Angiotensin I and II Stimulate Cell Invasion of SARS-CoV-2: Potential Mechanism via Inhibition of ACE2 Arm of RAS
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články
PubMed
38466002
PubMed Central
PMC11019619
DOI
10.33549/physiolres.935198
PII: 935198
Knihovny.cz E-zdroje
- MeSH
- angiotensin I metabolismus farmakologie MeSH
- angiotensin II metabolismus MeSH
- angiotensin konvertující enzym metabolismus MeSH
- angiotensin-konvertující enzym 2 metabolismus MeSH
- COVID-19 * MeSH
- glykoprotein S, koronavirus * MeSH
- inhibitory ACE MeSH
- lidé MeSH
- renin-angiotensin systém * MeSH
- SARS-CoV-2 metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- angiotensin I MeSH
- angiotensin II MeSH
- angiotensin konvertující enzym MeSH
- angiotensin-konvertující enzym 2 MeSH
- glykoprotein S, koronavirus * MeSH
- inhibitory ACE MeSH
- spike protein, SARS-CoV-2 MeSH Prohlížeč
Angiotensin-converting enzyme 2 (ACE2), one of the key enzymes of the renin-angiotensin system (RAS), plays an important role in SARS-CoV-2 infection by functioning as a virus receptor. Angiotensin peptides Ang I and Ang II, the substrates of ACE2, can modulate the binding of SARS-CoV-2 Spike protein to the ACE2 receptor. In the present work, we found that co incubation of HEK-ACE2 and Vero E6 cells with the SARS-CoV-2 Spike pseudovirus (PVP) resulted in stimulation of the virus entry at low and high micromolar concentrations of Ang I and Ang II, respectively. The potency of Ang I and Ang II stimulation of virus entry corresponds to their binding affinity to ACE2 catalytic pocket with 10 times higher efficiency of Ang II. The Ang II induced mild increase of PVP infectivity at 20 microM; while at 100 microM the increase (129.74+/-3.99 %) was highly significant (p<0.001). Since the angiotensin peptides act in HEK ACE2 cells without the involvement of angiotensin type I receptors, we hypothesize that there is a steric interaction between the catalytic pocket of the ACE2 enzyme and the SARS-CoV-2 S1 binding domain. Oversaturation of the ACE2 with their angiotensin substrate might result in increased binding and entry of the SARS-CoV-2. In addition, the analysis of angiotensin peptides metabolism showed decreased ACE2 and increased ACE activity upon SARS-CoV-2 action. These effects should be taken into consideration in COVID-19 patients suffering from comorbidities such as the over-activated renin-angiotensin system as a mechanism potentially influencing the SARS-CoV-2 invasion into recipient cells.
Zobrazit více v PubMed
Wang K, Gheblawi M, Nikhanj A, Munan M, MacIntyre E, O’Neil C, Poglitsch M, et al. Dysregulation of ACE (Angiotensin-Converting Enzyme)-2 and Renin-Angiotensin Peptides in SARS-CoV-2 Mediated Mortality and End-Organ Injuries. Hypertension. 2022;79:365–378. doi: 10.1161/HYPERTENSIONAHA.121.18295. PubMed DOI
Dobrocsyova V, Slamkova M, Krskova K, Balazova L, Suski M, Olszanecki R, Cacanyiova S, et al. AVE0991, a Nonpeptide Angiotensin 1–7 Receptor Agonist, Improves Glucose Metabolism in the Skeletal Muscle of Obese Zucker Rats: Possible Involvement of Prooxidant/Antioxidant Mechanisms. Oxid Med Cell Longev. 2020;2020:6372935. doi: 10.1155/2020/6372935. PubMed DOI PMC
Sampaio WO, Henrique de Castro C, Santos RA, Schiffrin EL, Touyz RM. Angiotensin-(1–7) counterregulates angiotensin II signaling in human endothelial cells. Hypertension. 2007;50:1093–1098. doi: 10.1161/HYPERTENSIONAHA.106.084848. PubMed DOI
Zlacka J, Stebelova K, Zeman M, Herichova I. Interactions of renin-angiotensin system and COVID-19: the importance of daily rhythms in ACE2, ADAM17 and TMPRSS2 expression. Physiol Res. 2021;70(Suppl 2):S177–S194. doi: 10.33549/physiolres.934754. PubMed DOI PMC
Chappell MC, Al Zayadneh EM. Angiotensin-(1–7) and the Regulation of Anti-Fibrotic Signaling Pathways. J Cell Signal. 2017;2:134. doi: 10.4172/2576-1471.1000134. PubMed DOI PMC
Rodrigues Prestes TR, Rocha NP, Miranda AS, Teixeira AL, Simoes ESAC. The Anti-Inflammatory Potential of ACE2/Angiotensin-(1–7)/Mas Receptor Axis: Evidence from Basic and Clinical Research. Curr Drug Targets. 2017;18:1301–1313. doi: 10.2174/1389450117666160727142401. PubMed DOI
Macova L, Bicikova M, Hampl R. Endocrine risk factors for COVID-19 in context of aging. Physiol Res. 2021;70(Suppl 2):S153–S159. doi: 10.33549/physiolres.934723. PubMed DOI PMC
Jiang F, Yang J, Zhang Y, Dong M, Wang S, Zhang Q, Liu FF, et al. Angiotensin-converting enzyme 2 and angiotensin 1–7: novel therapeutic targets. Nat Rev Cardiol. 2014;11:413–426. doi: 10.1038/nrcardio.2014.59. PubMed DOI PMC
Li W, Zhang C, Sui J, Kuhn JH, Moore MJ, Luo S, Wong SK, et al. Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J. 2005;24:1634–1643. doi: 10.1038/sj.emboj.7600640. PubMed DOI PMC
Giordano D, De Masi L, Argenio MA, Facchiano A. Structural Dissection of Viral Spike-Protein Binding of SARS-CoV-2 and SARS-CoV-1 to the Human Angiotensin-Converting Enzyme 2 (ACE2) as Cellular Receptor. Biomedicines. 2021;9:1038. doi: 10.3390/biomedicines9081038. PubMed DOI PMC
De Masi L, Argenio MA, Giordano D, Facchiano A. Molecular Aspects of Spike-ACE2 Interaction. Encyclopedia. 2022;2:96–108. doi: 10.3390/encyclopedia2010007. DOI
Lu J, Sun PD. High affinity binding of SARS-CoV-2 spike protein enhances ACE2 carboxypeptidase activity. J Biol Chem. 2020;295:18579–18588. doi: 10.1074/jbc.RA120.015303. PubMed DOI PMC
Costa LB, Perez LG, Palmeira VA, Macedo ECT, Ribeiro VT, Lanza K, Simoes ESAC. Insights on SARS-CoV-2 Molecular Interactions With the Renin-Angiotensin System. Front Cell Dev Biol. 2020;8:559841. doi: 10.3389/fcell.2020.559841. PubMed DOI PMC
Miesbach W. Pathological Role of Angiotensin II in Severe COVID-19. TH Open. 2020;4:e138–e144. doi: 10.1055/s-0040-1713678. PubMed DOI PMC
Reindl-Schwaighofer R, Hodlmoser S, Eskandary F, Poglitsch M, Bonderman D, Strassl R, Aberle JH, et al. ACE2 Elevation in Severe COVID-19. Am J Respir Crit Care Med. 2021;203:1191–1196. doi: 10.1164/rccm.202101-0142LE. PubMed DOI PMC
Rysz S, Al-Saadi J, Sjostrom A, Farm M, Campoccia Jalde F, Platten M, Eriksson H, et al. COVID-19 pathophysiology may be driven by an imbalance in the renin-angiotensin-aldosterone system. Nat Commun. 2021;12:2417. doi: 10.1038/s41467-021-22713-z. PubMed DOI PMC
Zangrillo A, Landoni G, Beretta L, Morselli F, Serpa Neto A, Bellomo R Group CO-BS. Angiotensin II infusion in COVID-19-associated vasodilatory shock: a case series. Crit Care. 2020;24:227. doi: 10.1186/s13054-020-02928-0. PubMed DOI PMC
Rysz S, Jalde FC, Oldner A, Eriksson LI, Lundberg J, Fagerlund MJ. Treatment with angiotensin II in COVID-19 patients may not be beneficial. Crit Care. 2020;24:546. doi: 10.1186/s13054-020-03233-6. PubMed DOI PMC
Kovacech B, Fialova L, Filipcik P, Skrabana R, Zilkova M, Paulenka-Ivanovova N, Kovac A, et al. Monoclonal antibodies targeting two immunodominant epitopes on the Spike protein neutralize emerging SARS-CoV-2 variants of concern. EBioMedicine. 2022;76:103818. doi: 10.1016/j.ebiom.2022.103818. PubMed DOI PMC
Millet JK, Tang T, Nathan L, Jaimes JA, Hsu HL, Daniel S, Whittaker GR. Production of Pseudotyped Particles to Study Highly Pathogenic Coronaviruses in a Biosafety Level 2 Setting. J Vis Exp. 2019;(145) doi: 10.3791/59010. doi: 10.3791/59010. PubMed DOI PMC
Chen BK, Saksela K, Andino R, Baltimore D. Distinct modes of human immunodeficiency virus type 1 proviral latency revealed by superinfection of nonproductively infected cell lines with recombinant luciferase-encoding viruses. J Virol. 1994;68:654–660. doi: 10.1128/jvi.68.2.654-660.1994. PubMed DOI PMC
Connor RI, Chen BK, Choe S, Landau NR. Vpr is required for efficient replication of human immunodeficiency virus type-1 in mononuclear phagocytes. Virology. 1995;206:935–944. doi: 10.1006/viro.1995.1016. PubMed DOI
He J, Choe S, Walker R, Di Marzio P, Morgan DO, Landau NR. Human immunodeficiency virus type 1 viral protein R (Vpr) arrests cells in the G2 phase of the cell cycle by inhibiting p34cdc2 activity. J Virol. 1995;69:6705–6711. doi: 10.1128/jvi.69.11.6705-6711.1995. PubMed DOI PMC
Guo Z, Poglitsch M, McWhinney BC, Ungerer JPJ, Ahmed AH, Gordon RD, Wolley M, et al. Measurement of Equilibrium Angiotensin II in the Diagnosis of Primary Aldosteronism. Clin Chem. 2020;66:483–492. doi: 10.1093/clinchem/hvaa001. PubMed DOI
Burrello J, Buffolo F, Domenig O, Tetti M, Pecori A, Monticone S, Poglitsch M, et al. Renin-Angiotensin-Aldosterone System Triple-A Analysis for the Screening of Primary Aldosteronism. Hypertension. 2020;75:163–172. doi: 10.1161/HYPERTENSIONAHA.119.13772. PubMed DOI
Nie J, Li Q, Wu J, Zhao C, Hao H, Liu H, Zhang L, et al. Quantification of SARS-CoV-2 neutralizing antibody by a pseudotyped virus-based assay. Nat Protoc. 2020;15:3699–3715. doi: 10.1038/s41596-020-0394-5. PubMed DOI
Pires de Souza GA, Osman IO, Le Bideau M, Baudoin JP, Jaafar R, Devaux C, La Scola B. Angiotensin II Receptor Blockers (ARBs Antihypertensive Agents) Increase Replication of SARS-CoV-2 in Vero E6 Cells. Front Cell Infect Microbiol. 2021;11:639177. doi: 10.3389/fcimb.2021.639177. PubMed DOI PMC
Yalcin HC, Sukumaran V, Al-Ruweidi M, Shurbaji S. Do Changes in ACE-2 Expression Affect SARS-CoV-2 Virulence and Related Complications: A Closer Look into Membrane-Bound and Soluble Forms. Int J Mol Sci. 2021;22:6703. doi: 10.3390/ijms22136703. PubMed DOI PMC
Obama T, Takayanagi T, Kobayashi T, Bourne AM, Elliott KJ, Charbonneau M, Dubois CM, et al. Vascular induction of a disintegrin and metalloprotease 17 by angiotensin II through hypoxia inducible factor 1alpha. Am J Hypertens. 2015;28:10–14. doi: 10.1093/ajh/hpu094. PubMed DOI PMC
Patel VB, Clarke N, Wang Z, Fan D, Parajuli N, Basu R, Putko B, et al. Angiotensin II induced proteolytic cleavage of myocardial ACE2 is mediated by TACE/ADAM-17: a positive feedback mechanism in the RAS. J Mol Cell Cardiol. 2014;66:167–176. doi: 10.1016/j.yjmcc.2013.11.017. PubMed DOI
Wu C, Ye D, Mullick AE, Li Z, Danser AHJ, Daugherty A, Lu HS. Effects of Renin-Angiotensin Inhibition on ACE2 (Angiotensin-Converting Enzyme 2) and TMPRSS2 (Transmembrane Protease Serine 2) Expression: Insights Into COVID-19. Hypertension. 2020;76:e29–e30. doi: 10.1161/HYPERTENSIONAHA.120.15782. PubMed DOI PMC
Rahmani W, Chung H, Sinha S, Bui-Marinos MP, Arora R, Jaffer A, Corcoran JA, et al. Attenuation of SARS-CoV-2 infection by losartan in human kidney organoids. iScience. 2022;25:103818. doi: 10.1016/j.isci.2022.103818. PubMed DOI PMC
GeneCards. Angiotensin II Receptor Type 1. [Accessed 24 July 2023]. https://www.genecards.org/cgi-bin/carddisp.pl?gene=AGTR1&keywords=AGTR1 .
Banu N, Panikar SS, Leal LR, Leal AR. Protective role of ACE2 and its downregulation in SARS-CoV-2 infection leading to Macrophage Activation Syndrome: Therapeutic implications. Life Sci. 2020;256:117905. doi: 10.1016/j.lfs.2020.117905. PubMed DOI PMC
Lu Y, Zhu Q, Fox DM, Gao C, Stanley SA, Luo K. SARS-CoV-2 down-regulates ACE2 through lysosomal degradation. Mol Biol Cell. 2022;33:ar147. doi: 10.1091/mbc.E22-02-0045. PubMed DOI PMC
Kiseleva AA, Troisi EM, Hensley SE, Kohli RM, Epstein JA. SARS-CoV-2 spike protein binding selectively accelerates substrate-specific catalytic activity of ACE2. J Biochem. 2021;170:299–306. doi: 10.1093/jb/mvab041. PubMed DOI PMC
Ogunlade BO, Lazartigues E, Filipeanu CM. Angiotensin Type 1 Receptor-Dependent Internalization of SARS-CoV-2 by Angiotensin-Converting Enzyme 2. Hypertension. 2021;77:e42–e43. doi: 10.1161/HYPERTENSIONAHA.120.16795. PubMed DOI PMC