COVID-19 and the immune system
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
32469225
PubMed Central
PMC8648321
DOI
10.33549/physiolres.934492
PII: 934492
Knihovny.cz E-zdroje
- MeSH
- adaptivní imunita MeSH
- Betacoronavirus imunologie MeSH
- COVID-19 MeSH
- interakce hostitele a patogenu imunologie MeSH
- koronavirové infekce imunologie prevence a kontrola MeSH
- lidé MeSH
- pandemie MeSH
- přirozená imunita MeSH
- SARS-CoV-2 MeSH
- vakcíny proti COVID-19 MeSH
- virová pneumonie imunologie MeSH
- virové vakcíny MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- vakcíny proti COVID-19 MeSH
- virové vakcíny MeSH
A close interaction between the virus SARS-CoV-2 and the immune system of an individual results in a diverse clinical manifestation of the COVID-19 disease. While adaptive immune responses are essential for SARS-CoV-2 virus clearance, the innate immune cells, such as macrophages, may contribute, in some cases, to the disease progression. Macrophages have shown a significant production of IL-6, suggesting they may contribute to the excessive inflammation in COVID-19 disease. Macrophage Activation Syndrome may further explain the high serum levels of CRP, which are normally lacking in viral infections. In adaptive immune responses, it has been revealed that cytotoxic CD8+ T cells exhibit functional exhaustion patterns, such as the expression of NKG2A, PD-1, and TIM-3. Since SARS-CoV-2 restrains antigen presentation by downregulating MHC class I and II molecules and, therefore, inhibits the T cell-mediated immune responses, humoral immune responses also play a substantial role. Specific IgA response appears to be stronger and more persistent than the IgM response. Moreover, IgM and IgG antibodies show similar dynamics in COVID-19 disease.
Zobrazit více v PubMed
BARTON LM, DUVAL EJ, STROBERG E, GHOSH S, MUKHOPADHYAY S. COVID-19 autopsies, Oklahoma, USA. Am J Clin Pathol. 2020;153:725–733. doi: 10.1093/ajcp/aqaa062. PubMed DOI PMC
CAO X. COVID-19: immunopathology and its implications for therapy. Nat Rev Immunol. 2020;20:269–270. doi: 10.1038/s41577-020-0308-3. PubMed DOI PMC
CHAN JF, KOK KH, ZHU Z, CHU H, TO KK, YUAN S, YUEN KY. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect. 2020;9:221–236. doi: 10.1080/22221751.2020.1719902. PubMed DOI PMC
CHEN G, WU D, GUO W, CAO Y, HUANG D, WANG H, WANG T, ZHANG X, CHEN H, YU H, ZHANG X, ZHANG M, WU S, SONG J, CHEN T, HAN M, LI S, LUO X, ZHAO J, NING Q. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020;130:2620–2629. doi: 10.1172/JCI137244. PubMed DOI PMC
CLEMENTZ MA, CHEN Z, BANACH BS, WANG Y, SUN L, RATIA K, BAEZ-SANTOS YM, WANG J, TAKAYAMA J, GHOSH AK, LI K, MESECAR AD, BAKER SC. Deubiquitinating and interferon antagonism activities of coronavirus papain-like proteases. J Virol. 2010;84:4619–4629. doi: 10.1128/JVI.02406-09. PubMed DOI PMC
DONG X, CAO YY, LU XX, ZHANG JJ, DU H, YAN YQ, AKDIS CA, GAO YD. Eleven faces of coronavirus disease 2019. Allergy. 2020. PubMed DOI PMC
FRIEMAN M, HEISE M, BARIC R. SARS coronavirus and innate immunity. Virus Res. 2008;133:101–112. doi: 10.1016/j.virusres.2007.03.015. PubMed DOI PMC
GAO M, YANG L, CHEN X, DENG Y, YANG S, XU H, CHEN Z, GAO X. A study on infectivity of asymptomatic SARS-CoV-2 carriers. Respir Med. 2020;169:106026. doi: 10.1016/j.rmed.2020.106026. PubMed DOI PMC
GRANT WB, LAHORE H, McDONNELL SL, BAGGERLY CA, FRENCH CB, ALIANO JL, BHATTOA HP. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients. 2020;12:988. doi: 10.3390/nu12040988. PubMed DOI PMC
GRIFONI A, WEISKOPF D, RAMIREZ SI, MATEUS J, DAN JM, MODERBACHER CR, RAWLINGS SA, SUTHERLAND A, PREMKUMAR L, JADI RS, MARRAMA D, De SILVA AM, FRAZIER A, CARLIN A, GREENBAUM JA, PETERS B, KRAMMER F, SMITH DM, CROTTY S, SETTE A. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell. 2020;181:1–13. doi: 10.1016/j.cell.2020.05.015. PubMed DOI PMC
GU J, GONG E, ZHANG B, ZHENG J, GAO Z, ZHONG Y, ZOU W, ZHAN J, WANG S, XIE Z, ZHUANG H, WU B, ZHONG H, SHAO H, FANG W, GAO D, PEI F, LI X, HE Z, XU D, SHI X, ANDERSON VM, LEONG AS. Multiple organ infection and the pathogenesis of SARS. J Exp Med. 2005;202:415–424. doi: 10.1084/jem.20050828. PubMed DOI PMC
GUO L, REN L, YANG S, XIAO M, CHANG D, YANG F, DELA CRUZ CS, WANG Y, WU C, XIAO Y, ZHANG L, HAN L, DANG S, XU Y, YANG Q, XU S, ZHU H, XU Y, JIN Q, SHARMA L, WANG L, WANG J. Profiling early humoral response to diagnose novel coronavirus disease (COVID-19) Clin Infect Dis. 2020. p. ciaa310. PubMed DOI PMC
HACKBART M, DENG X, BAKER SC. Coronavirus endoribonuclease targets viral polyuridine sequences to evade activating host sensors. Proc Natl Acad Sci U S A. 2020;117:8094–8103. doi: 10.1073/pnas.1921485117. PubMed DOI PMC
HOFFMANN M, KLEINE-WEBER H, SCHROEDER S, KRÜGER N, HERRLER T, ERICHSEN S, SCHIERGENS TS, HERRLER G, WU NH, NITSCHE A, MÜLLER MA, DROSTEN C, PÖHLMANN S. SARS-CoV-2 cell entry 384 depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease 385 inhibitor. Cell. 2020;181:271–280e8. doi: 10.1016/j.cell.2020.02.052. PubMed DOI PMC
HUANG C, WANG Y, LI X, REN L, ZHAO J, HU Y, ZHANG L, FAN G, XU J, GU X, CHENG Z, YU T, XIA J, WEI Y, WU W, XIE X, YIN W, LI H, LIU M, XIAO Y, GAO H, GUO L, XIE J, WANG G, JIANG R, GAO Z, JIN Q, WANG J, CAO B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. doi: 10.1016/S0140-6736(20)30183-5. PubMed DOI PMC
JAILLON S, BERTHENET K, GARLANDA C. Sexual dimorphism in innate immunity. Clin Rev Allergy Immunol. 2019;56:308–321. doi: 10.1007/s12016-017-8648-x. PubMed DOI
JASON JR. Pathogenesis of COVID-19 from a cell biology perspective. Eur Respir J. 2020;55:2000607. doi: 10.1183/13993003.00607-2020. PubMed DOI PMC
LIU J, LI S, LIU J, LIANG B, WANG X, WANG H, LI W, TONG Q, YI J, ZHAO L, XIONG L, GUO C, TIAN J, LUO J, YAO J, PANG R, SHEN H, PENG C, LIU T, ZHANG Q, WU J, XU L, LU S, WANG B, WENG Z, HAN C, ZHU H, ZHOU R, ZHOU H, CHEN X, YE P, ZHU B, WANG L, ZHOU W, HE S, HE Y, JIE S, WEI P, ZHANG J, LU Y, WANG W, ZHANG L, LI L, ZHOU F, WANG J, DITTMER U, LU M, HU Y, YANG D, ZHENG X. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine. 2020;55:102763. doi: 10.1016/j.ebiom.2020.102763. PubMed DOI PMC
LIU W, FONTANET A, ZHANG PH, ZHAN L, XIN ZT, BARIL L, TANG F, LV H, CAO WC. Two-year prospective study of the humoral immune response of patients with severe acute respiratory syndrome. J Infect Dis. 2006;193:792–795. doi: 10.1086/500469. PubMed DOI PMC
McGONAGLE D, SHARIF K, O’REGAN A, BRIDGEWOOD C. The role of cytokines including interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease. Autoimmun Rev. 2020;19:102537. doi: 10.1016/j.autrev.2020.102537. PubMed DOI PMC
MOON C. Fighting COVID-19 exhausts T cells. Nat Rev Immunol. 2020;20:277. doi: 10.1038/s41577-020-0304-7. PubMed DOI PMC
OKBA NMA, MÜLLER MA, LI W, WANG C, GEURTSVANKESSEL CH, CORMAN VM, LAMERS MM, SIKKEMA RS, BRUIN E, CHANDLER FD, YAZDANPANAH Y, HINGRAT QL, DESCAMPS N, HOUHOU-FIDOUH N, REUSKEN CBEM, BOSCH BJ, DROSTEN C, KOOPMANS MPG, HAAGMANS BL. Severe acute respiratory syndrome coronavirus 2-specific antibody responses in coronavirus disease 2019 patients. Emerg Infect Dis. 26:2020. doi: 10.3201/eid2607.200841. PubMed DOI PMC
OKABAYASHI T, KARIWA H, YOKOTA S, IKI S, INDOH T, YOKOSAWA N, TAKASHIMA I, TSUTSUMI H, FUJII N. Cytokine regulation in SARS coronavirus infection compared to other respiratory virus infections. J Med Virol. 2006;78:417–424. doi: 10.1002/jmv.20556. PubMed DOI PMC
OPAL SM, GIRARD TD, ELY EW. The immunopathogenesis of sepsis in elderly patients. Clin Infect Dis. 2005;41(Suppl 7):S504–S512. doi: 10.1086/432007. PubMed DOI
PADOAN A, SCIACOVELLI L, BASSO D, NEGRINI D, ZUIN S, COSMA C, FAGGIAN D, MATRICARDI P, PLEBANI M. IgA-Ab response to spike glycoprotein of SARS-CoV-2 in patients with COVID-19: A longitudinal study. Clin Chim Acta. 2020;507:164–166. doi: 10.1016/j.cca.2020.04.026. PubMed DOI PMC
PARK MD. Macrophages: a Trojan horse in COVID-19? Nat Rev Immunol. 2020;20:351. doi: 10.1038/s41577-020-0317-2. PubMed DOI PMC
PROMPETCHARA E, KETLOY C, PALAGA T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol. 2020;38:1–9. doi: 10.12932/AP-200220-0772. PubMed DOI
RAJENDRAN K, KRISHNASAMY N, RANGARAJAN J, RATHINAM J, NATARAJAN M, RAMACHANDRAN A. Convalescent plasma transfusion for the treatment of COVID-19: Systematic review. J Med Virol. 2020. PubMed DOI PMC
RIZZO P, VIECELI DALLA SEGA F, FORTINI F, MARRACINO L, RAPEZZI C, FERRARI R. COVID-19 in the heart and the lungs: could we “Notch” the inflammatory storm? Basic Res Cardiol. 2020;115:31. doi: 10.1007/s00395-020-0791-5. PubMed DOI PMC
RUSSELL B, MOSS C, GEORGE G, SANTAOLALLA A, COPE A, PAPA S, Van HEMELRIJCK M. Associations between immune-suppressive and stimulating drugs and novel COVID-19-a systematic review of current evidence. Ecancermedicalscience. 2020;14:1022. doi: 10.3332/ecancer.2020.1022. PubMed DOI PMC
SHAKOORY B, CARCILLO JA, CHATHAM WW, AMDUR RL, ZHAO H, DINARELLO CA, CRON RQ, OPAL SM. Interleukin-1 receptor blockade is associated with reduced mortality in sepsis patients with features of macrophage activation syndrome: reanalysis of a prior phase III Trial. Crit Care Med. 2016;44:275–281. doi: 10.1097/CCM.0000000000001402. PubMed DOI PMC
SHI Y, WANG Y, SHAO C, HUANG J, GAN J, HUANG X, BUCCI E, PIACENTINI M, IPPOLITO G, MELINO G. COVID-19 infection: the perspectives on immune responses. Cell Death Differ. 2020;27:1451–1454. doi: 10.1038/s41418-020-0530-3. PubMed DOI PMC
SIU KL, KOK KH, NG MH, POON VK, YUEN KY, ZHENG BJ, JIN DY. Severe acute respiratory syndrome coronavirus M protein inhibits type I interferon production by impeding the formation of TRAF3.TANK.TBK1/IKKepsilon complex. J Biol Chem. 2009;284:16202–16209. doi: 10.1074/jbc.M109.008227. PubMed DOI PMC
SMITS SL, De LANG A, Van Den BRAND JM, LEIJTEN LM, Van IJCKEN WF, EIJKEMANS MJ, Van AMERONGEN G, KUIKEN T, ANDEWEG AC, OSTERHAUS AD, HAAGMANS BL. Exacerbated innate host response to SARS-CoV in aged non-human primates. PLoS Pathog. 2010;6:e1000756. doi: 10.1371/journal.ppat.1000756. PubMed DOI PMC
THEVARAJAN I, NGUYEN THO, KOUTSAKOS M, DRUCE J, CALY L, Van de SANDT CE, JIA X, NICHOLSON S, CATTON M, COWIE B, TONG SYC, LEWIN SR, KEDZIERSKA K. Breadth of concomitant immune responses prior to patient recovery: a case report of non-severe COVID-19. Nat Med. 2020;26:453–455. doi: 10.1038/s41591-020-0819-2. PubMed DOI PMC
TO KK, TSANG OT, LEUNG WS, TAM AR, WU TC, LUNG DC, YIP CC, CAI JP, CHAN JM, CHIK TS, LAU DP, CHOI CY, CHEN LL, CHAN WM, CHAN KH, IP JD, NG AC, POON RW, LUO CT, CHENG VC, CHAN JF, HUNG IF, CHEN Z, CHEN H, YUEN KY. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Infect Dis. 2020;20:565–574. doi: 10.1016/S1473-3099(20)30196-1. PubMed DOI PMC
TOTURA AL, WHITMORE A, AGNIHOTHRAM S, SCHÄFER A, KATZE MG, HEISE MT, BARIC RS. Toll-like receptor 3 signaling via TRIF Contributes to a protective innate immune response to severe acute respiratory syndrome coronavirus infection. mBio. 2015;6:e00638–15. doi: 10.1128/mBio.00638-15. PubMed DOI PMC
WANG C, LI W, DRABEK D, OKBA NMA, Van HAPEREN R, OSTERHAUS ADME, Van KUPPEVELD FJM, HAAGMANS BL, GROSVELD F, BOSCH BJ. A human monoclonal antibody blocking SARS-CoV-2 infection. Nat Commun. 2020;11:2251. doi: 10.1038/s41467-020-16256-y. PubMed DOI PMC
WANG Y, LIU L. The membrane protein of severe acute respiratory syndrome coronavirus functions as a novel cytosolic pathogen-associated molecular pattern to promote beta interferon induction via a toll-like-receptor-related TRAF3-independent mechanism. mBio. 2016;7:e01872–15. doi: 10.1128/mBio.01872-15. PubMed DOI PMC
WESTON S, FRIEMAN MB. COVID-19: Knowns, unknowns, and questions. mSphere. 2020;5:e00203–20. doi: 10.1128/mSphere.00203-20. PubMed DOI PMC
WU LP, WANG NC, CHANG YH, TIAN XY, NA DY, ZHANG LY, ZHENG L, LAN T, WANG LF, LIANG GD. Duration of antibody responses after severe acute respiratory syndrome. Emerg Infect Dis. 2007;13:1562–1564. doi: 10.3201/eid1310.070576. PubMed DOI PMC
XU Z, SHI L, WANG Y, ZHANG J, HUANG L, ZHANG C, LIU S, ZHAO P, LIU H, ZHU L, TAI Y, BAI C, GAO T, SONG J, XIA P, DONG J, ZHAO J, WANG FS. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8:420–422. doi: 10.1016/S2213-2600(20)30076-X. PubMed DOI PMC
YAO XH, LI TY, HE ZC, PING YF, LIU HW, YU SC, MOU HM, WANG LH, ZHANG HR, FU WJ, LUO T, LIU F, CHEN C, XIAO HL, GUO HT, LIN S, XIANG DF, SHI Y, LI QR, HUANG X, CUI Y, LI XZ, TANG W, PAN PF, HUANG XQ, DING YQ, BIAN XW. A pathological report of three COVID-19 cases by minimally invasive autopsies. (In Chinese) Zhonghua Bing Li Xue Za Zhi. 2020;49:411–417. doi: 10.3760/cma.j.cn112151-20200312-00193. PubMed DOI
YU N, LI W, KANG Q, XIONG Z, WANG S, LIN X, LIU Y, XIAO J, LIU H, DENG D, CHEN S, ZENG W, FENG L, WU J. Clinical features and obstetric and neonatal outcomes of pregnant patients with COVID-19 in Wuhan, China: a retrospective, single-centre, descriptive study. Lancet Infect Dis. 2020;20:559–564. doi: 10.1016/S1473-3099(20)30176-6. PubMed DOI PMC
YU X, YANG R. COVID-19 transmission through asymptomatic carriers is a challenge to containment. Influenza Other Respir Viruses. 2020. PubMed DOI PMC
ZENG G, XIE SY, LI Q. Infectivity of severe acute respiratory syndrome during its incubation period. Biomed Environ Sci. 2009;22:502–510. doi: 10.1016/S0895-3988(10)60008-6. PubMed DOI PMC
ZHANG W, ZHAO Y, ZHANG F, WANG Q, LI T, LIU Z, WANG J, QIN Y, ZHANG X, YAN X, ZENG X, ZHANG S. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The Perspectives of clinical immunologists from China. Clin Immunol. 2020;214:108393. doi: 10.1016/j.clim.2020.108393. PubMed DOI PMC
ZHAO J, YUAN Q, WANG H, LIU W, LIAO X, SU Y, WANG X, YUAN J, LI T, LI J, QIAN S, HONG C, WANG F, LIU Y, WANG Z, HE Q, LI Z, HE B, ZHANG T, FU Y, GE S, LIU L, ZHANG J, XIA N, ZHANG Z. Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019. Clin Infect Dis. 2020. p. ciaa344. PubMed DOI PMC
ZHENG M, GAO Y, WANG G, SONG G, LIU S, SUN D, XU Y, TIAN Z. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol. 2020;17:533–535. doi: 10.1038/s41423-020-0402-2. PubMed DOI PMC
ZHOU F, YU T, DU R, FAN G, LIU Y, LIU Z, XIANG J, WANG Y, SONG B, GU X, GUAN L, WEI Y, LI H, WU X, XU J, TU S, ZHANG Y, CHEN H, CAO B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395:1054–1062. doi: 10.1016/S0140-6736(20)30566-3. PubMed DOI PMC
ZHOU P, YANG XL, WANG XG, HU B, ZHANG L, ZHANG W, SI HR, ZHU Y, LI B, HUANG CL, CHEN HD, CHEN J, LUO Y, GUO H, JIANG RD, LIU MQ, CHEN Y, SHEN XR, WANG X, ZHENG XS, ZHAO K, CHEN QJ, DENG F, LIU LL, YAN B, ZHAN FX, WANG YY, XIAO GF, SHI ZL. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270–273. https://doi.org/101038/s41586-020-2012-7 . PubMed PMC
ZHU N, ZHANG D, WANG W, LI X, YANG B, SONG J, ZHAO X, HUANG B, SHI W, LU R, NIU P, ZHAN F, MA X, WANG D, XU W, WU G, GAO GF, TAN W. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382:727–733. doi: 10.1056/NEJMoa2001017. PubMed DOI PMC
ZINKERNAGEL RM. On natural and artificial vaccinations. Annu Rev Immunol. 2003;21:515–546. doi: 10.1146/annurev.immunol.21.120601.141045. PubMed DOI
ZÜST R, CERVANTES-BARRAGAN L, HABJAN M, MAIER R, NEUMAN BW, ZIEBUHR J, SZRETTER KJ, BAKER SC, BARCHET W, DIAMOND MS, SIDDELL SG, LUDEWIG B, THIEL V. Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5, 2011. Nat Immunol. 2011;12:137–143. doi: 10.1038/ni.1979. PubMed DOI PMC
ABCA3 and LZTFL1 Polymorphisms and Risk of COVID-19 in the Czech Population
Pyroptosis and airway homeostasis regulation
Vaccination Against SARS-CoV-2 in Lung Transplant Recipients: Immunogenicity, Efficacy and Safety
COVID-19 and Preexisting Comorbidities: Risks, Synergies, and Clinical Outcomes
Alveolar type II cells and pulmonary surfactant in COVID-19 era
SARS-CoV-2 viral load assessment in lung transplantation
Endocrine risk factors for COVID-19 in context of aging
Androgens in SARS-CoV-2 coronavirus infections
Is there impact of the SARS-CoV-2 pandemic on steroidogenesis and fertility?
Could the CCR5-Delta32 mutation be protective in SARS-CoV-2 infection?
Inhibitory immune checkpoint molecules and exhaustion of T cells in COVID-19
Correlation between nongenomic action of C19-steroids and COVID-19 severity
CCR5Delta32 deletion as a protective factor in Czech first-wave COVID-19 subjects
Principles and Challenges in anti-COVID-19 Vaccine Development
Interleukin-6: Molecule in the Intersection of Cancer, Ageing and COVID-19