris D.N. Nanocomposites of aliphatic polyesters: An overview of the effect of different nanofillers on enzymatic hydrolysis and biodegradation of polyesters. Polym. Degrad. Stab. 2013;98:1908–1928. doi: 10.1016/j.polymdegradstab.2013.05.016. DOI

Brannigan R.P., Dove A.P. Synthesis, properties and biomedical applications of hydrolytically degradable materials based on aliphatic polyesters and polycarbonates. Biomater. Sci. 2016;5:9–21. doi: 10.1039/C6BM00584E. PubMed DOI

Woodruff M.A., Hutmacher D.W. The return of a forgotten polymer—Polycaprolactone in the 21st century. Prog. Polym. Sci. 2010;35:1217–1256. doi: 10.1016/j.progpolymsci.2010.04.002. DOI

Dong Y., Liao S., Ngiam M., Chan C.K., Ramakrishna S. Degradation Behaviors of Electrospun Resorbable Polyester Nanofibers. Tissue Eng. Part B Rev. 2009;15:333–351. doi: 10.1089/ten.teb.2008.0619. PubMed DOI

Shin Y.M., Bin Lee Y., Kim S.J., Kang J.K., Park J.-C., Jang W., Shin H. Mussel-Inspired Immobilization of Vascular Endothelial Growth Factor (VEGF) for Enhanced Endothelialization of Vascular Grafts. Biomacromolecules. 2012;13:2020–2028. doi: 10.1021/bm300194b. PubMed DOI

Yarin A.L., Pourdehyhim B., Ramakrishna S. Fundamentals and Applications of Micro- and Nanofibers. Cambridge University Press; Cambridge, UK: 2014. DOI

Sivan M., Madheswaran D., Valtera J., Kostakova E.K., Lukas D. Alternating current electrospinning: The impacts of various high-voltage signal shapes and frequencies on the spinnability and productivity of polycaprolactone nanofibers. Mater. Des. 2021;213:110308. doi: 10.1016/j.matdes.2021.110308. DOI

Li Z., Wang C. Applications of Electrospun Nanofibers. In: Li Z., Wang C., editors. One-Dimensional Nanostructures: Electrospinning Technique and Unique Nanofibers [Internet] Springer; Berlin/Heidelberg, Germany: 2013. pp. 75–139. DOI

Abel S.B., Liverani L., Boccaccini A.R., Abraham G.A. Effect of benign solvents composition on poly(ε-caprolactone) electrospun fiber properties. Mater. Lett. 2019;245:86–89. doi: 10.1016/j.matlet.2019.02.107. DOI

Lavielle N., Popa A.-M., de Geus M., Hébraud A., Schlatter G., Thöny-Meyer L., Rossi R.M. Controlled formation of poly(ε-caprolactone) ultrathin electrospun nanofibers in a hydrolytic degradation-assisted process. Eur. Polym. J. 2013;49:1331–1336. doi: 10.1016/j.eurpolymj.2013.02.038. DOI

Sivan M., Madheswaran D., Hauzerova S., Novotny V., Hedvicakova V., Jencova V., Kostakova E., Schindler M., Lukas D. AC electrospinning: Impact of high voltage and solvent on the electrospinnability and productivity of polycaprolactone electrospun nanofibrous scaffolds. Mater. Today Chem. 2022;26:101025. doi: 10.1016/j.mtchem.2022.101025. DOI

Rediguieri C.F., Sassonia R.C., Dua K., Kikuchi I.S., Pinto T.d.J.A. Impact of sterilization methods on electrospun scaffolds for tissue engineering. Eur. Polym. J. 2016;82:181–195. doi: 10.1016/j.eurpolymj.2016.07.016. DOI

Krug N., Zarges J.-C., Heim H.-P. Influence of Ethylene Oxide and Gamma Irradiation Sterilization Processes on the Properties of Poly-L-Lactic-Acid (PLLA) Materials. Polymers. 2023;15:3461. doi: 10.3390/polym15163461. PubMed DOI PMC

Dai Z., Ronholm J., Tian Y., Sethi B., Cao X. Sterilization techniques for biodegradable scaffolds in tissue engineering applications. J. Tissue Eng. 2016;7:1–13. doi: 10.1177/2041731416648810. PubMed DOI PMC

Chausse V., Iglesias C., Bou-Petit E., Ginebra M.-P., Pegueroles M. Chemical vs thermal accelerated hydrolytic degradation of 3D-printed PLLA/PLCL bioresorbable stents: Characterization and influence of sterilization. Polym. Test. 2023;117:107817. doi: 10.1016/j.polymertesting.2022.107817. DOI

Iwamoto L.A.d.S., Duailibi M.T., Iwamoto G.Y., de Oliveira D.C., Duailibi S.E. Evaluation of ethylene oxide, gamma radiation, dry heat and autoclave sterilization processes on extracellular matrix of biomaterial dental scaffolds. Sci. Rep. 2022;12:4299. doi: 10.1038/s41598-022-08258-1. PubMed DOI PMC

Horakova J., Klicova M., Erben J., Klapstova A., Novotny V., Behalek L., Chvojka J. Impact of Various Sterilization and Disinfection Techniques on Electrospun Poly-ε-caprolactone. ACS Omega. 2020;5:8885–8892. doi: 10.1021/acsomega.0c00503. PubMed DOI PMC

Horakova J., Mikes P., Saman A., Jencova V., Klapstova A., Svarcova T., Ackermann M., Novotny V., Suchy T., Lukas D. The effect of ethylene oxide sterilization on electrospun vascular grafts made from biodegradable polyesters. Mater. Sci. Eng. C. 2018;92:132–142. doi: 10.1016/j.msec.2018.06.041. PubMed DOI

Chernonosova V.S., Kuzmin I.E., Shundrina I.K., Korobeynikov M.V., Golyshev V.M., Chelobanov B.P., Laktionov P.P. Effect of Sterilization Methods on Electrospun Scaffolds Produced from Blend of Polyurethane with Gelatin. J. Funct. Biomater. 2023;14:70. doi: 10.3390/jfb14020070. PubMed DOI PMC

Paggiaro A.O., Carvalho V.F., Gemperli R. Effect of different human tissue processing techniques on SARS-CoV-2 inactivation-review. Cell Tissue Bank. 2021;22:1–10. doi: 10.1007/s10561-020-09869-6. PubMed DOI PMC

Rojas-Rojas L., Ulloa-Fernández A., Castro-Piedra S., Vargas-Segura W., Guillén-Girón T. Evaluation of Biomechanical and Chemical Properties of Gamma-Irradiated Polycaprolactone Microfilaments for Musculoskeletal Tissue Engineering Applications. Int. J. Biomater. 2022;2022:1–9. doi: 10.1155/2022/5266349. PubMed DOI PMC

Łopianiak I., Butruk-Raszeja B.A. Evaluation of Sterilization/Disinfection Methods of Fibrous Polyurethane Scaffolds Designed for Tissue Engineering Applications. Int. J. Mol. Sci. 2020;21:8092. doi: 10.3390/ijms21218092. PubMed DOI PMC

Hoseini M., Hamidi S., Mohammadi A., Salehi E. A novel method for investigation of the impact of sterilization by gamma radiation on polycaprolactone scaffold. Front. Phys. 2022;10:1071269. doi: 10.3389/fphy.2022.1071269. DOI

Mikes P., Horakova J., Saman A., Vejsadova L., Topham P., Punyodom W., Dumklang M., Jencova V. Comparison and characterization of different polyester nano/micro fibres for use in tissue engineering applications. J. Ind. Text. 2019;50:870–890. doi: 10.1177/1528083719848155. DOI

Sivan M., Madheswaran D., Asadian M., Cools P., Thukkaram M., Van Der Voort P., Morent R., De Geyter N., Lukas D. Plasma treatment effects on bulk properties of polycaprolactone nanofibrous mats fabricated by uncommon AC electrospinning: A comparative study. Surf. Coatings Technol. 2020;399:126203. doi: 10.1016/j.surfcoat.2020.126203. DOI

International Organization for Standardization; Geneva, Switzerland: 2014. Sterilization of Health-Care Products—Ethylene Oxide—Requirements for the Development, Validation and Routine Control of a Sterilization Process for Medical Devices.

International Organization for Standardization; Geneva, Switzerland: 2006. Sterilization of Health-Care Products—Radiation—Part 1: Requirements for the Development, Validation and Routine Control of a Sterilization Process for Medical Devices.

International Organization for Standardization; Geneva, Switzerland: 2013. Sterilization of Health Care Products—Radiation—Part 2: Establishing the Sterilization Dose.

International Organization for Standardization; Geneva, Switzerland: 2017. Sterilization of Health Care Products—Radiation—Part 3: Guidance on Dosimetric Aspects of Development, Validation and Routine Control.

Cottam E., Hukins D.W., Lee K., Hewitt C., Jenkins M.J. Effect of sterilisation by gamma irradiation on the ability of polycaprolactone (PCL) to act as a scaffold material. Med. Eng. Phys. 2009;31:221–226. doi: 10.1016/j.medengphy.2008.07.005. PubMed DOI

Gan Z., Yu D., Zhong Z., Liang Q., Jing X. Enzymatic degradation of poly(ε-caprolactone)/poly(dl-lactide) blends in phosphate buffer solution. Polymer. 1999;40:2859–2862. doi: 10.1016/S0032-3861(98)00549-7. DOI

Murray E., Thompson B.C., Sayyar S., Wallace G.G. Enzymatic degradation of graphene/polycaprolactone materials for tissue engineering. Polym. Degrad. Stab. 2015;111:71–77. doi: 10.1016/j.polymdegradstab.2014.10.010. DOI

Yang L., Li J., Jin Y., Li M., Gu Z. In vitro enzymatic degradation of the cross-linked poly(ε-caprolactone) implants. Polym. Degrad. Stab. 2015;112:10–19. doi: 10.1016/j.polymdegradstab.2014.12.008. DOI

Zeng J., Chen X., Liang Q., Xu X., Jing X. Enzymatic Degradation of Poly(L-lactide) and Poly(?-caprolactone) Electrospun Fibers. Macromol. Biosci. 2004;4:1118–1125. doi: 10.1002/mabi.200400092. PubMed DOI

Horakova J., Mikes P., Saman A., Svarcova T., Jencova V., Suchy T., Heczkova B., Jakubkova S., Jirousova J., Prochazkova R. Comprehensive assessment of electrospun scaffolds hemocompatibility. Mater. Sci. Eng. C. 2018;82:330–335. doi: 10.1016/j.msec.2017.05.011. PubMed DOI

International Organization for Standardization; Geneva, Switzerland: 2017. Biological Evaluation of Medical Devices—Part 4: Selection of Tests for Interactions with Blood.

Chinnappan B.A., Krishnaswamy M., Xu H., Hoque E. Electrospinning of Biomedical Nanofibers/Nanomembranes: Effects of Process Parameters. Polymers. 2022;14:3719. doi: 10.3390/polym14183719. PubMed DOI PMC

Colmenares Roldán G.J., Quintero Martínez Y., Universidad Pontificia Bolivariana. Agudelo Gómez L.M., Universidad Pontificia Bolivariana. Rodríguez Vinasco L.F., Hoyos-Palacio L.M. Influence of the molecular weight of polymer, solvents and operational condition in the electrospinning of polycaprolactone. Rev. Fac. Ing. Univ. Antioq. 2017;84:35–45. doi: 10.17533/udea.redin.n84a05. DOI

Qin X., Wu D. Effect of different solvents on poly(caprolactone) (PCL) electrospun nonwoven membranes. J. Therm. Anal. Calorim. 2011;107:1007–1013. doi: 10.1007/s10973-011-1640-4. DOI

Enis I.Y., Vojtech J., Sadikoglu T.G. Alternative solvent systems for polycaprolactone nanowebs via electrospinning. J. Ind. Text. 2016;47:57–70. doi: 10.1177/1528083716634032. DOI

Ferreira J., Gloria A., Cometa S., Coelho J.F.J., Domingos M. Effect of in vitro enzymatic degradation on 3D printed poly(ε-caprolactone) scaffolds: Morphological, chemical and mechanical properties. JABFM. 2017;15:185–195. doi: 10.5301/jabfm.5000363. PubMed DOI PMC

Ho M.H., Do T.B.-T., Dang N.N.-T., Le A.N.-M., Ta H.T.-K., Van Vo T., Nguyen H.T. Effects of an Acetic Acid and Acetone Mixture on the Characteristics and Scaffold–Cell Interaction of Electrospun Polycaprolactone Membranes. Appl. Sci. 2019;9:4350. doi: 10.3390/app9204350. DOI

Cairns M.-L., Dickson G.R., Orr J.F., Farrar D., Hawkins K., Buchanan F.J. Electron-beam treatment of poly(lactic acid) to control degradation profiles. Polym. Degrad. Stab. 2011;96:76–83. doi: 10.1016/j.polymdegradstab.2010.10.016. DOI

Haim Zada M., Kumar A., Elmalak O., Mechrez G., Domb A.J. Effect of Ethylene Oxide and Gamma (γ-) Sterilization on the Properties of a PLCL Polymer Material in Balloon Implants. ACS Omega. 2019;4:21319–21326. doi: 10.1021/acsomega.9b02889. PubMed DOI PMC

Augustine R., Saha A., Jayachandran V.P., Thomas S., Kalarikkal N. Dose-Dependent Effects of Gamma Irradiation on the Materials Properties and Cell Proliferation of Electrospun Polycaprolactone Tissue Engineering Scaffolds. Int. J. Polym. Mater. Polym. Biomater. 2015;64:526–533. doi: 10.1080/00914037.2014.977900. DOI

Preem L., Vaarmets E., Meos A., Jõgi I., Putrinš M., Tenson T., Kogermann K. Effects and efficacy of different sterilization and disinfection methods on electrospun drug delivery systems. Int. J. Pharm. 2019;567:118450. doi: 10.1016/j.ijpharm.2019.118450. PubMed DOI

Reneker D.H., Yarin A.L. Electrospinning jets and polymer nanofibers. Polymer. 2008;49:2387–2425. doi: 10.1016/j.polymer.2008.02.002. DOI

Slouf M., Synkova H., Baldrian J., Marek A., Kovarova J., Schmidt P., Dorschner H., Stephan M., Gohs U. Structural changes of UHMWPE after e-beam irradiation and thermal treatment. J. Biomed. Mater. Res. Part B Appl. Biomater. 2007;85B:240–251. doi: 10.1002/jbm.b.30942. PubMed DOI

Socrates G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts. 3rd ed. John Wiley and Sons, Ltd.; Chichester, UK: 2005. [(accessed on 15 February 2024)]. p. 368. Available online: https://www.wiley.com/en-us/Infrared+and+Raman+Characteristic+Group+Frequencies%3A+Tables+and+Charts%2C+3rd+Edition-p-9780470093078.

Öztürk S., Cakmak I., Tekeş A.T., Yildiko Synthesis and Characterization of Poly (lactic acid-b- ε-caprolactone) Block Copolymers. J. Inst. Sci. Technol. 2019;9:1035–1045. doi: 10.21597/jist.543626. DOI

Elzein T., Nasser-Eddine M., Delaite C., Bistac S., Dumas P. FTIR study of polycaprolactone chain organization at interfaces. J. Colloid Interface Sci. 2004;273:381–387. doi: 10.1016/j.jcis.2004.02.001. PubMed DOI

Gorodzha S.N., A Surmeneva M., A Surmenev R. Fabrication and characterization of polycaprolactone cross- linked and highly-aligned 3-D artificial scaffolds for bone tissue regeneration via electrospinning technology. IOP Conf. Series: Mater. Sci. Eng. 2015;98:012024. doi: 10.1088/1757-899X/98/1/012024. DOI

Yuniarto K., Purwanto Y.A., Purwanto S., Welt B.A., Purwadaria H.K., Sunarti T.C. Infrared and Raman Studies on Polylactide Acid and Polyethylene Glycol-400 Blend. In Semarang, Indonesia. 2016. [(accessed on 23 February 2023)]. p. 020101. Available online: http://aip.scitation.org/doi/abs/10.1063/1.4945555. DOI

Gorna K., Gogolewski S. The effect of gamma radiation on molecular stability and mechanical properties of biodegradable polyurethanes for medical applications. Polym. Degrad. Stab. 2003;79:465–474. doi: 10.1016/S0141-3910(02)00362-2. DOI

Bosworth L.A., Gibb A., Downes S. Gamma irradiation of electrospun poly(ε-caprolactone) fibers affects material properties but not cell response. J. Polym. Sci. Part B Polym. Phys. 2012;50:870–876. doi: 10.1002/polb.23072. DOI

de Cassan D., Hoheisel A.L., Glasmacher B., Menzel H. Impact of sterilization by electron beam, gamma radiation and X-rays on electrospun poly-(ε-caprolactone) fiber mats. J. Mater. Sci. Mater. Med. 2019;30:42. doi: 10.1007/s10856-019-6245-7. PubMed DOI

Di Foggia M., Corda U., Plescia E., Taddei P., Torreggiani A. Effects of sterilisation by high-energy radiation on biomedical poly-(ε-caprolactone)/hydroxyapatite composites. J. Mater. Sci. Mater. Med. 2010;21:1789–1797. doi: 10.1007/s10856-010-4046-0. PubMed DOI

Gleadall A., Pan J., Kruft M.A., Kellomäki M. Degradation mechanisms of bioresorbable polyesters. Part 1. Effects of random scission, end scission and autocatalysis. Acta Biomater. 2014;10:2223–2232. doi: 10.1016/j.actbio.2013.12.039. PubMed DOI

Yixiang D., Yong T., Liao S., Chan C.K., Ramakrishna S. Degradation of Electrospun Nanofiber Scaffold by Short Wave Length Ultraviolet Radiation Treatment and Its Potential Applications in Tissue Engineering. Tissue Eng. Part A. 2008;14:1321–1329. doi: 10.1089/ten.tea.2007.0395. PubMed DOI

Castilla-Cortázar I., Más-Estellés J., Meseguer-Dueñas J., Ivirico J.E., Marí B., Vidaurre A. Hydrolytic and enzymatic degradation of a poly(ε-caprolactone) network. Polym. Degrad. Stab. 2012;97:1241–1248. doi: 10.1016/j.polymdegradstab.2012.05.038. DOI

Baptista C., Azagury A., Shin H., Baker C.M., Ly E., Lee R., Mathiowitz E. The effect of temperature and pressure on polycaprolactone morphology. Polymer. 2020;191:122227. doi: 10.1016/j.polymer.2020.122227. DOI

Sharafi Zamir S., Fathi B., Ajji A., Robert M., Elkoun S. Crystallinity and Gas Permeability of Poly (Lactic Acid)/Starch Nanocrystal Nanocomposite. Polymers. 2022;14:2802. doi: 10.3390/polym14142802. PubMed DOI PMC

Antheunis H., van der Meer J.-C., de Geus M., Heise A., Koning C.E. Autocatalytic Equation Describing the Change in Molecular Weight during Hydrolytic Degradation of Aliphatic Polyesters. Biomacromolecules. 2010;11:1118–1124. doi: 10.1021/bm100125b. PubMed DOI

Dong Y., Yong T., Liao S., Chan C.K., Stevens M.M., Ramakrishna S. Distinctive Degradation Behaviors of Electrospun Polyglycolide, Poly(DL -Lactide- co -Glycolide), and Poly(L -Lactide- co -ε-Caprolactone) Nanofibers Cultured With/Without Porcine Smooth Muscle Cells. Tissue Eng. Part A. 2010;16:283–298. doi: 10.1089/ten.tea.2008.0537. PubMed DOI

Sailema-Palate G.P., Vidaurre A., Campillo-Fernández A., Castilla-Cortázar I. A comparative study on Poly(ε-caprolactone) film degradation at extreme pH values. Polym. Degrad. Stab. 2016;130:118–125. doi: 10.1016/j.polymdegradstab.2016.06.005. DOI

Chu C. Degradation phenomena of two linear aliphatic polyester fibres used in medicine and surgery. Polymer. 1985;26:591–594. doi: 10.1016/0032-3861(85)90160-0. DOI

Li S., Vert M. Biodegradation of Aliphatic Polyesters. In: Scott G., editor. Degradable Polymers [Internet] Springer; Dordrecht, The Netherlands: 2002. [(accessed on 27 August 2023)]. pp. 71–131. Available online: http://link.springer.com/10.1007/978-94-017-1217-0_5. DOI

Liu L., Li S., Garreau H., Vert M. Selective Enzymatic Degradations of Poly(l-lactide) and Poly(ε-caprolactone) Blend Films. Biomacromolecules. 2000;1:350–359. doi: 10.1021/bm000046k. PubMed DOI

Shen F., Zhang E., Wei Z. In vitro blood compatibility of poly (hydroxybutyrate-co-hydroxyhexanoate) and the influence of surface modification by alkali treatment. Mater. Sci. Eng. C. 2010;30:369–375. doi: 10.1016/j.msec.2009.12.003. DOI

Miller C.H., Platt S.J., Rice A.S., Kelly F., Soucie J.M., The Hemophilia Inhibitor Research Study Investigators* Validation of Nijmegen-Bethesda assay modifications to allow inhibitor measurement during replacement therapy and facilitate inhibitor surveillance: Validation of NBA modifications. J. Thromb. Haemost. 2012;10:1055–1061. doi: 10.1111/j.1538-7836.2012.04705.x. PubMed DOI PMC

Nalezinková M. In vitro hemocompatibility testing of medical devices. Thromb. Res. 2020;195:146–150. doi: 10.1016/j.thromres.2020.07.027. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...