Interactions of renin-angiotensin system and COVID-19: the importance of daily rhythms in ACE2, ADAM17 and TMPRSS2 expression

. 2021 Dec 16 ; 70 (S2) : S177-S194.

Jazyk angličtina Země Česko Médium print

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34913351

Angiotensin-converting enzyme 2 (ACE2) was identified as a molecule that mediates the cellular entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Several membrane molecules of the host cell must cooperate in this process. While ACE2 serves in a membrane receptor-mediating interaction with the surface spike (S) glycoprotein of SARS-CoV-2 located on the virus envelope, enzyme A disintegrin and metalloproteinase 17 (ADAM17) regulates ACE2 availability on the membrane and transmembrane protease serine 2 (TMPRSS2) facilitates virus-cell membrane fusion. Interestingly, ACE2, ADAM17 and TMPRSS2 show a daily rhythm of expression in at least some mammalian tissue. The circadian system can also modulate COVID-19 progression via circadian control of the immune system (direct, as well as melatonin-mediated) and blood coagulation. Virus/ACE2 interaction causes ACE2 internalization into the cell, which is associated with suppressed activity of ACE2. As a major role of ACE2 is to form vasodilatory angiotensin 1-7 from angiotensin II (Ang II), suppressed ACE2 levels in the lung can contribute to secondary COVID-19 complications caused by up-regulated, pro-inflammatory vasoconstrictor Ang II. This is supported by the positive association of hypertension and negative COVID-19 prognosis although this relationship is dependent on numerous comorbidities. Hypertension treatment with inhibitors of renin-angiotensin system does not negatively influence prognosis of COVID-19 patients. It seems that tissue susceptibility to SARS-CoV-2 shows negative correlation to ACE2 expression. However, in lungs of infected patient, a high ACE2 expression is associated with better outcome, compared to low ACE2 expression. Manipulation of soluble ACE2 levels is a promising COVID-19 therapeutic strategy.

Zobrazit více v PubMed

BADAWI S, ALI BR. ACE2 nascence, trafficking, and SARS-CoV-2 pathogenesis: The saga continues. Hum Genomics. 2021;15:8. doi: 10.1186/s40246-021-00304-9. PubMed DOI PMC

BAKER SA, KWOK S, BERRY GJ, MONTINE TJ. Angiotensin-converting enzyme 2 (ACE2) expression increases with age in patients requiring mechanical ventilation. PLoS One. 2021;16:e0247060. doi: 10.1371/journal.pone.0247060. PubMed DOI PMC

BAO W, ZHANG X, JIN Y, HAO H, YANG F, YIN D, CHEN X, XUE Y, HAN L, ZHANG M. Factors associated with the expression of ACE2 in human lung tissue: Pathological evidence from patients with normal FEV1 and FEV1/FVC. J Inflamm Res. 2021;14:1677–1687. doi: 10.2147/JIR.S300747. PubMed DOI PMC

BUNYAVANICH S, DO A, VICENCIO A. Nasal gene expression of angiotensin-converting enzyme 2 in children and adults. JAMA. 2020;323:2427–2429. doi: 10.1001/jama.2020.8707. PubMed DOI PMC

CANTUTI-CASTELVETRI L, OJHA R, PEDRO LD, DJANNATIAN M, FRANZ J, KUIVANEN S, Van der MEER F, KALLIO K, KAYA T, ANASTASINA M, SMURA T, LEVANOV L, SZIROVICZA L, TOBI A, KALLIO-KOKKO H, ÖSTERLUND P, JOENSUU M, MEUNIER FA, BUTCHER SJ, WINKLER MS, ET AL. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science. 2020;370:856–860. doi: 10.1126/science.abd2985. PubMed DOI PMC

CAO Y, SUN Y, TIAN X, BAI Z, GONG Y, QI J, LIU D, LIU W, LI J. Analysis of ACE2 gene-encoded proteins across mammalian species. Front Vet Sci. 2020;7:457. doi: 10.3389/fvets.2020.00457. PubMed DOI PMC

CARDINALI DP, BROWN GM, PANDI-PERUMAL SR. Can melatonin be a potential “silver bullet” in treating COVID-19 patients? Diseases. 2020;8:44. doi: 10.3390/diseases8040044. PubMed DOI PMC

CHEN J, JIANG Q, XIA X, LIU K, YU Z, TAO W, GONG W, HAN JJ. Individual variation of the SARS-CoV-2 receptor ACE2 gene expression and regulation. Aging Cell. 2020;19:e13168. doi: 10.1111/acel.13168. PubMed DOI PMC

CLARKE NE, BELYAEV ND, LAMBERT DW, TURNER AJ. Epigenetic regulation of angiotensin-converting enzyme 2 (ACE2) by SIRT1 under conditions of cell energy stress. Clin Sci (Lond) 2014;126:507–516. doi: 10.1042/CS20130291. PubMed DOI

CLAUSEN TM, SANDOVAL DR, SPLIID CHB, PIHL J, PERRETT HR, PAINTER CHD, NARAYANAN A, MAJOWICZ SA, KWONG EM, McVICAR RN, THACKER BE, GLASS CHA, YANG Z, TORRES JL, GOLDEN GJ, ET AL. SARS-CoV-2 infection depends on cellular heparan sulfate and ACE2. Cell. 2020;183:1043–1057. doi: 10.2139/ssrn.3657535. PubMed DOI PMC

CUERVO NZ, GRANDVAUX N. ACE2: Evidence of role as entry receptor for SARS-CoV-2 and implications in comorbidities. Elife. 2020;9:e61390. doi: 10.7554/eLife.61390. PubMed DOI PMC

CUGINI P, LUCIA P, Di PALMA L, RE M, CANOVA R, GASBARRONE L, CIANETTI A. Effect of aging on circadian rhythm of atrial natriuretic peptide, plasma renin activity, and plasma aldosterone. J Gerontol. 1992;47:B214–B219. doi: 10.1093/geronj/47.6.B214. PubMed DOI

Da CUNHA PEDROSA AM, WEINLICH R, MOGNOL GP, ROBBS BK, VIOLA JP, CAMPA A, AMARANTE-MENDES GP. Melatonin protects CD4+ T cells from activation-induced cell death by blocking NFAT-mediated CD95 ligand upregulation. J Immunol. 2010;184:3487–3494. doi: 10.4049/jimmunol.0902961. PubMed DOI

DAI Y-J, ZHANG W-N, WANG W-D, HE S-Y, LIANG CH-C, WANG D-W. Comprehensive analysis of two potential novel SARS-CoV-2 entries, TMPRSS2 and IFITM3, in healthy individuals and cancer patients. Int J Biol Sci. 2020;16:3028–3036. doi: 10.7150/ijbs.51234. PubMed DOI PMC

DALY JL, SIMONETTI B, KLEIN K, CHEN K-E, WILLIAMSON MK, ANTON-PLAGARO C, SHOEMARK DK, SIMON-GRACIA L, BAUER M, HOLLANDI R, GREBER UF, HORVATH P, SESSIONS RB, HELENIUS A, HISCOX JA, TEESALU T, MATTHEWS DA, DAVIDSCON AD, COLLINS BM, CULLEN PJ, YAMAUCHI Y. Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science. 2020;370:861–865. doi: 10.1126/science.abd3072. PubMed DOI PMC

DENG Q, RASOOL RU, RUSSELL RM, NATESAN R, ASANGANI IA. Targeting androgen regulation of TMPRSS2 and ACE2 as a therapeutic strategy to combat COVID-19. iScience. 2021;24:102254. doi: 10.1016/j.isci.2021.102254. PubMed DOI PMC

DONG E, HONGRU D, GARDNER L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis. 2020;20:533–534. doi: 10.1016/S1473-3099(20)30120-1. PubMed DOI PMC

DORJEE K, KIM H, BONOMO E, DOLMA R. Prevalence and predictors of death and severe disease in patients hospitalized due to COVID-19: A comprehensive systematic review and meta-analysis of 77 studies and 38,000 patients. PLoS One. 2020;15:e0243191. doi: 10.1371/journal.pone.0243191. PubMed DOI PMC

DREOS R, AMBROSINI G, GROUX R, CAVIN PÉRIER R, BUCHER P. The eukaryotic promoter database in its 30th year: focus on non-vertebrate organisms. Nucleic Acids Res. 2017;45:D51–D55. doi: 10.1093/nar/gkw1069. PubMed DOI PMC

FU J, ZHOU B, ZHANG L, BALAJI KS, WEI C, LIU X, CHEN H, PENG J, FU J. Expressions and significances of the angiotensin-converting enzyme 2 gene, the receptor of SARS-CoV-2 for COVID-19. Mol Biol Rep. 2020;47:4383–4392. doi: 10.1007/s11033-020-05478-4. PubMed DOI PMC

GAGLIARDI MC, TIERI P, ORTONA E, RUGGIERI A. ACE2 expression and sex disparity in COVID-19. Cell Death Discov. 2020;6:37. doi: 10.1038/s41420-020-0276-1. PubMed DOI PMC

GE J, WANG R, JU B, ZHANG Q, SUN J, CHEN P, ZHANG S, TIAN Y, SHAN S, CHENG L, ZHOU B, SONG S, ZHAO J, HAIYAN W, SHI X, DING Q, LIU L, ZHAO J, ZHANG Z, WANG X, ZHANG L. Antibody neutralization of SARS-CoV-2 through ACE2 receptor mimicry. Nat Commun. 2021;12:250. doi: 10.1038/s41467-020-20501-9. PubMed DOI PMC

GIBBS J, INCE L, MATTHEWS L, MEI J, BELL T, YANG N, SAER B, BEGLEY N, POOLMAN T, PARIOLLAUD M, FARROW S, DEMAYO F, HUSSELL T, WORTHEN GS, RAY D, LOUDON A. An epithelial circadian clock controls pulmonary inflammation and glucocorticoid action. Nat Med. 2014;20:919–926. doi: 10.1038/nm.3599. PubMed DOI PMC

HACHIM MY, HEIALY SA, HACHIM IY, HALWANI R, SENOK AC, MAGHAZACHI AA, HAMID Q. Interferon-induced transmembrane protein (IFITM3) is upregulated explicitly in SARS-CoV-2 infected lung epithelial cells. Front Immunol. 2020;11:1372. doi: 10.3389/fimmu.2020.01372. PubMed DOI PMC

HAMMING I, TIMENS W, BULTHUIS ML, LELY AT, NAVIS G, Van GOOR H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203:631–637. doi: 10.1002/path.1570. PubMed DOI PMC

HANFF TC, HARHAY MO, BROWN TS, COHEN JB, MOHAREB AM. Is there an association between COVID-19 mortality and the renin-angiotensin system? A call for epidemiologic investigations. Clin Infect Dis. 2020;71:870–874. doi: 10.1093/cid/ciaa329. PubMed DOI PMC

HARMER D, GILBERT M, BORMAN R, CLARK KL. Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS Lett. 2002;532:107–110. doi: 10.1016/S0014-5793(02)03640-2. PubMed DOI

HAWKES S, TANAKA S, PANTAZIS A, GAUTAM A, KIWUWA-MUYINGO S, BUSE K, PURDIE A. Recorded but not revealed: exploring the relationship between sex and gender, country income level, and COVID-19. Lancet Glob Health. 2021;9:e751–e752. doi: 10.1016/S2214-109X(21)00170-4. PubMed DOI PMC

HERICHOVA I, SZANTOOVA K. Renin-angiotensin system: upgrade of recent knowledge and perspectives. Endocr Regul. 2013;47:39–52. doi: 10.4149/endo_2013_01_39. PubMed DOI

HERICHOVA I, SOLTESOVA D, SZANTOOVA K, MRAVEC B, NEUPAUEROVA D, VESELA A, ZEMAN M. Effect of angiotensin II on rhythmic per2 expression in the suprachiasmatic nucleus and heart and daily rhythm of activity in Wistar rats. Regul Pept. 2013;186:49–56. doi: 10.1016/j.regpep.2013.06.016. PubMed DOI

HERICHOVA I, ZSOLDOSOVA K, VESELA A, ZEMAN M. Effect of angiotensin II infusion on rhythmic clock gene expression and local renin-angiotensin system in the aorta of Wistar rats. Endocr Regul. 2014;48:144–151. doi: 10.4149/endo_2014_03_144. PubMed DOI

HOFFMANN M, KLEINE-WEBER H, SCHROEDER S, KRÜGER N, HERRLER T, ERICHSEN S, SCHIERGENS TS, HERRLER G, WU N-H, NITSCHE A, MÜLLER MA, DROSTEN CH, PÖHLMANN S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181:271–280. doi: 10.1016/j.cell.2020.02.052. PubMed DOI PMC

HONMA S. The mammalian circadian system: a hierarchical multi-oscillator structure for generating circadian rhythm. J Physiol Sci. 2018;68:207–219. doi: 10.1007/s12576-018-0597-5. PubMed DOI PMC

HOOPER NM, LAMBERT DW, TURNER AJ. Discovery and characterization of ACE2 - a 20-year journey of surprises from vasopeptidase to COVID-19. Clin Sci. 2020;134:2489–2501. doi: 10.1042/CS20200476. PubMed DOI

HOU YJ, OKUDA K, EDWARDS CE, MARTINEZ DR, ASAKURA T, DINNON KH, KATO T, LEE RE, YOUNT BL, MASCENIK TM, CHEN G, OLIVIER KN, GHIO A, TSE LV, LEIST SR, GRALINSKI LE, SCHÄFER A, DANG H, GILMORE R, NAKANO S, ET AL. SARS-CoV-2 reverse genetics reveals a variable infection gradient in the respiratory tract. Cell. 2020;182:429–446. doi: 10.1016/j.cell.2020.05.042. PubMed DOI PMC

HU RW, LIU C, GONG JP, CAO ZX. Differential expression and immune correlation analysis of COVID-19 receptor ACE2 and TMPRSS2 genes in all normal and tumor tissues. Eur Rev Med Pharmacol Sci. 2021;25:1724–1731. doi: 10.26355/eurrev_202102_24882. PubMed DOI

HUANG L, SEXTON DJ, SKOGERSON K, DEVLIN M, SMITH R, SANYAL I, PARRY T, KENT R, ENRIGHT J, WU Q-L, CONLEY G, DEOLIVEIRA D, MORGANELLI L, DUCAR M, WESCOTT CHR, LADNER RC. Novel peptide inhibitors of angiotensin-converting enzyme 2. J Biol Chem. 2003;278:15532–15540. doi: 10.1074/jbc.M212934200. PubMed DOI

HUENTELMAN MJ, ZUBCEVIC J, PRADA JAH, XIAO X, DIMITROV DS, RAIZADA MK, OSTROV DA. Structure-based discovery of a novel angiotensin-converting enzyme 2 inhibitor. Hypertension. 2004;44:903–906. doi: 10.1161/01.HYP.0000146120.29648.36. PubMed DOI

JIA H, NEPTUNE E, CUI H. Targeting ACE2 for COVID-19 therapy: Opportunities and challenges. Am J Respir Cell Mol Biol. 2021;64:416–425. doi: 10.1165/rcmb.2020-0322PS. PubMed DOI PMC

JIA HP, LOOK DC, TAN P, SHI L, HICKEY M, GAKHAR L, CHAPPELL MC, WOHLFORD-LENANE C, McCRAY PB., JR Ectodomain shedding of angiotensin converting enzyme 2 in human airway epithelia. Am J Physiol Lung Cell Mol Physiol. 2009;297:L84–L96. doi: 10.1152/ajplung.00071.2009. PubMed DOI PMC

KHAN A, BENTHIN C, ZENO B, ALBERTSON TE, BOYD J, CHRISTIE JD, HALL R, POIRIER G, RONCO JJ, TIDSWELL M, HARDES K, POWLEY WM, WRIGHT TJ, SIEDERER SK, FAIRMAN DA, LIPSON DA, BAYLIFFE AI, LAZAAR AL. A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Crit Care. 2017;21:234. doi: 10.1186/s13054-017-1823-x. PubMed DOI PMC

LAMBERT DW, YARSKI M, WARNER FJ, THORNHILL P, PARKIN ET, SMITH AI, HOOPER NM, TURNER AJ. Tumor necrosis factor-alpha convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2) J Biol Chem. 2005;280:30113–30119. doi: 10.1074/jbc.M505111200. PubMed DOI PMC

LEE MMY, DOCHERTY KF, SATTAR N, MEHTA N, KALRA A, NOWACKI AS, SOLOMON SD, VADUGANATHAN M, PETRIE MC, JHUND PS, McMURRAY JJV. Renin-angiotensin system blockers, risk of SARS-CoV-2 infection and outcomes fromCoViD-19: systematic review and meta-analysis. Eur Heart J Cardiovasc Pharmacother. 2020:pvaa138. doi: 10.1093/ehjcvp/pvaa138. PubMed DOI PMC

LI F, LI W, FARZAN M, HARRISON SC. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science. 2005;309:1864–1868. doi: 10.1126/science.1116480. PubMed DOI

LEMMER B, WITTE K, SCHÄNZER A, FINDEISEN A. Circadian rhythms in the renin-angiotensin system and adrenal steroids may contribute to the inverse blood pressure rhythm in hypertensive TGR (mREN-2)27 rats. Chronobiol Int. 2000;17:645–658. doi: 10.1081/CBI-100101071. PubMed DOI

LIU J, JI H, ZHENG W, WU X, ZHU JJ, ARNOLD AP, SANDBERG K. Sex differences in renal angiotensin converting enzyme 2 (ACE2) activity are 17β-oestradiol-dependent and sex chromosome-independent. Biol Sex Differ. 2010;1:6. doi: 10.1186/2042-6410-1-6. PubMed DOI PMC

LORENZEN I, LOKAU J, KORPYS Y, OLDEFEST M, FLYNN CM, KÜNZEL U, GARBERS C, FREEMAN M, GRÖTZINGER J, DÜSTERHÖFT S. Control of ADAM17 activity by regulation of its cellular localisation. Sci Rep. 2016;6:35067. doi: 10.1038/srep37364. PubMed DOI PMC

MATSUZAWA T, NAKAMURA Y, OGAWA Y, ISHIMARU K, GOSHIMA F, SHIMADA S, NAKAO A, KAWAMURA TJ. Differential day-night outcome to HSV-2 cutaneous infection. J Invest Dermatol. 2018;138:233–236. doi: 10.1016/j.jid.2017.07.838. PubMed DOI

MAYI BS, LEIBOWITZ JA, WOODS AT, AMMON KA, LIU AE, RAJA A. The role of neuropilin-1 in COVID-19. PLoS Pathog. 2021;17:e1009153. doi: 10.1371/journal.ppat.1009153. PubMed DOI PMC

MEIRA ECM, MIYAZAWA M, GOZAL D. Putative contributions of circadian clock and sleep in the context of SARS-CoV-2 infection. Eur Respir J. 2020;55:2001023. doi: 10.1183/13993003.01023-2020. PubMed DOI PMC

MOGIELNICKI A, CHABIELSKA E, PAWLAK R, SZEMRAJ J, BUCZKO W. Angiotensin II enhances thrombosis development in renovascular hypertensive rats. Thromb Haemost. 2005;93:1069–1076. doi: 10.1160/TH04-10-0701. PubMed DOI

MONTEIL V, KWON H, PRADO P, HAGELKRÜYS A, WIMMER RA, STAHL M, LEOPOLDI A, GARRETA E, HURTADO DEL POZO C, PROSPER F, ROMERO JP, WIRNSBERGER G, ZHANG H, SLUTSKY AS, CONDER R, MONTSERRAT N, MIRAZIMI A, PENNINGER JM. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell. 2020;181:905–913. doi: 10.1016/j.cell.2020.04.004. PubMed DOI PMC

NILAND S, EBLE JA. Neuropilins in the context of tumor vasculature. Int J Mol Sci. 2019;20:639. doi: 10.3390/ijms20030639. PubMed DOI PMC

ONABAJO OO, BANDAY AR, STANIFER ML, YAN W, OBAJEMU A, SANTER DM, FLOREZ-VARGAS O, PIONTKIVSKA H, VARGAS JM, RING TJ, KEE C, DOLDAN P, TYRRELL DL, MENDOZA JL, BOULANT S, PROKUNINA-OLSSON L. Interferons and viruses induce a novel truncated ACE2 isoform and not the full-length SARS-CoV-2 receptor. Nat Genet. 2020;52:1283–1293. doi: 10.1038/s41588-020-00731-9. PubMed DOI PMC

OU X, LIU Y, LEI X, LI P, MI D, REN L, GUO L, GUO R, CHEN T, HU J, XIANG Z, MU Z, CHEN X, CHEN J, HU K, JIN Q, WANG J, QIAN Z. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun. 2020;11:1620. doi: 10.1038/s41467-020-15562-9. PubMed DOI PMC

OZ M, LORKE DE. Multifunctional angiotensin converting enzyme 2, the SARS-CoV-2 entry receptor, and critical appraisal of its role in acute lung injury. Biomed Pharmacother. 2021;136:111193. doi: 10.1016/j.biopha.2020.111193. PubMed DOI PMC

PACES J, STRIZOVA Z, SMRZ D, CERNY J. COVID-19 and the immune system. Physiol Res. 2020;69:379–388. doi: 10.33549/physiolres.934492. PubMed DOI PMC

PATEL VB, CLARKE N, WANG Z, FAN D, PARAJULI N, BASU R, PUTKO B, KASSIRI Z, TURNER AJ, OUDIT GY. Angiotensin II induced proteolytic cleavage of myocardial ACE2 is mediated by TACE/ADAM-17: a positive feedback mechanism in the RAS. J Mol Cell Cardiol. 2014;66:167–176. doi: 10.1016/j.yjmcc.2013.11.017. PubMed DOI

PAUL M, MEHR AP, KREUTZ R. Physiology of local renin-angiotensin systems. Physiol Rev. 2006;86:747–803. doi: 10.1152/physrev.00036.2005. PubMed DOI

PAVEL AB, WU J, RENERT-YUVAL Y, Del DUCA E, GLICKMAN JW, MILLER RL, PALLER AS, KRUEGER JG, GUTTMAN-YASSKY E. SARS-CoV-2 receptor ACE2 protein expression in serum is significantly associated with age. Allergy. 2021;76:875–878. doi: 10.1111/all.14522. PubMed DOI PMC

PELLET-MANY C, FRANKEL P, JIA H, ZACHARY I. Neuropilins: structure, function and role in disease. Biochem J. 2008;411:211–226. doi: 10.1042/BJ20071639. PubMed DOI

PICK R, HE W, CHEN CS, SCHEIERMANN C. Time-of-day-dependent trafficking and function of leukocyte subsets. Trends Immunol. 2019;40:524–537. doi: 10.1016/j.it.2019.03.010. PubMed DOI

PIZARRO A, HAYER K, LAHENS NF, HOGENESCH JB. CircaDB: a database of mammalian circadian gene expression profiles. Nucleic Acids Res. 2013;41:D1009–D1013. doi: 10.1093/nar/gks1161. PubMed DOI PMC

RAMANI A, MÜLLER L, OSTERMANN PN, GABRIEL E, ABIDA-ISLAM P, MÜLLER-SCHIFFMANN A, MARIAPPAN A, GOUREAU O, GRUELL H, WALKER A, ANDRÉE M, HAUKA S, HOUWAART T, DILTHEY A, WOHLGEMUTH K, OMRAN H, KLEIN F, WIECZOREK D, ADAMS O, TIMM J, KORTH C, SCHAAL H, GOPALAKRISHNAN J. SARS-CoV-2 targets neurons of 3D human brain organoids. EMBO J. 2020;39:e106230. doi: 10.15252/embj.2020106230. PubMed DOI PMC

ROSSI ÁD, De ARAÚJO JLF, De ALMEIDA TB, RIBEIRO-ALVES M, De ALMEIDA VELOZO C, De ALMEIDA JM, De CARVALHO LEITÃO I, FERREIRA SN, Da SILVA OLIVEIRA J, ALVES HJ, CHEI S. Association between ACE2 and TMPRSS2 nasopharyngeal expression and COVID-19 respiratory distress. Sci Rep. 2021;11:9658. doi: 10.1038/s41598-021-88944-8. PubMed DOI PMC

SALKA K, ABUTALEB K, CHORVINSKY E, THIRUVENGADAM G, ARROYO M, GOMEZ JL, GUTIERREZ MJ, PILLAI DK, JAISWAL JK, NINO G. IFN Stimulates ACE2 expression in pediatric airway epithelial cells. Am J Respir Cell Mol Biol. 2021;64:515–518. doi: 10.1165/rcmb.2020-0352LE. PubMed DOI PMC

SAMA IE, RAVERA A, SANTEMA BT, Van GOOR H, TER MAATEN JM, CLELAND JGF, RIENSTRA M, FRIEDRICH AW, SAMANI NJ, NG LL, DICKSTEIN K, LANG CC, FILIPPATOS G, ANKER SD, PONIKOWSKI P, METRA M, Van VELDHUISEN DJ, VOORS AA. Circulating plasma concentrations of angiotensin-converting enzyme 2 in men and women with heart failure and effects of renin-angiotensin-aldosterone inhibitors. Eur Heart J. 2020;41:1810–1817. doi: 10.1093/eurheartj/ehaa373. PubMed DOI PMC

SAPONARO F, RUTIGLIANO G, SESTITO S, BANDINI L, STORTI B, BIZZARRI R, ZUCCHI R. ACE2 in the era of SARS-CoV-2: Controversies and novel perspectives. Front Mol Biosci. 2020;7:588618. doi: 10.3389/fmolb.2020.588618. PubMed DOI PMC

SARRAZIN S, LAMANNA WC, ESKO JD. Heparan sulfate proteoglycans. Cold Spring Harb Perspect Biol. 2011;3:a004952. doi: 10.1101/cshperspect.a004952. PubMed DOI PMC

SCHIFFER S, PUMMER S, WITTE K, LEMMER B. Cardiovascular regulation in TGR(mREN2)27 rats: 24h variation in plasma catecholamines, angiotensin peptides,and telemetric heart rate variability. Chronobiol Int. 2001;18:461–474. doi: 10.1081/CBI-100103969. PubMed DOI

SCULLY EP, HAVERFIELD J, URSIN RL, TANNENBAUM C, KLEIN SL. Considering how biological sex impacts immune responses and COVID-19 outcomes. Nat Rev Immunol. 2020;20:442–447. doi: 10.1038/s41577-020-0348-8. PubMed DOI PMC

SHANG J, WAN Y, LUO CH, YE G, GENG Q, AUERBACH A, LI F. Cell entry mechanism of SARS-CoV-2. Proc Natl Acad Sci U S A. 2020;117:11727–11734. doi: 10.1073/pnas.2003138117. PubMed DOI PMC

SCHEIERMANN C, KUNISAKI Y, FRENETTE PS. Circadian control of the immune system. Nat Rev Immunol. 2013;13:190–198. doi: 10.1038/nri3386. PubMed DOI PMC

SCHMIEDER RE, HILGERS KF, SCHLAICH MP, SCHMIDT BMW. Renin-angiotensin system and cardiovascular risk. Lancet. 2007;369:1208–1219. doi: 10.1016/S0140-6736(07)60242-6. PubMed DOI

SONI S, JIANG Y, TESFAIGZI Y, HORNICK JL, ÇATALTEPE S. Comparative analysis of ACE2 protein expression in rodent, non-human primate, and human respiratory tract at baseline and after injury: A conundrum for COVID-19 pathogenesis. PLoS One. 2021;16:e0247510. doi: 10.1371/journal.pone.0247510. PubMed DOI PMC

SPENCE JS, HE R, HOFFMANN H-H, DAS T, THINON E, RICE CHM, PENG T, CHANDRAN K, HANG HC. IFITM3 directly engages and shuttles incoming virus particles to lysosomes. Nat Chem Biol. 2019;15:259–268. doi: 10.1038/s41589-018-0213-2. PubMed DOI PMC

STOKES EK, ZAMBRANO LD, ANDERSON KN, MARDER EP, RAZ KM, El BURAI FELIX S, TIE Y, FULLERTON KE. Coronavirus Disease 2019 Case Surveillance - United States, January 22–May 30, 2020. MMWR Morb Mortal Wkly Rep. 2020;69:759–765. doi: 10.15585/mmwr.mm6924e2. PubMed DOI PMC

SUNGNAK W, HUANG N, BECAVIN C, BERG M, QUEEN R, LITVINUKOVA M, TALAVERA-LOPEZ C, MAATZ H, REICHART D, SAMPAZIOTIS F, WORLOCK KB, YOSHIDA M, BARNES JL. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med. 2020;26:681–687. doi: 10.1038/s41591-020-0868-6. PubMed DOI PMC

SWÄRD P, EDSFELDT A, REEPALU A, JEHPSSON L, ROSENGREN BE, KARLSSON MK. Age and sex differences in soluble ACE2 may give insights for COVID-19. Crit Care. 2020;24:221. doi: 10.1186/s13054-020-02942-2. PubMed DOI PMC

TAN DX, HARDELAND R. Potential utility of melatonin in deadly infectious diseases related to the overreaction of innate immune response and destructive inflammation: Focus on COVID-19. Melatonin Res. 2020;3:120–143. doi: 10.32794/mr11250052. DOI

TUKIAINEN T, VILLANI AC, YEN A, RIVAS MA, MARSHALL JL, SATIJA R, AGUIRRE M, GAUTHIER L, FLEHARTY M, KIRBY A, CUMMINGS BB, CASTEL SE, KARCZEWSKI KJ, AGUET F, BYRNES A. Landscape of X chromosome inactivation across human tissues. Nature. 2017;550:244–248. doi: 10.1038/nature24265. PubMed DOI PMC

VARDOULAKIS S, SHEEL M, LAL A, GRAY D. COVID-19 environmental transmission and preventive public health measures. Aust N Z J Public Health. 2020;44:333–335. doi: 10.1111/1753-6405.13033. PubMed DOI PMC

VARGA Z, FLAMMER AJ, STEIGER P, HABERECKER M, ANDERMATT R, ZINKERNAGEL AS, MEHRA MR, SCHUEPBACH RA, RUSCHITZKA F, MOCH H. Endothelial cell infections and endotheliitis in COVID-19. Lancet. 2020;395:1417–1418. doi: 10.1016/S0140-6736(20)30937-5. PubMed DOI PMC

VEGLIO F, PIETRANDREA R, OSSOLA M, VIGNANI A, ANGELI A. Circadian rhythm of the angiotensin converting enzyme (ACE) activity in serum of healthy adult subjects. Chronobiologia. 1987;14:21–25. PubMed

V’KOVSKI P, KRATZEL A, STEINER S, STALDER H, THIEL V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol. 2021;19:155–170. doi: 10.1038/s41579-020-00468-6. PubMed DOI PMC

WANG A, CHIOU J, POIRION OB, BUCHANAN J, VALDEZ MJ, VERHEYDEN JM, HOU X, KUDTARKAR P, NARENDRA S, NEWSOME JM, GUO M, FADDAH DA, ZHANG K, YOUNG RE, BARR J, SAJTI E, MISRA R, HUYCK H, ROGERS L, POOLE C, WHITSETT JA, PRYHUBER G, XU Y, GAULTON KJ, PREISSL S, SUN X. Single-cell multiomic profiling of human lungs reveals cell-type-specific and age-dynamic control of SARS-CoV2 host genes. Elife. 2020;9:e62522. doi: 10.7554/eLife.62522. PubMed DOI PMC

WILLIAMSON EJ, WALKER AJ, BHASKARAN K, BACON S, BATES C, MORTON CE, CURTIS HJ, MEHRKAR A, EVANS D, INGLESBY P, COCKBURN J, McDONALD HI, MacKENNA B, TOMLINSON L, DOUGLAS IJ, RENTSCH CT, MATHUR R, WONG AYS, GRIEVE R, HARRISON D, ET AL. Factors associated with COVID-19-related death using OpenSAFELY. Nature. 2020;584:430–436. doi: 10.1038/s41586-020-2521-4. PubMed DOI PMC

WRAPP D, WANG N, CORBETT KS, GOLDSMITH JA, HSIEH CH-L, ABIONA O, GRAHAM BS, McLELLAN JS. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367:1260–1263. doi: 10.1126/science.abb2507. PubMed DOI PMC

XIE X, CHEN J, WANG X, ZHANG F, LIU Y. Age- and gender-related difference of ACE2 expression in rat lung. Life Sci. 2006;78:2166–2171. doi: 10.1016/j.lfs.2005.09.038. PubMed DOI PMC

XU F, GAO J, BERGMANN S, SIMS AC, ASHBROOK DG, BARIC RS, CUI Y, JONSSON CB, LI K, WILLIAMS RW, SCHUGHART K, LU L. Genetic dissection of the regulatory mechanisms of Ace2 in the infected mouse lung. Front Immunol. 2021;11:607314. doi: 10.3389/fimmu.2020.607314. PubMed DOI PMC

XU J, TENG Y, SHANG L, GU X, FAN G, CHEN Y, TIAN R, ZHANG S, CAO B. The effect of prior angiotensin-converting enzyme inhibitor and angiotensin receptor blocker treatment on coronavirus disease 2019 (COVID-19) susceptibility and outcome: A systematic review and meta-analysis. Clin Infect Dis. 2021;72:e901–e913. doi: 10.1093/cid/ciaa1592. PubMed DOI PMC

YANG J, PETITJEAN SJL, KOEHLER M, ZHANG Q, DUMITRU AC, CHEN W, DERCLAYE S, VINCENT SP, SOUMILLION P, ALSTEENS D. Molecular interaction and inhibition of SARS-CoV-2 binding to the ACE2 receptor. Nat Commun. 2020;11:4541. doi: 10.1038/s41467-020-18319-6. PubMed DOI PMC

ZHANG HL, LI YM, SUN J, ZHANG YY, WANG TY, SUN MX, WANG MH, YANG YL, HU XL, TANG YD, ZHAO J, CAI X. Evaluating angiotensin-converting enzyme 2-mediated SARS-CoV-2 entry across species. J Biol Chem. 2021a;296:100435. doi: 10.1016/j.jbc.2021.100435. PubMed DOI PMC

ZHANG J, WU J, SUN X, XUE H, SHAO J, CAI W, JING Y, YUE M, DONG C. Association of hypertension with the severity and fatality of SARS-CoV-2 infection: A meta-analysis. Epidemiol Infect. 2020;148:e106. doi: 10.1017/S095026882000117X. PubMed DOI PMC

ZHANG Y, NIU G, FLISIKOWSKA T, SCHNIEKE A, FLISIKOWSKI K. A tissue- and gender-specific regulation of the SARS-CoV-2 receptor ACE2 by p53 in pigs. Biochem Biophys Res Commun. 2021b;553:25–29. doi: 10.1016/j.bbrc.2021.03.068. PubMed DOI PMC

ZIMMERMANN P, CURTIS N. Why is COVID-19 less severe in children? A review of the proposed mechanisms underlying the age-related difference in severity of SARS-CoV-2 infections. Arch Dis Child. 2021;106:429–439. doi: 10.1136/archdischild-2020-320338. PubMed DOI

ZIPETO D, PALMEIRA JDF, ARGANARAZ GA, ARGANARAZ ER. ACE2/ADAM17/TMPRSS2 interplay may be the main risk factor for COVID-19. Front Immunol. 2020;11:576745. doi: 10.3389/fimmu.2020.576745. PubMed DOI PMC

ZOU X, CHEN K, ZOU J, HAN P, HAO J, HAN Z. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 2020;14:185–192. doi: 10.1007/s11684-020-0754-0. PubMed DOI PMC

ZORES F, REBEAUD ME. COVID and the renin-angiotensin system: Are hypertension or its treatments deleterious? Front Cardiovasc Med. 2020;7:71. doi: 10.3389/fcvm.2020.00071. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...