BACKGROUND: Chronic venous disease (CVD) is a common disorder of lower extremities. OBJECTIVES: The study was scheduled to investigate the relationship between polymorphisms in major proinflammatory genes TNF α (-238 A/G; -308 A/G), TNF β (NcoI), IL-1β (+3953 T/C); IL-6 (-174 G/C; -596 G/C) and ADAM17 (3'TACE) and CVD risk. Genotype-phenotype study was calculated to test possible association between examined genotypes and phenotypes of CVD. METHODS: Finally, 150 CVD patients and 227 control subjects were enrolled to the study. Genotypes in proinflammatory gene polymorphisms were identified from isolated DNA by PCR method and restriction analysis. RESULTS: Significant differences in genotype distribution/allelic frequencies in TNF β gene, IL-1 β gene and in ADAM17 gene polymorphisms were found between CVD women and control ones. In the genotype-phenotype study, identified genotypes were associated with arterial hypertension (ADAM17, IL-6-men), ischaemic heart disease (TNF α and β genes), diabetes mellitus (ADAM17-women, TNF β-men), age of CVD onset (TNF α and IL-6), ulceration (ADAM17), duration of ulceration (ADAM17), ulceration recurrence (ADAM17-women), home care necessity (TNF α), varices surgery (TNF α), erysipelas development (ADAM17-men) and tumour development (TNF α). CONCLUSION: Studying of these polymorphisms associations can help us better identify patients at higher risk of developing severe CVD.
- MeSH
- chronická nemoc MeSH
- frekvence genu MeSH
- genetická predispozice k nemoci MeSH
- genotyp MeSH
- interleukin-1beta genetika MeSH
- interleukin-6 genetika MeSH
- jednonukleotidový polymorfismus MeSH
- kardiovaskulární nemoci * genetika MeSH
- lidé MeSH
- lymfotoxin-alfa genetika MeSH
- protein ADAM17 genetika MeSH
- TNF-alfa * genetika MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
The cytokine interleukin-6 (IL-6) has considerable pro-inflammatory properties and is a driver of many physiological and pathophysiological processes. Cellular responses to IL-6 are mediated by membrane-bound or soluble forms of the IL-6 receptor (IL-6R) complexed with the signal-transducing subunit gp130. While expression of the membrane-bound IL-6R is restricted to selected cell types, soluble IL-6R (sIL-6R) enables gp130 engagement on all cells, a process termed IL-6 trans-signalling and considered to be pro-inflammatory. sIL-6R is predominantly generated through proteolytic processing by the metalloproteinase ADAM17. ADAM17 also liberates ligands of the epidermal growth factor receptor (EGFR), which is a prerequisite for EGFR activation and results in stimulation of proliferative signals. Hyperactivation of EGFR mostly due to activating mutations drives cancer development. Here, we reveal an important link between overshooting EGFR signalling and the IL-6 trans-signalling pathway. In epithelial cells, EGFR activity induces not only IL-6 expression but also the proteolytic release of sIL-6R from the cell membrane by increasing ADAM17 surface activity. We find that this derives from the transcriptional upregulation of iRhom2, a crucial regulator of ADAM17 trafficking and activation, upon EGFR engagement, which results in increased surface localization of ADAM17. Also, phosphorylation of the EGFR-downstream mediator ERK mediates ADAM17 activity via interaction with iRhom2. In sum, our study reveals an unforeseen interplay between EGFR activation and IL-6 trans-signalling, which has been shown to be fundamental in inflammation and cancer.
- MeSH
- cytokinový receptor gp130 genetika MeSH
- epitelové buňky metabolismus MeSH
- erbB receptory genetika metabolismus MeSH
- interleukin-6 * genetika metabolismus MeSH
- lidé MeSH
- protein ADAM17 * MeSH
- signální transdukce * genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Several membrane-anchored signal mediators such as cytokines (e.g. TNFα) and growth factors are proteolytically shed from the cell surface by the metalloproteinase ADAM17, which, thus, has an essential role in inflammatory and developmental processes. The membrane proteins iRhom1 and iRhom2 are instrumental for the transport of ADAM17 to the cell surface and its regulation. However, the structure-function determinants of the iRhom-ADAM17 complex are poorly understood. We used AI-based modelling to gain insights into the structure-function relationship of this complex. We identified different regions in the iRhom homology domain (IRHD) that are differentially responsible for iRhom functions. We have supported the validity of the predicted structure-function determinants with several in vitro, ex vivo and in vivo approaches and demonstrated the regulatory role of the IRHD for iRhom-ADAM17 complex cohesion and forward trafficking. Overall, we provide mechanistic insights into the iRhom-ADAM17-mediated shedding event, which is at the centre of several important cytokine and growth factor pathways.
Angiotensin-converting enzyme 2 (ACE2) was identified as a molecule that mediates the cellular entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Several membrane molecules of the host cell must cooperate in this process. While ACE2 serves in a membrane receptor-mediating interaction with the surface spike (S) glycoprotein of SARS-CoV-2 located on the virus envelope, enzyme A disintegrin and metalloproteinase 17 (ADAM17) regulates ACE2 availability on the membrane and transmembrane protease serine 2 (TMPRSS2) facilitates virus-cell membrane fusion. Interestingly, ACE2, ADAM17 and TMPRSS2 show a daily rhythm of expression in at least some mammalian tissue. The circadian system can also modulate COVID-19 progression via circadian control of the immune system (direct, as well as melatonin-mediated) and blood coagulation. Virus/ACE2 interaction causes ACE2 internalization into the cell, which is associated with suppressed activity of ACE2. As a major role of ACE2 is to form vasodilatory angiotensin 1-7 from angiotensin II (Ang II), suppressed ACE2 levels in the lung can contribute to secondary COVID-19 complications caused by up-regulated, pro-inflammatory vasoconstrictor Ang II. This is supported by the positive association of hypertension and negative COVID-19 prognosis although this relationship is dependent on numerous comorbidities. Hypertension treatment with inhibitors of renin-angiotensin system does not negatively influence prognosis of COVID-19 patients. It seems that tissue susceptibility to SARS-CoV-2 shows negative correlation to ACE2 expression. However, in lungs of infected patient, a high ACE2 expression is associated with better outcome, compared to low ACE2 expression. Manipulation of soluble ACE2 levels is a promising COVID-19 therapeutic strategy.
- MeSH
- angiotensin konvertující enzym 2 metabolismus MeSH
- časové faktory MeSH
- cirkadiánní rytmus * MeSH
- COVID-19 metabolismus patofyziologie terapie virologie MeSH
- hypertenze metabolismus patofyziologie MeSH
- interakce hostitele a patogenu MeSH
- lidé MeSH
- periodicita MeSH
- prognóza MeSH
- protein ADAM17 metabolismus MeSH
- renin-angiotensin systém * MeSH
- SARS-CoV-2 metabolismus patogenita MeSH
- serinové endopeptidasy metabolismus MeSH
- signální transdukce MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
ADAM10 and ADAM17 are proteases that affect multiple signalling pathways by releasing molecules from the cell surface. As their substrate specificities partially overlaps, we investigated their concurrent role in liver regeneration and fibrosis, using three liver-specific deficient mouse lines: ADAM10- and ADAM17-deficient lines, and a line deficient for both proteases. In the model of partial hepatectomy, double deficient mice exhibited decreased AKT phosphorylation, decreased release of EGFR activating factors and lower shedding of HGF receptor c-Met. Thus, simultaneous ablation of ADAM10 and ADAM17 resulted in inhibited EGFR signalling, while HGF/c-Met signalling pathway was enhanced. In contrast, antagonistic effects of ADAM10 and ADAM17 were observed in the model of chronic CCl4 intoxication. While ADAM10-deficient mice develop more severe fibrosis manifested by high ALT, AST, ALP and higher collagen deposition, combined deficiency of ADAM10 and ADAM17 surprisingly results in comparable degree of liver damage as in control littermates. Therefore, ADAM17 deficiency is not protective in fibrosis development per se, but can ameliorate the damaging effect of ADAM10 deficiency on liver fibrosis development. Furthermore, we show that while ablation of ADAM17 resulted in decreased shedding of TNF RI, ADAM10 deficiency leads to increased levels of soluble TNF RI in serum. In conclusion, hepatocyte-derived ADAM10 and ADAM17 are important regulators of growth receptor signalling and TNF RI release, and pathological roles of these proteases are dependent on the cellular context.
- MeSH
- fibróza metabolismus MeSH
- játra * metabolismus patologie MeSH
- kultivované buňky MeSH
- membránové proteiny fyziologie MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- nemoci jater * metabolismus patologie MeSH
- primární buněčná kultura MeSH
- protein ADAM10 fyziologie MeSH
- protein ADAM17 fyziologie MeSH
- regenerace jater * MeSH
- sekretasy fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Membrane-tethered signalling proteins such as TNFα and many EGF receptor ligands undergo shedding by the metalloproteinase ADAM17 to get released. The pseudoproteases iRhom1 and iRhom2 are important for the transport, maturation and activity of ADAM17. Yet, the structural and functional requirements to promote the transport of the iRhom-ADAM17 complex have not yet been thoroughly investigated. Utilising in silico and in vitro methods, we here map the conserved iRhom homology domain (IRHD) and provide first insights into its structure and function. By focusing on iRhom2, we identified different structural and functional factors within the IRHD. We found that the structural integrity of the IRHD is a key factor for ADAM17 binding. In addition, we identified a highly conserved motif within an unstructured region of the IRHD, that, when mutated, restricts the transport of the iRhom-ADAM17 complex through the secretory pathway in in vitro, ex vivo and in vivo systems and also increases the half-life of iRhom2 and ADAM17. Furthermore, the disruption of this IRHD motif was also reflected by changes in the yet undescribed interaction profile of iRhom2 with proteins involved in intracellular vesicle transport. Overall, we provide the first insights into the forward trafficking of iRhoms which is critical for TNFα and EGF receptor signalling.
- MeSH
- aminokyselinové motivy MeSH
- buněčné linie MeSH
- epidermální růstové faktory metabolismus MeSH
- lidé MeSH
- malá interferující RNA metabolismus MeSH
- membránové proteiny genetika metabolismus MeSH
- mutageneze MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- poločas MeSH
- protein ADAM17 chemie metabolismus MeSH
- proteinové domény MeSH
- RNA interference MeSH
- signální transdukce MeSH
- TNF-alfa metabolismus MeSH
- transport proteinů MeSH
- transportní proteiny antagonisté a inhibitory genetika metabolismus MeSH
- vazba proteinů MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Uptake of bacteria by phagocytes is a crucial step in innate immune defence. Members of the disintegrin and metalloproteinase (ADAM) family critically control the immune response by limited proteolysis of surface expressed mediator molecules. Here, we investigated the significance of ADAM17 and its regulatory adapter molecule iRhom2 for bacterial uptake by phagocytes. Inhibition of metalloproteinase activity led to increased phagocytosis of pHrodo labelled Gram-negative and -positive bacteria (E. coli and S. aureus, respectively) by human and murine monocytic cell lines or primary phagocytes. Bone marrow-derived macrophages showed enhanced uptake of heat-inactivated and living E. coli when they lacked either ADAM17 or iRhom2 but not upon ADAM10-deficiency. In monocytic THP-1 cells, corresponding short hairpin RNA (shRNA)-mediated knockdown confirmed that ADAM17, but not ADAM10, promoted phagocytosis of E. coli. The augmented bacterial uptake occurred in a cell autonomous manner and was accompanied by increased release of the chemokine CXCL8, less TNFα release and only minimal changes in the surface expression of the receptors TNFR1, TLR6 and CD36. Inhibition experiments indicated that the enhanced bacterial phagocytosis after ADAM17 knockdown was partially dependent on TNFα-activity but not on CXCL8. This novel role of ADAM17 in bacterial uptake needs to be considered in the development of ADAM17 inhibitors as therapeutics.
- MeSH
- antigeny CD36 genetika metabolismus MeSH
- Escherichia coli patogenita MeSH
- fagocytóza MeSH
- fagocyty metabolismus mikrobiologie MeSH
- interleukin-8 metabolismus MeSH
- intracelulární signální peptidy a proteiny genetika metabolismus MeSH
- kultivované buňky MeSH
- lidé MeSH
- myši MeSH
- protein ADAM17 genetika metabolismus MeSH
- RAW 264.7 buňky MeSH
- receptory TNF - typ I genetika metabolismus MeSH
- Staphylococcus aureus patogenita MeSH
- THP-1 buňky MeSH
- toll-like receptor 6 genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Carbonic anhydrase IX (CA IX) is a hypoxia-induced enzyme regulating tumour pH and facilitating cell migration/invasion. It is primarily expressed as a transmembrane cell-surface protein, but its ectodomain can be shed by ADAM17 to extracellular space. This study aims to elucidate the impact of CA IX shedding on cancer cells. METHODS: We generated a non-shed CA IX mutant by deletion of amino acids 393-402 from the stalk region and studied its phenotypic effects compared to full-length, shedding-competent CA IX using a range of assays based on immunodetection, confocal microscopy, in vitro real-time cell monitoring and in vivo tumour cell inoculation using xenografted NMRI and C57BL/6J female mice. RESULTS: We demonstrated that the impairment of shedding does not alter the ability of CA IX to bind ADAM17, internalise, form oligomers and regulate pH, but induces cancer-promoting changes in extracellular proteome. Moreover, it affects intrinsic properties of cells expressing the non-shed variant, in terms of their increased ability to migrate, generate primary tumours and form metastatic lesions in lungs. CONCLUSIONS: Our results show that the ectodomain shedding controls pro-tumorigenic and pro-metastatic roles of the cell-associated CA IX and suggest that this phenomenon should be considered when developing CA IX-targeted therapeutic strategies.
- MeSH
- fenotyp MeSH
- invazivní růst nádoru patologie MeSH
- karboanhydrasa IX metabolismus MeSH
- karcinogeneze metabolismus patologie MeSH
- lidé MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádory metabolismus patologie MeSH
- protein ADAM17 metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The rhomboid superfamily of transmembrane (TM) proteins includes intramembrane serine proteases and several classes of pseudoprotease. Rhomboid-like proteins occur widely across evolution and comprise biologically important regulators of fate of membrane proteins, influencing their proteolysis, trafficking, or degradation. In this review, we discuss how structural and mechanistic insights into the action of rhomboid proteases can inform on the mechanism of the pseudoproteases, and discuss the impact of structural understanding on the development of inhibitors and other chemical biology tools for these proteins. Development of modulators would be particularly relevant for the iRhoms, which are key regulators of ADAM17 and, hence, tumor necrosis factor (TNF) and epidermal growth factor receptor (EGFR) signaling, two medically important pathways.
- MeSH
- lidé MeSH
- membránové proteiny genetika metabolismus MeSH
- protein ADAM17 genetika metabolismus MeSH
- proteolýza * MeSH
- signální transdukce fyziologie MeSH
- TNF-alfa genetika metabolismus MeSH
- transport proteinů fyziologie MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
The apical inflammatory cytokine TNF regulates numerous important biological processes including inflammation and cell death, and drives inflammatory diseases. TNF secretion requires TACE (also called ADAM17), which cleaves TNF from its transmembrane tether. The trafficking of TACE to the cell surface, and stimulation of its proteolytic activity, depends on membrane proteins, called iRhoms. To delineate how the TNF/TACE/iRhom axis is regulated, we performed an immunoprecipitation/mass spectrometry screen to identify iRhom-binding proteins. This identified a novel protein, that we name iTAP (iRhom Tail-Associated Protein) that binds to iRhoms, enhancing the cell surface stability of iRhoms and TACE, preventing their degradation in lysosomes. Depleting iTAP in primary human macrophages profoundly impaired TNF production and tissues from iTAP KO mice exhibit a pronounced depletion in active TACE levels. Our work identifies iTAP as a physiological regulator of TNF signalling and a novel target for the control of inflammation.
- MeSH
- buněčné linie MeSH
- cytoskeletální proteiny genetika metabolismus MeSH
- endozomy metabolismus MeSH
- fibroblasty cytologie metabolismus MeSH
- HEK293 buňky MeSH
- HeLa buňky MeSH
- lidé MeSH
- makrofágy cytologie metabolismus MeSH
- membránové proteiny genetika metabolismus MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- myši MeSH
- primární buněčná kultura MeSH
- protein ADAM17 genetika metabolismus MeSH
- proteolýza MeSH
- RAW 264.7 buňky MeSH
- regulace genové exprese MeSH
- sekvence aminokyselin MeSH
- sekvenční homologie aminokyselin MeSH
- sekvenční seřazení MeSH
- signální transdukce MeSH
- TNF-alfa genetika metabolismus MeSH
- transportní proteiny genetika metabolismus MeSH
- vazba proteinů MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH