Mutations in ANTXR1 cause GAPO syndrome

. 2013 May 02 ; 92 (5) : 792-9. [epub] 20130418

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu kazuistiky, časopisecké články, Research Support, N.I.H., Intramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid23602711

Grantová podpora
Intramural NIH HHS - United States

Odkazy

PubMed 23602711
PubMed Central PMC3644626
DOI 10.1016/j.ajhg.2013.03.023
PII: S0002-9297(13)00160-2
Knihovny.cz E-zdroje

The genetic cause of GAPO syndrome, a condition characterized by growth retardation, alopecia, pseudoanodontia, and progressive visual impairment, has not previously been identified. We studied four ethnically unrelated affected individuals and identified homozygous nonsense mutations (c.262C>T [p.Arg88*] and c.505C>T [p.Arg169*]) or splicing mutations (c.1435-12A>G [p.Gly479Phefs*119]) in ANTXR1, which encodes anthrax toxin receptor 1. The nonsense mutations predictably trigger nonsense-mediated mRNA decay, resulting in the loss of ANTXR1. The transcript with the splicing mutation theoretically encodes a truncated ANTXR1 containing a neopeptide composed of 118 unique amino acids in its C terminus. GAPO syndrome's major phenotypic features, which include dental abnormalities and the accumulation of extracellular matrix, recapitulate those found in Antxr1-mutant mice and point toward an underlying defect in extracellular-matrix regulation. Thus, we propose that mutations affecting ANTXR1 function are responsible for this disease's characteristic generalized defect in extracellular-matrix homeostasis.

Zobrazit více v PubMed

Tipton R.E., Gorlin R.J. Growth retardation, alopecia, pseudo-anodontia, and optic atrophy—the GAPO syndrome: report of a patient and review of the literature. Am. J. Med. Genet. 1984;19:209–216. PubMed

Goloni-Bertollo E.M., Ruiz M.T., Goloni C.B., Muniz M.P., Valério N.I., Pavarino-Bertelli E.C. GAPO syndrome: three new Brazilian cases, additional osseous manifestations, and review of the literature. Am. J. Med. Genet. A. 2008;146A:1523–1529. PubMed

Sinha R., Trikha A., Laha A., Raviraj R., Kumar R. Anesthetic management of a patient with GAPO syndrome for glaucoma surgery. Paediatr. Anaesth. 2011;21:910–912. PubMed

Nanda A., Al-Ateeqi W.A., Al-Khawari M.A., Alsaleh Q.A., Anim J.T. GAPO syndrome: a report of two siblings and a review of literature. Pediatr. Dermatol. 2010;27:156–161. PubMed

Lei S., Iyengar S., Shan L., Cherwek D.H., Murthy S., Wong A.M. GAPO syndrome: a case associated with bilateral interstitial keratitis and hypothyroidism. Clin. Dysmorphol. 2010;19:79–81. PubMed

Castrillon-Oberndorfer G., Seeberger R., Bacon C., Engel M., Ebinger F., Thiele O.C. GAPO syndrome associated with craniofacial vascular malformation. Am. J. Med. Genet. A. 2010;152A:225–227. PubMed

Kocabay G., Mert M. GAPO syndrome associated with dilated cardiomyopathy: an unreported association. Am. J. Med. Genet. A. 2009;149A:415–416. PubMed

Demirgüneş E.F., Ersoy-Evans S., Karaduman A. GAPO syndrome with the novel features of pulmonary hypertension, ankyloglossia, and prognathism. Am. J. Med. Genet. A. 2009;149A:802–805. PubMed

Wajntal A., Koiffmann C.P., Mendonça B.B., Epps-Quaglia D., Sotto M.N., Rati P.B., Opitz J.M. GAPO syndrome (McKusick 23074)—a connective tissue disorder: report on two affected sibs and on the pathologic findings in the older. Am. J. Med. Genet. 1990;37:213–223. PubMed

Meguid N.A., Afifi H.H., Ramzy M.I., Hindawy A., Temtamy S.A. GAPO syndrome: first Egyptian case with ultrastructural changes in the gingiva. Clin. Genet. 1997;52:110–115. PubMed

Baxova A., Kozlowski K., Obersztyn E., Zeman J. GAPO syndrome (Radiographic clues to early diagnosis) Radiol. Med. (Torino) 1997;93:289–291. PubMed

van de Steeg E., Stránecký V., Hartmannová H., Nosková L., Hřebíček M., Wagenaar E., van Esch A., de Waart D.R., Oude Elferink R.P., Kenworthy K.E. Complete OATP1B1 and OATP1B3 deficiency causes human Rotor syndrome by interrupting conjugated bilirubin reuptake into the liver. J. Clin. Invest. 2012;122:519–528. PubMed PMC

Nosková L., Stránecký V., Hartmannová H., Přistoupilová A., Barešová V., Ivánek R., Hůlková H., Jahnová H., van der Zee J., Staropoli J.F. Mutations in DNAJC5, encoding cysteine-string protein alpha, cause autosomal-dominant adult-onset neuronal ceroid lipofuscinosis. Am. J. Hum. Genet. 2011;89:241–252. PubMed PMC

Becker J., Semler O., Gilissen C., Li Y., Bolz H.J., Giunta C., Bergmann C., Rohrbach M., Koerber F., Zimmermann K. Exome sequencing identifies truncating mutations in human SERPINF1 in autosomal-recessive osteogenesis imperfecta. Am. J. Hum. Genet. 2011;88:362–371. PubMed PMC

Gilissen C., Arts H.H., Hoischen A., Spruijt L., Mans D.A., Arts P., van Lier B., Steehouwer M., van Reeuwijk J., Kant S.G. Exome sequencing identifies WDR35 variants involved in Sensenbrenner syndrome. Am. J. Hum. Genet. 2010;87:418–423. PubMed PMC

Hoischen A., van Bon B.W., Gilissen C., Arts P., van Lier B., Steehouwer M., de Vries P., de Reuver R., Wieskamp N., Mortier G. De novo mutations of SETBP1 cause Schinzel-Giedion syndrome. Nat. Genet. 2010;42:483–485. PubMed

Hoischen A., van Bon B.W., Rodríguez-Santiago B., Gilissen C., Vissers L.E., de Vries P., Janssen I., van Lier B., Hastings R., Smithson S.F. De novo nonsense mutations in ASXL1 cause Bohring-Opitz syndrome. Nat. Genet. 2011;43:729–731. PubMed

Cartegni L., Wang J., Zhu Z., Zhang M.Q., Krainer A.R. ESEfinder: A web resource to identify exonic splicing enhancers. Nucleic Acids Res. 2003;31:3568–3571. PubMed PMC

Smith P.J., Zhang C., Wang J., Chew S.L., Zhang M.Q., Krainer A.R. An increased specificity score matrix for the prediction of SF2/ASF-specific exonic splicing enhancers. Hum. Mol. Genet. 2006;15:2490–2508. PubMed

St Croix B., Rago C., Velculescu V., Traverso G., Romans K.E., Montgomery E., Lal A., Riggins G.J., Lengauer C., Vogelstein B., Kinzler K.W. Genes expressed in human tumor endothelium. Science. 2000;289:1197–1202. PubMed

Carson-Walter E.B., Watkins D.N., Nanda A., Vogelstein B., Kinzler K.W., St Croix B. Cell surface tumor endothelial markers are conserved in mice and humans. Cancer Res. 2001;61:6649–6655. PubMed

Bradley K.A., Mogridge J., Mourez M., Collier R.J., Young J.A. Identification of the cellular receptor for anthrax toxin. Nature. 2001;414:225–229. PubMed

Liu S., Leppla S.H. Cell surface tumor endothelium marker 8 cytoplasmic tail-independent anthrax toxin binding, proteolytic processing, oligomer formation, and internalization. J. Biol. Chem. 2003;278:5227–5234. PubMed

Vargas M., Karamsetty R., Leppla S.H., Chaudry G.J. Broad expression analysis of human ANTXR1/TEM8 transcripts reveals differential expression and novel splice variants. PLoS ONE. 2012;7:e43174. PubMed PMC

Nanda A., Carson-Walter E.B., Seaman S., Barber T.D., Stampfl J., Singh S., Vogelstein B., Kinzler K.W., St Croix B. TEM8 interacts with the cleaved C5 domain of collagen alpha 3(VI) Cancer Res. 2004;64:817–820. PubMed

Hotchkiss K.A., Basile C.M., Spring S.C., Bonuccelli G., Lisanti M.P., Terman B.I. TEM8 expression stimulates endothelial cell adhesion and migration by regulating cell-matrix interactions on collagen. Exp. Cell Res. 2005;305:133–144. PubMed

Yang M.Y., Chaudhary A., Seaman S., Dunty J., Stevens J., Elzarrad M.K., Frankel A.E., St Croix B. The cell surface structure of tumor endothelial marker 8 (TEM8) is regulated by the actin cytoskeleton. Biochim. Biophys. Acta. 2011;1813:39–49. PubMed PMC

Werner E., Kowalczyk A.P., Faundez V. Anthrax toxin receptor 1/tumor endothelium marker 8 mediates cell spreading by coupling extracellular ligands to the actin cytoskeleton. J. Biol. Chem. 2006;281:23227–23236. PubMed

Gu J., Faundez V., Werner E. Endosomal recycling regulates Anthrax Toxin Receptor 1/Tumor Endothelial Marker 8-dependent cell spreading. Exp. Cell Res. 2010;316:1946–1957. PubMed PMC

Verma K., Gu J., Werner E. Tumor endothelial marker 8 amplifies canonical Wnt signaling in blood vessels. PLoS ONE. 2011;6:e22334. PubMed PMC

Cullen M., Seaman S., Chaudhary A., Yang M.Y., Hilton M.B., Logsdon D., Haines D.C., Tessarollo L., St Croix B. Host-derived tumor endothelial marker 8 promotes the growth of melanoma. Cancer Res. 2009;69:6021–6026. PubMed PMC

Davies G., Rmali K.A., Watkins G., Mansel R.E., Mason M.D., Jiang W.G. Elevated levels of tumour endothelial marker-8 in human breast cancer and its clinical significance. Int. J. Oncol. 2006;29:1311–1317. PubMed

Chaudhary A., St Croix B. Selective blockade of tumor angiogenesis. Cell Cycle. 2012;11:2253–2259. PubMed PMC

Liu S., Crown D., Miller-Randolph S., Moayeri M., Wang H., Hu H., Morley T., Leppla S.H. Capillary morphogenesis protein-2 is the major receptor mediating lethality of anthrax toxin in vivo. Proc. Natl. Acad. Sci. USA. 2009;106:12424–12429. PubMed PMC

Goucha S., Fazaa B., Ezzine N., Jaber K., Elandaloussi H., Abid R., Kamoun M.R. [GAPO syndrome] Ann. Dermatol. Venereol. 2000;127:501–504. PubMed

Jinnin M., Medici D., Park L., Limaye N., Liu Y., Boscolo E., Bischoff J., Vikkula M., Boye E., Olsen B.R. Suppressed NFAT-dependent VEGFR1 expression and constitutive VEGFR2 signaling in infantile hemangioma. Nat. Med. 2008;14:1236–1246. PubMed PMC

Nicolae C., Olsen B.R. Unexpected matrix diseases and novel therapeutic strategies. Cell Tissue Res. 2010;339:155–165. PubMed

Hanks S., Adams S., Douglas J., Arbour L., Atherton D.J., Balci S., Bode H., Campbell M.E., Feingold M., Keser G. Mutations in the gene encoding capillary morphogenesis protein 2 cause juvenile hyaline fibromatosis and infantile systemic hyalinosis. Am. J. Hum. Genet. 2003;73:791–800. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...