• This record comes from PubMed

Inhibitory immune checkpoint molecules and exhaustion of T cells in COVID-19

. 2021 Dec 16 ; 70 (S2) : S227-S247.

Language English Country Czech Republic Media print

Document type Journal Article, Review

COVID-19 (Coronavirus Disease) is an infectious disease caused by the coronavirus SARS-CoV-2 (Severe acute respiratory syndrome Coronavirus 2), which belongs to the genus Betacoronavirus. It was first identified in patients with severe respiratory disease in December 2019 in Wuhan, China. It mainly affects the respiratory system, and in severe cases causes serious lung infection or pneumonia, which can lead to the death of the patient. Clinical studies show that SARS-CoV-2 infection in critical cases causes acute tissue damage due to a pathological immune response. The immune response to a new coronavirus is complex and involves many processes of specific and non-specific immunity. Analysis of available studies has shown various changes, especially in the area of specific cellular immunity, including lymphopenia, decreased T cells (CD3+, CD4+ and CD8+), changes in the T cell compartment associated with symptom progression, deterioration of the condition and development of lung damage. We provide a detailed review of the analyses of immune checkpoint molecules PD-1, TIM-3, LAG-3 CTLA-4, TIGIT, BTLA, CD223, IDO-1 and VISTA on exhausted T cells in patients with asymptomatic to symptomatic stages of COVID-19 infection. Furthermore, this review may help to better understand the pathological T cell immune response and improve the design of therapeutic strategies for patients with SARS-CoV-2 infection.

See more in PubMed

ABEL A, STEEG C, AMINKIAH F, ADDAI-MENSAH O, ADDO M, GAGLIANI N, CASAR C, YAR DD, OWUSU-DABO E, JACOBS T, MACKROTH MS. Differential expression pattern of co-inhibitory molecules on CD4+ T cells in uncomplicated versus complicated malaria. Sci Rep. 2018;8:4789. doi: 10.1038/s41598-018-22659-1. PubMed DOI PMC

ACKERMANN C, SMITS M, WOOST R, EBERHARD JM, PEINE S, KUMMER S, MARGET M, KUNTZEN T, KWOK W, LOHSE AW, JACOBS T, BOETTLER T, SCHULZE ZUR WIESCH J. HCV-specific CD4+ T cells of patients with acute and chronic HCV infection display high expression of TIGIT and other co-inhibitory molecules. Sci Rep. 2019;9:10624. doi: 10.1038/s41598-019-47024-8. PubMed DOI PMC

AGRESTA L, HOEBE KHN, JANSSEN EM. The emerging role of CD244 signaling in immune cells of the tumor microenvironment. Front Immunol. 2018;9:2809. doi: 10.3389/fimmu.2018.02809. PubMed DOI PMC

ALSAAB HO, SAU S, ALZHRANI R, TATIPARTI K, BHISE K, KASHAW SK, IYER AK. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: Mechanism, combinations, and clinical outcome. Front Pharmacol. 2017;8:561. doi: 10.3389/fphar.2017.00561. PubMed DOI PMC

BARBER DL, WHERRY EJ, MASOPUST D, ZHU B, ALLISON JP, SHARPE AH, FREEMAN GJ, AHMED R. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature. 2006;439:682–687. doi: 10.1038/nature04444. PubMed DOI

BERSANELLI M, GIANNARELLI D, CASTRIGNANÒ P, FORNARINI G, PANNI S, MAZZONI F, TISEO M, ROSSETTI S, GAMBALE E, ROSSI E, PAPA A, CORTELLINI A, LOLLI C, RATTA R, MICHIARA M, MILELLA M, De LUCA E, SORARÙ M, MUCCIARINI C, ATZORI F, BANNA GL, La TORRE L, ET AL. Influenza vaccine indication during therapy with immune checkpoint inhibitors: A transversal challenge. The INVIDIA study. Immunotherapy. 2018;10:1229–1239. doi: 10.2217/imt-2018-0080. PubMed DOI

BERSANELLI M. COVID-19 and the newly rediscovered multidisciplinarity. Immunotherapy. 2020;12:1101–1103. doi: 10.2217/imt-2020-0205. PubMed DOI PMC

BLACKBURN SD, SHIN H, HAINING WN, ZOU T, WORKMAN CJ, POLLEY A, BETTS MR, FREEMAN GJ, VIGNALI DA, WHERRY EJ. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat Immunol. 2009;10:29–37. doi: 10.1038/ni.1679. PubMed DOI PMC

BLANK CU, HAINING WN, HELD W, HOGAN PG, KALLIES A, LUGLI E, LYNN RC, PHILIP M, RAO A, RESTIFO NP, ET AL. Defining 'T cell exhaustion'. Nat Rev Immunol. 2019;19:665–674. doi: 10.1038/s41577-019-0221-9. PubMed DOI PMC

BOBCAKOVA A, PETRISKOVA J, VYSEHRADSKY R, KOCAN I, KAPUSTOVA L, BARNOVA M, DIAMANT Z, JESENAK M. Immune profile in patients with COVID-19: Lymphocytes exhaustion markers in relationship to clinical outcome. Front Cell Infect Microbiol. 2021;11:646688. doi: 10.3389/fcimb.2021.646688. PubMed DOI PMC

BONAM SR, KAVERI SV, SAKUNTABHAI A, GILARDIN L, BAYRY J. Adjunct immunotherapies for the management of severely ill COVID-19 patients. Cell Rep Med. 2020;1:100016. doi: 10.1016/j.xcrm.2020.100016. PubMed DOI PMC

BONIFACIUS A, TISCHER-ZIMMERMANN S, DRAGON AC, GUSSAROW D, VOGEL A, KRETTEK U, GÖDECKE N, YILMAZ M, KRAFT ARM, HOEPER MM, ET AL. COVID-19 immune signatures reveal stable antiviral T cell function despite declining humoral responses. Immunity. 2021;54:340–354.e6. doi: 10.1016/j.immuni.2021.01.008. PubMed DOI PMC

BONOMI L, GHILARDI L, ARNOLDI E, TONDINI CA, BETTINI AC. A rapid fatal evolution of Coronavirus Disease-19 in a patient with advanced lung cancer with a long-time response to nivolumab. J Thorac Oncol. 2020;15:e83–e85. doi: 10.1016/j.jtho.2020.03.021. PubMed DOI PMC

BRETON G, MENDOZA P, HÄGGLÖF T, OLIVEIRA TY, SCHAEFER-BABAJEW D, GAEBLER C, TURROJA M, HURLEY A, CASKEY M, NUSSENZWEIG MC. Persistent cellular immunity to SARS-CoV-2 infection. J Exp Med. 2021;218:e20202515. doi: 10.1084/jem.20202515. PubMed DOI PMC

BUTLER NS, MOEBIUS J, PEWE LL, TRAORE B, DOUMBO OK, TYGRETT LT, WALDSCHMIDT TJ, CROMPTON PD, HARTY JT. Therapeutic blockade of PD-L1 and LAG-3 rapidly clears established blood-stage Plasmodium infection. Nat Immunol. 2011;13:188–4195. doi: 10.1038/ni.2180. PubMed DOI PMC

CHAN JF, KOK KH, ZHU Z, CHU H, TO KK, YUAN S, YUEN KY. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect. 2020;9:221–236. doi: 10.1080/22221751.2020.1719902. PubMed DOI PMC

CHANG HL, WEI PJ, WU KL, HUANG HL, YANG CJ. Checkpoint inhibitor pneumonitis mimicking COVID-19 infection during the COVID-19 pandemic. Lung Cancer. 2020;146:376–377. doi: 10.1016/j.lungcan.2020.06.013. PubMed DOI PMC

CHEMNITZ JM, PARRY RV, NICHOLS KE, JUNE CH, RILEY JL. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J Immunol. 2004;173:945–954. doi: 10.4049/jimmunol.173.2.945. PubMed DOI

CHEN N, ZHOU M, DONG X, QU J, GONG F, HAN Y, QIU Y, WANG J, LIU Y, WEI Y, XIA J, YU T, ZHANG X, ZHANG L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet. 2020;395:507–513. doi: 10.1016/S0140-6736(20)30211-7. PubMed DOI PMC

CHIAPPELLI F, KHAKSHOOY A, GREENBERG G. CoViD-19 immunopathology and immunotherapy. Bioinformation. 2020;16:219–222. doi: 10.6026/97320630016219. PubMed DOI PMC

CORTESE I, MURANSKI P, ENOSE-AKAHATA Y, HA SK, SMITH B, MONACO M, RYSCHKEWITSCH C, MAJOR EO, OHAYON J, SCHINDLER MK, BECK E, REOMA LB, JACOBSON S, REICH DS, NATH A. Pembrolizumab treatment for progressive multifocal leukoencephalopathy. N Engl J Med. 2019;380:1597–1605. doi: 10.1056/NEJMoa1815039. PubMed DOI

DAY CL, KAUFMANN DE, KIEPIELA P, BROWN JA, MOODLEY ES, REDDY S, MACKEY EW, MILLER JD, LESLIE AJ, DEPIERRES C, MNCUBE Z, DURAISWAMY J, ZHU B, EICHBAUM Q, ALTFELD M, WHERRY EJ, COOVADIA HM, GOULDER PJ, KLENERMAN P, AHMED R, FREEMAN GJ, WALKER BD. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature. 2006;443:350–354. doi: 10.1038/nature05115. PubMed DOI

DEMARIA O, CARVELLI J, BATISTA L, THIBULT ML, MOREL A, ANDRÉ P, MOREL Y, VÉLY F, VIVIER E. Identification of druggable inhibitory immune checkpoints on natural killer cells in COVID-19. Cell Mol Immunol. 2020;17:995–997. doi: 10.1038/s41423-020-0493-9. PubMed DOI PMC

Di COSIMO S, MALFETTONE A, PÉREZ-GARCÍA JM, LLOMBART-CUSSAC A, MICELI R, CURIGLIANO G, CORTÉS J. Immune checkpoint inhibitors: A physiology-driven approach to the treatment of coronavirus disease 2019. Eur J Cancer. 2020;135:62–65. doi: 10.1016/j.ejca.2020.05.026. PubMed DOI PMC

DIAO B, WANG C, TAN Y, CHEN X, LIU Y, NING L, CHEN L, LI M, LIU Y, WANG G, YUAN Z, FENG Z, ZHANG Y, WU Y, CHEN Y. Reduction and functional exhaustion of T cells in patients with Coronavirus Disease 2019 (COVID-19) Front Immunol. 2020;11:827. doi: 10.3389/fimmu.2020.00827. PubMed DOI PMC

DIPASQUALE A, PERSICO P, LORENZI E, RAHAL D, SANTORO A, SIMONELLI M. COVID-19 lung injury as a primer for immune checkpoint inhibitors (ICIs)-related pneumonia in a patient affected by squamous head and neck carcinoma treated with PD-L1 blockade: a case report. J Immunother Cancer. 2021;9:e001870. doi: 10.1136/jitc-2020-001870. PubMed DOI PMC

DOOKIE RS, VILLEGAS-MENDEZ A, KROEZE H, BARRETT JR, DRAPER SJ, FRANKE-FAYARD BM, JANSE CJ, MacDONALD AS, COUPER KN. Combinatorial Tim-3 and PD-1 activity sustains antigen-specific Th1 cell numbers during blood-stage malaria. Parasite Immunol. 2020;42:e12723. doi: 10.1111/pim.12723dookie. PubMed DOI

ELTANBOULY MA, ZHAO Y, SCHAAFSMA E, BURNS CM, MABAERA R, CHENG C, NOELLE RJ. VISTA: A target to manage the innate cytokine storm. Front Immunol. 2021;11:595950. doi: 10.3389/fimmu.2020.595950. PubMed DOI PMC

FIFE BT, PAUKEN KE. The role of the PD-1 pathway in autoimmunity and peripheral tolerance. Ann N Y Acad Sci. 2011;1217:45–59. doi: 10.1111/j.1749-6632.2010.05919.x. PubMed DOI

FILES JK, BOPPANA S, PEREZ MD, SARKAR S, LOWMAN KE, QIN K, STERRETT S, CARLIN E, BANSAL A, SABBAJ S, LONG DM, KUTSCH O, KOBIE J, GOEPFERT PA, ERDMANN N. Sustained cellular immune dysregulation in individuals recovering from SARS-CoV-2 infection. J Clin Invest. 2021;131:e140491. doi: 10.1172/JCI140491. PubMed DOI PMC

GAMBICHLER T, REUTHER J, SCHEEL CH, BECKER JC. On the use of immune checkpoint inhibitors in patients with viral infections including COVID-19. J Immunother Cancer. 2020;8:e001145. doi: 10.1136/jitc-2020-001145. PubMed DOI PMC

GARASSINO MC, WHISENANT JG, HUANG LC, TRAMA A, TORRI V, AGUSTONI F, BAENA J, BANNA G, BERARDI R, BETTINI AC, BRIA E, BRIGHENTI M, CADRANEL J, De TOMA A, CHINI C, CORTELLINI A, FELIP E, FINOCCHIARO G, GARRIDO P, GENOVA C, ET AL. COVID-19 in patients with thoracic malignancies (TERAVOLT): First results of an international, registry-based, cohort study. Lancet Oncol. 2020;21:914–922. doi: 10.1016/S1470-2045(20)30314-4. PubMed DOI PMC

GIAMARELLOS-BOURBOULIS EJ, NETEA MG, ROVINA N, AKINOSOGLOU K, ANTONIADOU A, ANTONAKOS N, DAMORAKI G, GKAVOGIANNI T, ADAMI ME, KATSAOUNOU P, ET AL. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host Microbe. 2020;27:992–1000.e3. doi: 10.1016/j.chom.2020.04.009. PubMed DOI PMC

GONZALEZ-CAO M, ANTONAZAS-BASA M, PUERTOLAS T, MUNOZ-CONSUELO E, MANZANO JL, CARRERA C, MARQUEZ-RODAS I, LOPEZ-CRIADO P, RODRIGUEZ-MORENO JF, GARCIA-CASTANO A, ET AL. Cancer immunotherapy does not increase the risk of death by COVID-19 in melanoma patients. MedRxiv. 2020 doi: 10.1101/2020.05.19.20106971. DOI

GU D, AO X, YANG Y, CHEN Z, XU X. Soluble immune checkpoints in cancer: production, function and biological significance. J Immunother Cancer. 2018;6:132. doi: 10.1186/s40425-018-0449-0. PubMed DOI PMC

GUAN WJ, NI ZY, HU Y, LIANG W-HOU, C-QHE J-X, LIU L, SHAN H, LEI C-L, HUI DSC, ET AL. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382:1708–1720. doi: 10.1056/NEJMoa2002032. PubMed DOI PMC

GUTIÉRREZ-BAUTISTA JF, RODRIGUEZ-NICOLAS A, ROSALES-CASTILLO A, JIMÉNEZ P, GARRIDO F, ANDERSON P, RUIZ-CABELLO F, LÓPEZ-RUZ MÁ. Negative clinical evolution in COVID-19 patients is frequently accompanied with an increased proportion of undifferentiated Th cells and a strong under representation of the Th1 subset. Front Immunol. 2020;11:596553. doi: 10.3389/fimmu.2020.596553. PubMed DOI PMC

HARJUNPÄÄ H, GUILLEREY C. TIGIT as an emerging immune checkpoint. Clin Exp Immunol. 2020;200:108–119. doi: 10.1111/cei.13407. PubMed DOI PMC

HASAN A, AL-OZAIRI E, AL-BAQSUMI Z, AHMAD R, AL-MULLA F. Cellular and humoral immune responses in Covid-19 and immunotherapeutic approaches. Immunotargets Ther. 2021;10:63–85. doi: 10.2147/ITT.S280706. PubMed DOI PMC

HERRMANN M, SCHULTE S, WILDNER NH, WITTNER M, BREHM TT, RAMHARTER M, WOOST R, LOHSE AW, JACOBS T, SCHULZE ZUR WIESCH J. Analysis of co-inhibitory receptor expression in COVID-19 infection compared to acute Plasmodium falciparum malaria: LAG-3 and TIM-3 correlate with T cell activation and course of disease. Front Immunol. 2020;11:1870. doi: 10.3389/fimmu.2020.01870. PubMed DOI PMC

HOTCHKISS RS, COLSTON E, YENDE S, ANGUS DC, MOLDAWER LL, CROUSER ED, MARTIN GS, COOPERSMITH CM, BRAKENRIDGE S, MAYR FB, PARK PK, YE J, CATLETT IM, GIRGIS IG, GRASELA DM. Immune Checkpoint Inhibition in Sepsis: A Phase 1b Randomized, Placebo-Controlled, Single Ascending Dose Study of Antiprogrammed Cell Death-Ligand 1 Antibody (BMS-936559) Crit Care Med. 2019;47:632–642. doi: 10.1097/CCM.0000000000003685. PubMed DOI PMC

HOTCHKISS RS, COLSTON E, YENDE S, CROUSER ED, MARTIN GS, ALBERTSON T, BARTZ RR, BRAKENRIDGE SC, DELANO MJ, PARK PK, DONNINO MW, TIDSWELL M, MAYR FB, ANGUS DC, COOPERSMITH CM, MOLDAWER LL, CATLETT IM, GIRGIS IG, YE J, GRASELA DM. Immune checkpoint inhibition in sepsis: a Phase 1b randomized study to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of nivolumab. Intensive Care Med. 2019;45:1360–1371. doi: 10.1007/s00134-019-05704-z. PubMed DOI PMC

HUANG CT, WORKMAN CJ, FLIES D, PAN X, MARSON AL, ZHOU G, HIPKISS EL, RAVI S, KOWALSKI J, LEVITSKY HI, POWELL JD, PARDOLL DM, DRAKE CG, VIGNALI DA. Role of LAG-3 in regulatory T cells. Immunity. 2004;21:503–513. doi: 10.1016/j.immuni.2004.08.010. PubMed DOI

HUARD B, PRIGENT P, TOURNIER M, BRUNIQUEL D, TRIEBEL F. CD4/major histocompatibility complex class II interaction analyzed with CD4- and lymphocyte activation gene-3 (LAG-3)-Ig fusion proteins. Eur J Immunol. 1995;25:2718–2721. doi: 10.1002/eji.1830250949. PubMed DOI

ISGRÒ MA, VITALE MG, CELENTANO E, NOCERINO F, PORCIELLO G, CURVIETTO M, MALLARDO D, MONTAGNESE C, RUSSO L, ZANALETTI N, AVALLONE A, PENSABENE M, De LAURENTIIS M, CENTONZE S, PIGNATA S, CANNELLA L, MORABITO A, CAPONIGRO F, BOTTI G, MASUCCI GV, ET AL. Immunotherapy may protect cancer patients from SARS-CoV-2 infection: a single-center retrospective analysis. J Transl Med. 2021;19:132. doi: 10.1186/s12967-021-02798-2. PubMed DOI PMC

JEANNET R, DAIX T, FORMENTO R, FEUILLARD J, FRANÇOIS B. Severe COVID-19 is associated with deep and sustained multifaceted cellular immunosuppression. Intensive Care Med. 2020;46:1769–1771. doi: 10.1007/s00134-020-06127-x. PubMed DOI PMC

JESENAK M, BRNDIAROVA M, URBANCIKOVA I, RENNEROVA Z, VOJTKOVA J, BOBCAKOVA A, OSTRO R, BANOVCIN P. Immune parameters and COVID-19 infection - associations with clinical severity and disease prognosis. Front Cell Infect Microbiol. 2020;10:364. doi: 10.3389/fcimb.2020.00364. PubMed DOI PMC

JONES RB, NDHLOVU LC, BARBOUR JD, SHETH PM, JHA AR, LONG BR, WONG JC, SATKUNARAJAH M, SCHWENEKER M, CHAPMAN JM, GYENES G, VALI B, HYRCZA MD, YUE FY, KOVACS C, SASSI A, LOUTFY M, HALPENNY R, PERSAD D, SPOTTS G, HECHT FM, CHUN TW, McCUNE JM, KAUL R, RINI JM, NIXON DF, OSTROWSKI MA. Tim-3 expression defines a novel population of dysfunctional T cells with highly elevated frequencies in progressive HIV-1 infection. J Exp Med. 2008;205:2763–2779. doi: 10.1084/jem.20081398. PubMed DOI PMC

JUBEL JM, BARBATI ZR, BURGER C, WIRTZ DC, SCHILDBERG FA. The role of PD-1 in acute and chronic infection. Front Immunol. 2020;11:487. doi: 10.3389/fimmu.2020.00487. PubMed DOI PMC

KISIELOW M, KISIELOW J, CAPOFERRI-SOLLAMI G, KARJALAINEN K. Expression of lymphocyte activation gene 3 (LAG-3) on B cells is induced by T cells. Eur J Immunol. 2005;35:2081–2088. doi: 10.1002/eji.200526090. PubMed DOI

KLEBANOV N, PAHALYANTS V, MURPHY WS, THEODOSAKIS N, ZUBIRI L, MONINA KLEVENS R, KWATRA SG, LILLY E, REYNNOLDS KL, SEMENOV YR. Risk of COVID-19 in patients with cancer receiving immune checkpoint inhibitors. Oncologist. 2021;26:e898–e901. doi: 10.1002/onco.13768. PubMed DOI PMC

KONG Y, WANG Y, WU X, HAN J, LI G, HUA M, HAN K, ZHANG H, LI A, ZENG H. Storm of soluble immune checkpoints associated with disease severity of COVID-19. Signal Transduct Target Ther. 2020;5:192. doi: 10.1038/s41392-020-00308-2. PubMed DOI PMC

KURI-CERVANTES L, PAMPENA MB, MENG W, ROSENFELD AM, ITTNER CAG, WEISMAN AR, AGYEKUM RS, MATHEW D, BAXTER AE, VELLA LA, KUTHURU O, APOSTOLIDIS SA, BERSHAW L, DOUGHERTY J, GREENPLATE AR, PATTEKAR A, KIM J, HAN N, GOUMA S, WEIRICK ME, ET AL. Comprehensive mapping of immune perturbations associated with severe COVID-19. Sci Immunol. 2020;5:eabd7114. doi: 10.1126/sciimmunol.abd7114. PubMed DOI PMC

LEGAT A, SPEISER DE, PIRCHER H, ZEHN D, FUERTES MARRACO SA. Inhibitory receptor expression depends more dominantly on differentiation and activation than “exhaustion” of human CD8 T cells. Front Immunol. 2013;4:455. doi: 10.3389/fimmu.2013.00455. PubMed DOI PMC

LI J, NI L, DONG C. Immune checkpoint receptors in cancer: redundant by design? Curr Opin Immunol. 2017;45:37–42. doi: 10.1016/j.coi.2017.01.001. PubMed DOI

LI M, GUO W, DONG Y, WANG X, DAI D, LIU X, WU Y, LI M, ZHANG W, ZHOU H, ZHANG Z, LIN L, KANG Z, YU T, TIAN C, QIN R, GUI Y, JIANG F, FAN H, HEISSMEYER V, SARAPULTSEV A, WANG L, LUO S, HU D. Elevated exhaustion levels of NK and CD8+ T cells as indicators for progression and prognosis of COVID-19 disease. Front Immunol. 2020;11:580237. doi: 10.3389/fimmu.2020.580237. PubMed DOI PMC

LIAO M, LIU Y, YUAN J, WEN Y, XU G, ZHAO J, CHENG L, LI J, WANG X, WANG F, LIU L, AMIT I, ZHANG S, ZHANG Z. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat Med. 2020;8:842–844. doi: 10.1038/s41591-020-0901-9. PubMed DOI

LINES JL, PANTAZI E, MAK J, SEMPERE LF, O’CONNEL S, CEERAZ S, SURIAWINATA AA, YAN S, ERNSTOFF MS, NOELLE R. VISTA is an immune checkpoint molecule for human T cells. Cancer Res. 2014;74:1924–1932. doi: 10.1158/0008-5472.CAN-13-1504. PubMed DOI PMC

LUCAS CL, WORKMAN CJ, BEYAZ S, LOCASCIO S, ZHAO G, VIGNALI DAA, SYKES M. LAG-3, TGF-β, and cell-intrinsic PD-1 inhibitory pathways contribute to CD8 but not CD4 T-cell tolerance induced by allogeneic BMT with anti-CD40L. Blood. 2011;117:5532–5540. doi: 10.1182/blood-2010-11-318675. PubMed DOI PMC

LUO J, RIZVI H, EGGER JV, PREESHAGUL IR, WOLCHOK JD, HELLMANN MD. Impact of PD-1 blockade on severity of COVID-19 in patients with lung cancers. Cancer Discov. 2020;10:1121–1128. doi: 10.1158/2159-8290.CD-20-0596. PubMed DOI PMC

MARTÍN-QUIRÓS A, MAROUN-EID C, AVENDAÑO-ORTIZ J, LOZANO-RODRÍGUEZ R, QUIROGA JV, TERRÓN V, MONTALBÁN-HERNÁNDEZ K, GARCÍA-GARRIDO MA, Del VAL EM, Del BALZO-CASTILLO A. Potential role of the galectin-9/TIM-3 axis in the disparate progression of SARS-CoV-2 in a married couple: A case report. Biomed Hub. 2021;6:48–58. doi: 10.1159/000514727. PubMed DOI PMC

MARUHASHI T, SUGIURA D, OKAZAKI I, OKAZAKI T. LAG-3: from molecular functions to clinical applications. J Immunother Cancer. 2020;8:e001014. doi: 10.1136/jitc-2020-001014. PubMed DOI PMC

McLANE LM, ABDEL-HAKEEM MS, WHERRY EJ. CD8 T cell exhaustion during chronic viral infection and cancer. Annu Rev Immunol. 2019;37:457–495. doi: 10.1146/annurev-immunol-041015-055318. PubMed DOI

MENACHERY VD, SCHÄFER A, BURNUM-JOHNSON KE, MITCHELL HD, EISFELD A, WALTERS KB, NICORA CD, PURVINE SO, CASEY CP, MONROE ME, WEITZ KK, STRATTON KG, WEBB-ROBERTSON BJM, GRALINSKI LE, METZ TO, SMITH RD, WATERS KM, SIMS AC, KAWAOKA Y, BARIC RS. MERS-CoV and H5N1 influenza virus antagonize antigen presentation by altering the epigenetic landscape. Proc Natl Acad Sci U S A. 2018;115:E1012–E1021. doi: 10.1073/pnas.1706928115. PubMed DOI PMC

MORITZ RKC, GUTZMER R, ZIMMER L, MEIER F, AHMED MS, SELL S, SCHLAAK M, KAPP F, SACHSE MM, HAFERKAMP S, WELZEL J, KÄHLER KC, WEICHENTHAL M. SARS-CoV-2 infections in melanoma patients treated with PD-1 inhibitors: A survey of the German ADOREG melanoma registry. Eur J Cancer. 2021;144:382–385. doi: 10.1016/j.ejca.2020.11.015. PubMed DOI PMC

MUNN DH, MELLOR AL. Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends Immunol. 2013;34:137–143. doi: 10.1016/j.it.2012.10.00. PubMed DOI PMC

OTSUKI N, KAMIMURA Y, HASHIGUCHI M, AZUMA M. Expression and function of the B and T lymphocyte attenuator (BTLA/CD272) on human T cells. Biochem Biophys Res Commun. 2006;344:1121–1127. doi: 10.1016/j.bbrc.2006.03.242. PubMed DOI

PACES J, STRIZOVA Z, SMRZ D, CERNY J. COVID-19 and the immune system. Physiol Res. 2020;69:379–388. doi: 10.33549/physiolres.934492. PubMed DOI PMC

PALA L, CONFORTI F, COCOROCCHIO E, FERRUCCI P, De PAS MT, STUCCHI S, REPETTO M, SAPONARA M, QUEIROLO P. Course of Sars-CoV2 infection in patients with cancer treated with anti-PD-1: A case presentation and review of the literature. Cancer Invest. 2021;39:9–14. doi: 10.1080/07357907.2020.1844893. PubMed DOI

PALMER BE, NEFF CP, LECUREUX J, EHLER A, DSOUZA M, REMLING-MULDER L, KORMAN AJ, FONTENOT AP, AKKINA R. In vivo blockade of the PD-1 receptor suppresses HIV-1 viral loads and improves CD4+ T cell levels in humanized mice. J Immunol. 2013;190:211–219. doi: 10.4049/jimmunol.1201108. PubMed DOI PMC

PARRY RV, CHEMNITZ JM, FRAUWIRTH KA, LANFRANCO AR, BRAUNSTEIN I, KOBAYASHI SV, LINSLEY PS, THOMPSON CB, RILEY JL. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol. 2005;25:9543–9553. doi: 10.1128/MCB.25.21.9543-9553.2005. PubMed DOI PMC

PAUKEN KE, WHERRY EJ. Overcoming T cell exhaustion in infection and cancer. Trends Immunol. 2015;36:265–276. doi: 10.1016/j.it.2015.02.008. PubMed DOI PMC

PEZESHKI PS, REZAEI N. Immune checkpoint inhibition in COVID-19: risks and benefits. Expert Opin Biol Ther. 2021;21:1173–1179. doi: 10.1080/14712598.2021.1887131. PubMed DOI PMC

RENDEIRO AF, CASANO J, VORKAS CK, SINGH H, MORALES A, DESIMONE RA, ELLSWORTH GB, SOAVE R, KAPADIA SN, SAITO K, BROWN CD, HSU JM, KYRIAKIDES C, CHIU S, CAPELLI LV, CACCIAPUOTI MT, TAM W, GALLUZZI L, SIMONSON PD, ELEMENTO O, SALVATORE M, INGHIRAMI G. Profiling of immune dysfunction in COVID-19 patients allows early prediction of disease progression. Life Sci Alliance. 2020;4:e202000955. doi: 10.26508/lsa.202000955. PubMed DOI PMC

RIZZO P, VIECELI DALLA SEGA F, FORTINI F, MARRACINO L, RAPEZZI C, FERRARI R. COVID-19 in the heart and the lungs: could we “Notch” the inflammatory storm? Basic Res Cardiol. 2020;115:31. doi: 10.1007/s00395-020-0791-5. PubMed DOI PMC

ROBILOTTI EV, BABADY NE, MEAD PA, ROLLING T, PEREZ-JOHNSTON R, BERNARDES M, BOGLER Y, CALDARARO M, FIGUEROA CJ, GLICKMAN MS, JOANOW A, KALTSAS A, LEE YJ, LUCCA A, MARIANO A, MORJARIA S, NAWAR T, PAPANICOLAOU GA, PREDMORE J, REDELMAN-SIDI G, ET AL. Determinants of COVID-19 disease severity in patients with cancer. Nat Med. 2020;26:1218–1223. doi: 10.1016/j.xcrm.2020.100016. PubMed DOI PMC

ROGIERS A, PIRES DA SILVA I, TENTORI C, TONDINI CA, GRIMES JM, TRAGER MH, NAHM S, ZUBIRI L, MANOS M, BOWLING P, ELKRIEF A, PAPNEJA N, VITALE MG, ROSE AN, BORGERS JSW, ROY S, MANGANA S, PIMENTEL MUNIZ T, COOKSLEY T, ET AL. Clinical impact of COVID-19 on patients with cancer treated with immune checkpoint inhibition. J Immunother Cancer. 2021;9:e001931. doi: 10.1136/jitc-2020-001931. PubMed DOI PMC

ROTZ SJ, LEINO D, SZABO S, MANGINO JL, TURPIN BK, PRESSEY JG. Severe cytokine release syndrome in a patient receiving PD-1-directed therapy. Pediatr Blood Cancer. 2017;64:e26642. doi: 10.1002/pbc.26642. PubMed DOI

ROWSHANRAVAN B, HALLIDAY N, SANSOM DM. CTLA-4: a moving target in immunotherapy. Blood. 2018;131:58–67. doi: 10.1182/blood-2017-06-74103. PubMed DOI PMC

SAHEB SHARIF-ASKARI N, SAHEB SHARIF-ASKARI F, MDKHANA B, Al HEIALY S, ALSAFAR HS, HAMOUDI R, HAMID Q, HALWANI R. Enhanced expression of immune checkpoint receptors during SARS-CoV-2 viral infection. Mol Ther Methods Clin Dev. 2021;20:109–121. doi: 10.1016/j.omtm.2020.11.002. PubMed DOI PMC

SHAH KP, SONG H, YE F, MOSLEHI JJ, BALKO JM, SALEM JE, JOHNSON DB. Demographic factors associated with toxicity in patients treated with anti-programmed cell death-1 therapy. Cancer Immunol Res. 2020;8:85955. doi: 10.1158/2326-6066. PubMed DOI PMC

SHAHBAZI M, MOULANA Z, SEPIDARKISH M, BAGHERZADEH M, REZANEJAD M, MIRZAKHANI M, JAFARI M, MOHAMMADNIA-AFROUZI M. Pronounce expression of Tim-3 and CD39 but not PD1 defines CD8 T cells in critical Covid-19 patients. Microb Pathog. 2021;153:104779. doi: 10.1016/j.micpath.2021.104779. PubMed DOI PMC

SHEN C, LI Q, WEI Y, LI Y, LI J, TAO J. Management of immune checkpoint therapy for patients with cancer in the face of COVID-19. J Immunnother Cancer. 2020;8:e001593. doi: 10.1136/jitc-2020-001593. PubMed DOI PMC

SHI Y, WANG Y, SHAO C, HUANG J, GAN J, HUANG X, BUCCI E, PIACENTINI M, IPPOLITO G, MELINO G. COVID-19 infection: the perspectives on immune responses. Cell Death Differ. 2020;27:1451–1454. doi: 10.1038/s41418-020-0530-3. PubMed DOI PMC

SCHULTHEIß C, PASCHOLD L, SIMNICA D, MOHME M, WILLSCHER E, Von WENSERSKI L, SCHOLZ R, WIETERS I, DAHLKE C, TOLOSA E, SEDDING DG, CIESEK S, ADDO M, BINDER M. Next-generation sequencing of T and B cell receptor repertoires from COVID-19 patients showed signatures associated with severity of disease. Immunity. 2020;53:442–455.e4. doi: 10.1016/j.immuni.2020.06.024. PubMed DOI PMC

STARON MM, GRAY SM, MARSHALL HD, PARISH IA, CHEN JH, PERRY CJ, CUI G, LI MO, KAECH SM. The transcription factor FoxO1 sustains expression of the inhibitory receptor PD-1 and survival of antiviral CD8(+) T cells during chronic infection. Immunity. 2014;41:802–814. doi: 10.1016/j.immuni.2014.10.013. PubMed DOI PMC

SULLIVAN RJ, JOHNSON DB, RINI BI, NEILAN TG, LOVLY CM, MOSLEHI JJ, REYNOLDS KL. COVID-19 and immune checkpoint inhibitors: initial considerations. J Immunother Cancer. 2020;8:e000933. doi: 10.1136/jitc-2020-000933. PubMed DOI PMC

SYN NL, TENG MWL, MOK TSK, SOO RA. De-novo acquired resistance to immune checkpoint tageting. Lancet Oncol. 2017;18:e731–e741. doi: 10.1016/s1470-2045(17)30607-1. PubMed DOI

TAKAMURA S, TSUJI-KAWAHARA S, YAGITA H, AKIBA H, SAKAMOTO M, CHIKAISHI T, KATO M, MIYAZAWA M. Premature terminal exhaustion of Friend virus-specific effector CD8+ T cells by rapid induction of multiple inhibitory receptors. J Immunol. 2010;184:4696–4707. https://doi.org/0.4049/jimmunol.0903478 . PubMed

TAN L, WANG Q, ZHANG D, DING J, HUANG Q, TANG YQ, WANG Q, MIAO H. Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study. Signal Transduct Target Ther. 2020;5:33. doi: 10.1038/s41392-020-0148-4. PubMed DOI PMC

TAYLOR PM, ASKONAS BA. Influenza nucleoprotein-specific cytotoxic T-cell clones are protective in vivo. Immunology. 1986;58:417–420. PubMed PMC

TOMIĆ S, ĐOKIĆ J, STEVANOVIĆ D, ILLIĆ N, GRUDEN-MOVSESIJAN A, DINIĆ M, RADOJEVIĆ D, BEKIĆ M, MITROVIĆ N, TOMAŠEVIĆ R, MIKIĆ D, STOJANIVIĆ D, ČOLIĆ M. Reduced expression of autophagy markers and expansion of myeloid-derived suppressor cells correlate with poor T cell response in severe COVID-19 patients. Front Immunol. 2021;12:614599. doi: 10.3389/fimmu.2021.614599. PubMed DOI PMC

TOOR SM, SALEH R, SASIDHARAN NAIR V, TAHA RZ, ELKORD E. T-cell responses and therapies against SARS-CoV-2 infection. Immunology. 2021;162:30–43. doi: 10.1111/imm.13262. PubMed DOI PMC

TRIEBEL F, JITSUKAWA S, BAIXERAS E, ROMAN-ROMAN S, GENEVEE C, VIEGAS-PEQUIGNOT E, HERCEND T. LAG-3, a novel lymphocyte activation gene closely related to CD4. J Exp Med. 1990;171:1393–1405. doi: 10.1084/jem.171.5.1393. PubMed DOI PMC

VARCHETTA S, MELE D, OLIVIERO B, MANTOVANI S, LUDOVISI S, CERINO A, BRUNO R, CASTELLI A, MOSCONI M, VECCHIA M, RODA S, SACHS M, KLERSY C, MONDELLI MU. Unique immunological profile in patients with COVID-19. Cell Mol Immunol. 2021;18:604–612. doi: 10.1038/s41423-020-00557-9. PubMed DOI PMC

VAŠKŮ A. Covid-19 infection and the host genetic predisposition: does it exist? Physiol Res. 2020;69:511–514. doi: 10.33549/physiolres.934504. PubMed DOI PMC

VIVARELLI S, FALZONE L, TORINO F, SCANDURRA G, RUSSO G, BORDONARO R, PAPPALARDO F, SPANDIDOS DA, RACITI G, LIBRA M. Immune-checkpoint inhibitors from cancer to COVID 19: A promising avenue for the treatment of patients with COVID 19 (Review) Int J Oncol. 2021;58:145–157. doi: 10.3892/ijo.2020.5159. PubMed DOI PMC

WORKMAN CJ, DUGGER KJ, VIGNALI DA. Cutting edge: molecular analysis of the negative regulatory function of lymphocyte activation gene-3. J Immunol. 2002;169:5392–5395. doi: 10.4049/jimmunol.169.10.5392. PubMed DOI

WORKMAN CJ, VIGNALI DA. The CD4-related molecule, LAG-3 (CD223), regulates the expansion of activated T cells. Eur J Immunol. 2003;33:970–979. doi: 10.1002/eji.200323382. PubMed DOI

WORKMAN CJ, WANG Y, EL KASMI KC, PARDOLL DM, MURRAY PJ, DRAKE CG, VIGNALI DA. LAG-3 regulates plasmacytoid dendritic cell homeostasis. J Immunol. 2009;182:1885–1891. doi: 10.4049/jimmunol.0800185. PubMed DOI PMC

WU C, CHEN X, CAI Y, XIA J, ZHOU X, XU S, HUANG H, ZHANG L, ZHOU X, DU C, ZHANG Y, SONG J, WANG S, CHAO Y, YANG Z, XU J, ZHOU X, CHEN D, XIONG W, XU L, ZHOU F, JIANG J, BAI C, ZHENG J, SONG Y. Risk factors associated with acute respiratory distress syndrome and death in patients with Coronavirus Disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020;180:934–943. doi: 10.1001/jamainternmed.2020.0994. PubMed DOI PMC

ZHANG B, ZHOU X, QIU Y, SONG Y, FENG F, FENG J, SONG Q, JIA Q, WANG J. Clinical characteristics of 82 cases of death from COVID-19. PLoS One. 2020;15:e0235458. doi: 10.1371/journal.pone.0235458. PubMed DOI PMC

ZHENG HY, ZHANG M, YANG CX, ZHANG N, WANG XC, YANG XP, DONG XD, ZHENG YT. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cell Mol Immunol. 2020;17:541–543. doi: 10.1038/s41423-020-0401-3. PubMed DOI PMC

ZHENG M, GAO Y, WANG G, SONG G, LIU S, SUN D, XU Y, TIAN Z. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol. 2020;17:533–535. doi: 10.1038/s41423-020-0402-2. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...