ANTXR1 deficiency promotes fibroblast senescence: implications for GAPO syndrome as a progeroid disorder
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
384170921: FOR2722/B1
Deutsche Forschungsgemeinschaft
PubMed
38653789
PubMed Central
PMC11039612
DOI
10.1038/s41598-024-59901-y
PII: 10.1038/s41598-024-59901-y
Knihovny.cz E-zdroje
- MeSH
- aktiny metabolismus MeSH
- alopecie * metabolismus patologie genetika MeSH
- anodoncie * MeSH
- dědičné atrofie optického nervu genetika metabolismus MeSH
- fibroblasty * metabolismus MeSH
- lidé MeSH
- mikrofilamentové proteiny * MeSH
- poruchy růstu * MeSH
- progerie genetika patologie metabolismus MeSH
- receptory buněčného povrchu metabolismus genetika nedostatek MeSH
- stárnutí buněk * genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aktiny MeSH
- ANTXR1 protein, human MeSH Prohlížeč
- mikrofilamentové proteiny * MeSH
- receptory buněčného povrchu MeSH
ANTXR1 is one of two cell surface receptors mediating the uptake of the anthrax toxin into cells. Despite substantial research on its role in anthrax poisoning and a proposed function as a collagen receptor, ANTXR1's physiological functions remain largely undefined. Pathogenic variants in ANTXR1 lead to the rare GAPO syndrome, named for its four primary features: Growth retardation, Alopecia, Pseudoanodontia, and Optic atrophy. The disease is also associated with a complex range of other phenotypes impacting the cardiovascular, skeletal, pulmonary and nervous systems. Aberrant accumulation of extracellular matrix components and fibrosis are considered to be crucial components in the pathogenesis of GAPO syndrome, contributing to the shortened life expectancy of affected individuals. Nonetheless, the specific mechanisms connecting ANTXR1 deficiency to the clinical manifestations of GAPO syndrome are largely unexplored. In this study, we present evidence that ANTXR1 deficiency initiates a senescent phenotype in human fibroblasts, correlating with defects in nuclear architecture and actin dynamics. We provide novel insights into ANTXR1's physiological functions and propose GAPO syndrome to be reconsidered as a progeroid disorder highlighting an unexpected role for an integrin-like extracellular matrix receptor in human aging.
Zobrazit více v PubMed
Bradley KA, Mogridge J, Mourez M, Collier RJ, Young JA. Identification of the cellular receptor for anthrax toxin. Nature. 2001;414(6860):225–229. doi: 10.1038/n35101999. PubMed DOI
Miles LA, Burga LN, Gardner EE, Bostina M, Poirier JT, Rudin CM. Anthrax toxin receptor 1 is the cellular receptor for Seneca Valley virus. J. Clin. Invest. 2017;127(8):2957–2967. doi: 10.1172/JCI93472. PubMed DOI PMC
St Croix B, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E, et al. Genes expressed in human tumor endothelium. Science. 2000;289(5482):1197–1202. doi: 10.1126/science.289.5482.1197. PubMed DOI
Carson-Walter EB, Watkins DN, Nanda A, Vogelstein B, Kinzler KW, St CB. Cell surface tumor endothelial markers are conserved in mice and humans. Cancer Res. 2001;61(18):6649–6655. PubMed
Besschetnova TY, Ichimura T, Katebi N, St Croix B, Bonventre JV, Olsen BR. Regulatory mechanisms of anthrax toxin receptor 1-dependent vascular and connective tissue homeostasis. Matrix Biol. 2015;42:56–73. doi: 10.1016/j.matbio.2014.12.002. PubMed DOI PMC
Herrmann D, Ferrer-Vaquer A, Lahsnig C, Firnberg N, Leibbrandt A, Neubüser A. Expression and regulation of ANTXR1 in the chick embryo. Dev. Dyn. 2010;239(2):680–687. doi: 10.1002/dvdy.22194. PubMed DOI
Szot C, Saha S, Zhang XM, Zhu Z, Hilton MB, Morris K, et al. Tumor stroma-targeted antibody-drug conjugate triggers localized anticancer drug release. J. Clin. Invest. 2018;128(7):2927–2943. doi: 10.1172/JCI120481. PubMed DOI PMC
Nanda A, Carson-Walter EB, Seaman S, Barber TD, Stampfl J, Singh S, et al. TEM8 interacts with the cleaved C5 domain of collagen alpha 3(VI) Cancer Res. 2004;64(3):817–820. doi: 10.1158/0008-5472.CAN-03-2408. PubMed DOI
Bradley KA, Mogridge J, Rainey A, Batty S, Young JAT, Jonah G. Binding of anthrax toxin to its receptor is similar to α integrin-ligand interactions. J. Biol. Chem. 2003;278(49):49342–49347. doi: 10.1074/jbc.M307900200. PubMed DOI
Abrami L, Bischofberger M, Kunz B, Groux R, Van Der Goot FG. Endocytosis of the anthrax toxin is mediated by clathrin, actin and unconventional adaptors. PLoS Pathog. 2010;6(3):e1000792. doi: 10.1371/journal.ppat.1000792. PubMed DOI PMC
Przyklenk M, Heumüller SE, Freiburg C, Lütke S, Sengle G, Koch M, et al. Lack of evidence for a role of anthrax toxin receptors as surface receptors for collagen VI and for its cleaved-off C5 domain/endotrophin. iScience. 2022;25(10):105116. doi: 10.1016/j.isci.2022.105116. PubMed DOI PMC
Garlick KM, Mogridge J. Direct interaction between anthrax toxin receptor 1 and the actin cytoskeleton. Biochemistry. 2009;48(44):10577–10581. doi: 10.1021/bi9015296. PubMed DOI PMC
Yang MY, Chaudhary A, Seaman S, Dunty J, Stevens J, Elzarrad MK, et al. The cell surface structure of tumor endothelial marker 8 (TEM8) is regulated by the actin cytoskeleton. Biochim. Biophys. Acta. 2011;1813(1):39–49. doi: 10.1016/j.bbamcr.2010.11.013. PubMed DOI PMC
Go MY, Chow EM, Mogridge J. The cytoplasmic domain of anthrax toxin receptor 1 affects binding of the protective antigen. Infect. Immun. 2009;77(1):52–59. doi: 10.1128/IAI.01073-08. PubMed DOI PMC
Sergeeva OA, van der Goot FG. Converging physiological roles of the anthrax toxin receptors. F1000Research. 2019;8:1415. doi: 10.12688/f1000research.19423.1. PubMed DOI PMC
Werner E, Kowalczyk AP, Faundez V. Anthrax toxin receptor 1/tumor endothelium marker 8 mediates cell spreading by coupling extracellular ligands to the actin cytoskeleton. J. Biol. Chem. 2006;281(32):23227–23236. doi: 10.1074/jbc.M603676200. PubMed DOI
Hotchkiss KA, Basile CM, Spring SC, Bonuccelli G, Lisanti MP, Terman BI. TEM8 expression stimulates endothelial cell adhesion and migration by regulating cell-matrix interactions on collagen. Exp. Cell Res. 2005;305(1):133–144. doi: 10.1016/j.yexcr.2004.12.025. PubMed DOI
Gu J, Faundez V, Werner E. Endosomal recycling regulates anthrax toxin receptor 1/tumor endothelial marker 8-dependent cell spreading. Exp. Cell Res. 2010;316(12):1946–1957. doi: 10.1016/j.yexcr.2010.03.026. PubMed DOI PMC
Jinnin M, Medici D, Park L, Limaye N, Liu Y, Boscolo E, et al. Suppressed NFAT-dependent VEGFR1 expression and constitutive VEGFR2 signaling in infantile hemangioma. Nat. Med. 2008;14(11):1236–1246. doi: 10.1038/nm.1877. PubMed DOI PMC
Cheng B, Liu Y, Zhao Y, Li Q, Wang J, Chen Y, et al. The role of anthrax toxin protein receptor 1 as a new mechanosensor molecule and its mechanotransduction in BMSCs under hydrostatic pressure. Sci. Rep. 2019;9(1):12642. doi: 10.1038/s41598-019-49100-5. PubMed DOI PMC
Feng F, Cheng B, Jia Y, Zhang M, Xu F. ANTXR1 as a potential sensor of extracellular mechanical cues. Acta Biomater. 2023;158:80–86. doi: 10.1016/j.actbio.2023.01.006. PubMed DOI
Cullen M, Seaman S, Chaudhary A, Yang MY, Hilton MB, Logsdon D, et al. Host-derived tumor endothelial marker 8 promotes the growth of melanoma. Cancer Res. 2009;69(15):6021–6026. doi: 10.1158/0008-5472.CAN-09-1086. PubMed DOI PMC
Reeves CV, Wang X, Charles-Horvath PC, Vink JY, Borisenko VY, Young JAT, et al. Anthrax toxin receptor 2 functions in ECM homeostasis of the murine reproductive tract and promotes MMP activity. PLoS ONE. 2012;7(4):e34862. doi: 10.1371/journal.pone.0034862. PubMed DOI PMC
Hu K, Olsen BR, Besschetnova TY. Cell autonomous ANTXR1-mediated regulation of extracellular matrix components in primary fibroblasts. Matrix Biol. 2017;62:105–114. doi: 10.1016/j.matbio.2016.12.002. PubMed DOI PMC
Stránecký V, Hoischen A, Hartmannová H, Zaki MS, Chaudhary A, Zudaire E, et al. Mutations in ANTXR1 cause GAPO syndrome. Am. J. Hum. Genet. 2013;92(5):792–799. doi: 10.1016/j.ajhg.2013.03.023. PubMed DOI PMC
Bayram Y, Pehlivan D, Karaca E, Gambin T, Jhangiani SN, Erdin S, et al. Whole exome sequencing identifies three novel mutations in ANTXR1 in families with GAPO syndrome. Am. J. Med. Genet. A. 2014;164A(9):2328–2334. doi: 10.1002/ajmg.a.36678. PubMed DOI PMC
Demirgüneş EF, Ersoy-Evans S, Karaduman A. GAPO syndrome with the novel features of pulmonary hypertension, ankyloglossia, and prognathism. Am. J. Med. Genet. A. 2009;149A(4):802–805. doi: 10.1002/ajmg.a.32686. PubMed DOI
Kocabay G, Mert M. GAPO syndrome associated with dilated cardiomyopathy: An unreported association. Am. J. Med. Genet. A. 2009;149A(3):415–416. doi: 10.1002/ajmg.a.32638. PubMed DOI
Nanda A, Al-Ateeqi WA, Al-Khawari MA, Alsaleh QA, Anim JT. GAPO syndrome: A report of two siblings and a review of literature. Pediatr. Dermatol. 2010;27(2):156–161. doi: 10.1111/j.1525-1470.2010.01100.x. PubMed DOI
Goldman RD, Shumaker DK, Erdos MR, Eriksson M, Goldman AE, Gordon LB, et al. Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome. Proc. Natl. Acad. Sci. U. S. A. 2004;101(24):8963–8968. doi: 10.1073/pnas.0402943101. PubMed DOI PMC
Schnabel F, Kornak U, Wollnik B. Premature aging disorders: A clinical and genetic compendium. Clin. Genet. 2021;99(1):3–28. doi: 10.1111/cge.13837. PubMed DOI
Uhlén M, Karlsson MJ, Hober A, Svensson AS, Scheffel J, Kotol D, et al. The human secretome. Sci. Signal. 2019 doi: 10.1126/scisignal.aaz0274. PubMed DOI
Coppé JP, Desprez PY, Krtolica A, Campisi J. The senescence-associated secretory phenotype: The dark side of tumor suppression. Annu. Rev. Pathol. 2010;5:99–118. doi: 10.1146/annurev-pathol-121808-102144. PubMed DOI PMC
Basisty N, Kale A, Jeon OH, Kuehnemann C, Payne T, Rao C, et al. A proteomic atlas of senescence-associated secretomes for aging biomarker development. PLoS Biol. 2020;18(1):e3000599. doi: 10.1371/journal.pbio.3000599. PubMed DOI PMC
Kumari R, Jat P. Mechanisms of cellular senescence: Cell cycle arrest and senescence associated secretory phenotype. Front. Cell Dev. Biol. 2021;9:645593. doi: 10.3389/fcell.2021.645593. PubMed DOI PMC
Levi N, Papismadov N, Solomonov I, Sagi I, Krizhanovsky V. The ECM path of senescence in aging: Components and modifiers. FEBS J. 2020;287(13):2636–2646. doi: 10.1111/febs.15282. PubMed DOI
Mavrogonatou E, Pratsinis H, Papadopoulou A, Karamanos NK, Kletsas D. Extracellular matrix alterations in senescent cells and their significance in tissue homeostasis. Matrix Biol. 2019;75–76:27–42. doi: 10.1016/j.matbio.2017.10.004. PubMed DOI
Wajntal A, Koiffmann CP, Mendonça BB, Epps-Quaglia D, Sotto MN, Rati PBM, et al. GAPO syndrome (McKusick 23074)—A connective tissue disorder: Report on two affected sibs and on the pathologic findings in the older. Am. J. Med. Genet. 1990;37(2):213–223. doi: 10.1002/ajmg.1320370210. PubMed DOI
Meguid NA, Afifi HH, Ramzy MI, Hindawy A, Temtamy SA. GAPO syndrome: first Egyptian case with ultrastructural changes in the gingiva. Clin. Genet. 1997;52(2):110–115. doi: 10.1111/j.1399-0004.1997.tb02527.x. PubMed DOI
Şayli BS, Gül D. GAPO syndrome in three relatives in a Turkish kindred. Am. J. Med. Genet. 1993;47(3):342–345. doi: 10.1002/ajmg.1320470309. PubMed DOI
Abrami L, Kunz B, Deuquet J, Bafico A, Davidson G, Van Der Goot FG. Functional interactions between anthrax toxin receptors and the WNT signalling protein LRP6. Cell. Microbiol. 2008;10(12):2509–2519. doi: 10.1111/j.1462-5822.2008.01226.x. PubMed DOI
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: An expanding universe. Cell. 2023;186(2):243–278. doi: 10.1016/j.cell.2022.11.001. PubMed DOI
Childs BG, Gluscevic M, Baker DJ, Laberge RM, Marquess D, Dananberg J, et al. Senescent cells: An emerging target for diseases of ageing. Nat. Rev. Drug Discov. 2017;16(10):718–735. doi: 10.1038/nrd.2017.116. PubMed DOI PMC
Xu M, Pirtskhalava T, Farr JN, Weigand BM, Palmer AK, Weivoda MM, et al. Senolytics improve physical function and increase lifespan in old age. Nat. Med. 2018;24(8):1246–1256. doi: 10.1038/s41591-018-0092-9. PubMed DOI PMC
Eriksson M, Brown WT, Gordon LB, Glynn MW, Singer J, Scott L, et al. Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature. 2003;423(6937):293–298. doi: 10.1038/nature01629. PubMed DOI PMC
Osorio FG, Bárcena C, Soria-Valles C, Ramsay AJ, de Carlos F, Cobo J, et al. Nuclear lamina defects cause ATM-dependent NF-κB activation and link accelerated aging to a systemic inflammatory response. Genes Dev. 2012;26(20):2311–2324. doi: 10.1101/gad.197954.112. PubMed DOI PMC
Chien Y, Scuoppo C, Wang X, Fang X, Balgley B, Bolden JE, et al. Control of the senescence-associated secretory phenotype by NF-κB promotes senescence and enhances chemosensitivity. Genes Dev. 2011;25(20):2125–2136. doi: 10.1101/gad.17276711. PubMed DOI PMC
Maurer M, Lammerding J. The driving force: Nuclear mechanotransduction in cellular function, fate, and disease. Annu. Rev. Biomed. Eng. 2019;21:443–468. doi: 10.1146/annurev-bioeng-060418-052139. PubMed DOI PMC
Hoffman LM, Smith MA, Jensen CC, Yoshigi M, Blankman E, Ullman KS, et al. Mechanical stress triggers nuclear remodeling and the formation of transmembrane actin nuclear lines with associated nuclear pore complexes. Mol. Biol. Cell. 2020;31(16):1774–1787. doi: 10.1091/mbc.E19-01-0027. PubMed DOI PMC
Zhu R, Antoku S, Gundersen GG. Centrifugal displacement of nuclei reveals multiple LINC complex mechanisms for homeostatic nuclear positioning. Curr. Biol. 2017;27(20):3097–110.e5. doi: 10.1016/j.cub.2017.08.073. PubMed DOI PMC
Li Y, Lovett D, Zhang Q, Neelam S, Kuchibhotla RA, Zhu R, et al. Moving cell boundaries drive nuclear shaping during cell spreading. Biophys. J. 2015;109(4):670–686. doi: 10.1016/j.bpj.2015.07.006. PubMed DOI PMC
Nolen BJ, Tomasevic N, Russell A, Pierce DW, Jia Z, McCormick CD, et al. Characterization of two classes of small molecule inhibitors of Arp2/3 complex. Nature. 2009;460(7258):1031–1034. doi: 10.1038/nature08231. PubMed DOI PMC
Sladitschek-Martens HL, Guarnieri A, Brumana G, Zanconato F, Battilana G, Xiccato RL, et al. YAP/TAZ activity in stromal cells prevents ageing by controlling cGAS-STING. Nature. 2022;607(7920):790–798. doi: 10.1038/s41586-022-04924-6. PubMed DOI PMC
Haarer EL, Theodore CJ, Guo S, Frier RB, Campellone KG. Genomic instability caused by Arp2/3 complex inactivation results in micronucleus biogenesis and cellular senescence. PLoS Genet. 2023;19(1):e1010045. doi: 10.1371/journal.pgen.1010045. PubMed DOI PMC
Wu C, Haynes EM, Asokan SB, Simon JM, Sharpless NE, Baldwin AS, et al. Loss of Arp2/3 induces an NF-κB-dependent, nonautonomous effect on chemotactic signaling. J. Cell Biol. 2013;203(6):907–916. doi: 10.1083/jcb.201306032. PubMed DOI PMC
Thiam HR, Vargas P, Carpi N, Crespo CL, Raab M, Terriac E, et al. Perinuclear Arp2/3-driven actin polymerization enables nuclear deformation to facilitate cell migration through complex environments. Nat. Commun. 2016;7:10997. doi: 10.1038/ncomms10997. PubMed DOI PMC
Khatau SB, Hale CM, Stewart-Hutchinson PJ, Patel MS, Stewart CL, Searson PC, et al. A perinuclear actin cap regulates nuclear shape. Proc. Natl. Acad. Sci. U. S. A. 2009;106(45):19017–19022. doi: 10.1073/pnas.0908686106. PubMed DOI PMC
Wu C, Asokan SB, Berginski ME, Haynes EM, Sharpless NE, Griffith JD, et al. Arp2/3 is critical for lamellipodia and response to extracellular matrix cues but is dispensable for chemotaxis. Cell. 2012;148(5):973–987. doi: 10.1016/j.cell.2011.12.034. PubMed DOI PMC
Dowling O, Difeo A, Ramirez MC, Tukel T, Narla G, Bonafe L, et al. Mutations in capillary morphogenesis gene-2 result in the allelic disorders juvenile hyaline fibromatosis and infantile systemic hyalinosis. Am. J. Hum. Genet. 2003;73(4):957–966. doi: 10.1086/378781. PubMed DOI PMC
Ishikawa H, Maeda H, Takamatsu H, Saito Y. Systemic hyalinosis (juvenile hyaline fibromatosis). Ultrastructure of the hyaline with particular reference to the cross-banded structure. Arch. Dermatol. Res. 1979;265(2):195–206. doi: 10.1007/BF00407885. PubMed DOI
Peters DE, Zhang Y, Molinolo AA, Miller-Randolph S, Szabo R, Bugge TH, et al. Capillary morphogenesis protein-2 is required for mouse parturition by maintaining uterine collagen homeostasis. Biochem. Biophys. Res. Commun. 2012;422(3):393–397. doi: 10.1016/j.bbrc.2012.04.160. PubMed DOI PMC
Bürgi J, Kunz B, Abrami L, Deuquet J, Piersigilli A, Scholl-Bürgi S, et al. CMG2/ANTXR2 regulates extracellular collagen VI which accumulates in hyaline fibromatosis syndrome. Nat. Commun. 2017 doi: 10.1038/ncomms15861. PubMed DOI PMC
Hsu KS, Dunleavey JM, Szot C, Yang L, Hilton MB, Morris K, et al. Cancer cell survival depends on collagen uptake into tumor-associated stroma. Nat. Commun. 2022;13(1):7078. doi: 10.1038/s41467-022-34643-5. PubMed DOI PMC
Rieckher M, Garinis GA, Schumacher B. Molecular pathology of rare progeroid diseases. Trends Mol. Med. 2021;27(9):907–922. doi: 10.1016/j.molmed.2021.06.011. PubMed DOI
Kechagia JZ, Ivaska J, Roca-Cusachs P. Integrins as biomechanical sensors of the microenvironment. Nat. Rev. Mol. Cell Biol. 2019;20(8):457–473. doi: 10.1038/s41580-019-0134-2. PubMed DOI
Mu X, Tseng C, Hambright WS, Matre P, Lin CY, Chanda P, et al. Cytoskeleton stiffness regulates cellular senescence and innate immune response in Hutchinson-Gilford Progeria Syndrome. Aging Cell. 2020;19(8):e13152. doi: 10.1111/acel.13152. PubMed DOI PMC
Carley E, Stewart RM, Zieman A, Jalilian I, King DE, Zubek A, et al. The LINC complex transmits integrin-dependent tension to the nuclear lamina and represses epidermal differentiation. Elife. 2021 doi: 10.7554/eLife.58541. PubMed DOI PMC
Leiss M, Beckmann K, Girós A, Costell M, Fässler R. The role of integrin binding sites in fibronectin matrix assembly in vivo. Curr. Opin. Cell Biol. 2008;20(5):502–507. doi: 10.1016/j.ceb.2008.06.001. PubMed DOI
Burgi J, Abrami L, Castanon I, Abriata LA, Kunz B, Yan SE, et al. Ligand binding to the collagen VI receptor triggers a Talin-to-RhoA switch that regulates receptor endocytosis. Dev. Cell. 2020;53(4):418–30 e4. doi: 10.1016/j.devcel.2020.04.015. PubMed DOI
Xu J, Yang X, Deng Q, Yang C, Wang D, Jiang G, et al. TEM8 marks neovasculogenic tumor-initiating cells in triple-negative breast cancer. Nat. Commun. 2021;12(1):4413. doi: 10.1038/s41467-021-24703-7. PubMed DOI PMC
Schrank BR, Aparicio T, Li Y, Chang W, Chait BT, Gundersen GG, et al. Nuclear ARP2/3 drives DNA break clustering for homology-directed repair. Nature. 2018;559(7712):61–66. doi: 10.1038/s41586-018-0237-5. PubMed DOI PMC
Gutiérrez-Fernández A, Soria-Valles C, Osorio FG, Gutiérrez-Abril J, Garabaya C, Aguirre A, et al. Loss of MT1-MMP causes cell senescence and nuclear defects which can be reversed by retinoic acid. EMBO J. 2015;34(14):1875–1888. doi: 10.15252/embj.201490594. PubMed DOI PMC
Nabavizadeh N, Bressin A, Shboul M, Moreno Traspas R, Chia PH, Bonnard C, et al. A progeroid syndrome caused by a deep intronic variant in TAPT1 is revealed by RNA/SI-NET sequencing. EMBO Mol. Med. 2023;15(2):e16478. doi: 10.15252/emmm.202216478. PubMed DOI PMC
Etich J, Semler O, Stevenson NL, Stephan A, Besio R, Garibaldi N, et al. TAPT1-at the crossroads of extracellular matrix and signaling in Osteogenesis imperfecta. EMBO Mol. Med. 2023;15(7):e17528. doi: 10.15252/emmm.202317528. PubMed DOI PMC
Kessler D, Dethlefsen S, Haase I, Plomann M, Hirche F, Krieg T, et al. Fibroblasts in mechanically stressed collagen lattices assume a "synthetic" phenotype. J. Biol. Chem. 2001;276(39):36575–36585. doi: 10.1074/jbc.M101602200. PubMed DOI
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 2013;8(11):2281–2308. doi: 10.1038/nprot.2013.143. PubMed DOI PMC
Tyanova S, Temu T, Cox J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 2016;11(12):2301–2319. doi: 10.1038/nprot.2016.136. PubMed DOI
Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods. 2016;13(9):731–740. doi: 10.1038/nmeth.3901. PubMed DOI
Horzum U, Ozdil B, Pesen-Okvur D. Step-by-step quantitative analysis of focal adhesions. MethodsX. 2014;1:56–59. doi: 10.1016/j.mex.2014.06.004. PubMed DOI PMC
Driscoll TP, Cosgrove BD, Heo SJ, Shurden ZE, Mauck RL. Cytoskeletal to nuclear strain transfer regulates YAP signaling in mesenchymal stem cells. Biophys. J. 2015;108(12):2783–2793. doi: 10.1016/j.bpj.2015.05.010. PubMed DOI PMC