Immune Profile in Patients With COVID-19: Lymphocytes Exhaustion Markers in Relationship to Clinical Outcome
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33937096
PubMed Central
PMC8082075
DOI
10.3389/fcimb.2021.646688
Knihovny.cz E-zdroje
- Klíčová slova
- COVID-19, SARS-CoV-2, clinical outcome, immune cells exhaustion, immunologic predictors,
- MeSH
- CD4-pozitivní T-lymfocyty MeSH
- CD8-pozitivní T-lymfocyty MeSH
- COVID-19 * MeSH
- lidé MeSH
- pandemie MeSH
- SARS-CoV-2 MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The velocity of the COVID-19 pandemic spread and the variable severity of the disease course has forced scientists to search for potential predictors of the disease outcome. We examined various immune parameters including the markers of immune cells exhaustion and activation in 21 patients with COVID-19 disease hospitalised in our hospital during the first wave of the COVID-19 pandemic in Slovakia. The results showed significant progressive lymphopenia and depletion of lymphocyte subsets (CD3+, CD4+, CD8+ and CD19+) in correlation to the disease severity. Clinical recovery was associated with significant increase in CD3+ and CD3+CD4+ T-cells. Most of our patients had eosinopenia on admission, although no significant differences were seen among groups with different disease severity. Non-survivors, when compared to survivors, had significantly increased expression of PD-1 on CD4+ and CD8+ cells, but no significant difference in Tim-3 expression was observed, what suggests possible reversibility of immune paralysis in the most severe group of patients. During recovery, the expression of Tim-3 on both CD3+CD4+ and CD3+CD8+ cells significantly decreased. Moreover, patients with fatal outcome had significantly higher proportion of CD38+CD8+ cells and lower proportion of CD38+HLA-DR+CD8+ cells on admission. Clinical recovery was associated with significant decrease of proportion of CD38+CD8+ cells. The highest AUC values within univariate and multivariate logistic regression were achieved for expression of CD38 on CD8+ cells and expression of PD1 on CD4+ cells alone or combined, what suggests, that these parameters could be used as potential biomarkers of poor outcome. The assessment of immune markers could help in predicting outcome and disease severity in COVID-19 patients. Our observations suggest, that apart from the degree of depletion of total lymphocytes and lymphocytes subsets, increased expression of CD38 on CD3+CD8+ cells alone or combined with increased expression of PD-1 on CD3+CD4+ cells, should be regarded as a risk factor of an unfavourable outcome in COVID-19 patients. Increased expression of PD-1 in the absence of an increased expression of Tim-3 on CD3+CD4+ and CD3+CD8+ cells suggests potential reversibility of ongoing immune paralysis in patients with the most severe course of COVID-19.
Zobrazit více v PubMed
Applegate W. B., Ouslander J. G. (2020). COVID-19 Presents High Risk to Older Persons. J. Am. Geriatr. Soc. 68 (4), 681. 10.1111/jgs.16426 PubMed DOI PMC
Bastard P., Rosen L. B., Zhang Q., Michailidis E., Hoffmann H. H., Zhang Y., et al. . (2020). Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science 370 (6515), eabd4585. 10.1126/science.abd4585 PubMed DOI PMC
Bellelli V., d’Ettorre G., Celani L., Borrazzo C., Ceccarelli G., Venditti M. (2019). Clinical significance of lymphocytopenia in patients hospitalized with pneumonia caused by influenza virus. Crit. Care 23 (1), 330. 10.1186/s13054-019-2608-1 PubMed DOI PMC
Beran J., Špajdel M., Katzerová V., Holousova A., Malyš J., Finger Rousková J., et al. . (2020). Inosine Pranobex Significantly Decreased the Case-Fatality Rate among PCR Positive Elderly with SARS-CoV-2 at Three Nursing Homes in the Czech Republic. Pathogens 9 (12), 1055. 10.3390/pathogens912105 PubMed DOI PMC
Chen N., Zhou M., Dong X., Qu J., Gong F., Han Y., et al. . (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 395, 507–513. 10.1016/S0140-6736(20)30211-7 PubMed DOI PMC
Chen R., Sang L., Jiang M., Yang Z., Jia N., Fu W., et al. . (2020). Longitudinal hematologic and immunologic variations associated with the progression of COVID-19 patients in China. J. Allergy Clin. Immunol. 146 (1), 89–100. 10.1016/j.jaci.2020.05.003 PubMed DOI PMC
Danwang C., Endomba F. T., Nkeck J. R., Wouna D. L. A., Robert A., Noubiap J. J. (2020). A meta-analysis of potential biomarkers associated with severity of Coronavirus disease 2019 (COVID-19). Biomark. Res. 8, 37. 10.1186/s40364-020-00217-0 PubMed DOI PMC
Diao B., Wang C., Tan Y., Chen X., Liu Y., Ning L., et al. . (2020). Reduction and Functional Exhaustion of T Cells in Patients With Coronavirus Disease 2019 (COVID-19). Front. Immunol. 11, 827. 10.3389/fimmu.2020.00827 PubMed DOI PMC
Ferreira A. O., Polonini H. C., Dijkers E. C. F. (2020). Postulated Adjuvant Therapeutic Strategies for COVID-19. J. Pers. Med. 10 (3), 80. 10.3390/jpm10030080 PubMed DOI PMC
Halpert G., Shoenfeld Y. (2020). SARS-CoV-2, The Autoimmune Virus. Autoimmune Rev. 19 (12), 102695. 10.1016/j.autrev.2020.102695 PubMed DOI PMC
He R., Lu Z., Zhang L., Fan T., Xiong R., Shen X., et al. . (2020). The clinical course and its correlated immune status in COVID-19 pneumonia. J. Clin. Virol. 127, 104361. 10.1016/j.jcv.2020.104361 PubMed DOI PMC
Herrmann M., Schulte S., Wildner N. H., Wittner M., Brehm T. T., Ramharter M., et al. . (2020). Analysis of Co-inhibitory Receptor Expression in COVID-19 Infection Compared to Acute Plasmodium falciparum Malaria: LAG-3 ani TIM-3 Correlate With T Cell Activation and Course of the Disease. Front. Immunol. 11, 1870. 10.3389/fimmu.2020.01870 PubMed DOI PMC
Huang G., Kovalic A. J., Graber C. H. J. (2020). Prognostic value of leukocytosis and lymphopenia for severe coronavirus disease. Emerg. Infect. Dis. 26 (8), 1839–1841. 10.3201/eid2608.201160 PubMed DOI PMC
Jesenak M., Brndiarova M., Urbancikova I., Rennerova Z., Vojtkova J., Bobcakova A., et al. . (2020). Immune Parameters and COVID-19 infection – Associations With Clinical Severity and Disease Prognosis. Front. Cell Infect. Microbiol. 10, 364. 10.3389/fcimb.2020.00364 PubMed DOI PMC
Jiang M., Guo I., Luo Q., Huang Z., Zhao R., Liu S., et al. . (2020). T cell subset counts in peripheral blood can be used as discriminatory biomarkers for diagnosis and severity prediction of COVID-19. J. Infect. Dis. 222 (2), 198–202. 10.1093/infdis/jiaa252 PubMed DOI PMC
Jiang Y., Wei X., Guan J., Qin S., Wang Z., Lu H. (2020). COVID-19 pneumonia: CD8+ T and NK cells are decreased in number but compensatory increased in cytotoxic potential. Clin. Immunol. 218, 108516. 10.1016/j.clim.2020.108516 PubMed DOI PMC
Legat A., Speiser D. E., Pircher H., Zehn D., Fuertes Marraco S. A., et al. . (2013). Inhibitory receptor expression depends more dominantly on differentiation and activation than “exhaustion” of human CD8 T cells. Front. Immunol. 4, 455. 10.3389/fimmu.2013.00455 PubMed DOI PMC
Leroy E. M., Baize S., Debre P., Lansoud-Soukate J., Mavoungou E. (2001). Early immune responses accompanying human asymptomatic Ebola infections. Clin. Exp. Immunol. 124 (3), 453–460. 10.1046/j.1365-2249.2001.01517.x PubMed DOI PMC
Liu R., Wang Y., Li J., Han H., Xia Z., Liu F., et al. . (2020). Decreased T cell populations contribute to the increased severity of COVID-19. Clin. Chim. Acta 508, 110–114. 10.1016/j.cca.2020.05.019 PubMed DOI PMC
Liu Y., Du X., Chen J., Jin Y., Peng L., Wang H. H. X., et al. . (2020). Neutrophil-to-lymphocyte ratio as an independent risk factor for mortality in hospitalized patients with COVID-19. J. Infect. 81 (1), e6–e12. 10.1016/j.jinf.2020.04.002 PubMed DOI PMC
Lu R., Zhao X., Li J., Niu P., Yang B., Wu H., et al. . (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 5, 565–574. 10.1016/S0140-6736(20)30251-8 PubMed DOI PMC
Ma A., Cheng J., Yang J., Dong M., Liao X., Kang Y. (2020). Neutrophil-to-lymphocyte ratio as a predictive biomarker for moderate-severe ARDS in Covid-19 patients. Crit. Care 24, 288. 10.1186/s13054-020-03007-0 PubMed DOI PMC
Madjid M., Safavi-Naeini P., Solomon S. D., Vardeny O. (2020). Potential Effects of Coronaviruses on the Cardiovasclar System A Review. JAMA Cardiol. 5 (7), 831–840. 10.1001/jamacardio.2020.1286 PubMed DOI
Matricardi P. M., Dal Negro R. W., Nisini R. (2020). The first, holistic immunological model of COVID-19: Implications for prevention, diagnosis, and public health measures. Pediatr. Allergy Immunol. 31, 454–470. 10.1111/pai.13271 PubMed DOI PMC
Mescher M. F., Curtsinger J. M., Agarwal P., Casey K. A., Gerner M., Hammerbeck C. D., et al. . (2006). Signals required for programming effector and memory development by CD8+ T cells. Immunol. Rev. 211, 81–92. 10.1111/j.0105-2896.2006.00382.x PubMed DOI
Murphy E. J., Masterson C., Rezoagli E., O’Toole D., Major I., Stack G. D., et al. . (2020). β-Glucan extracts from the same edible shiitake mushroom Lentinus edodes produce differential in-vitro immunomodulatory and pulmonary cytoprotective effects — Implications for coronavirus disease (COVID-19) immunotherapies. Sci. Total Environ. 732, 139330. 10.1016/j.scitotenv.2020.139330 PubMed DOI PMC
Nakra N. A., Blumberg D. A., Herrera-Guerra A., Lakshminrusimha S. (2020). Multi-System Inflammatory Syndrome in Children (MIS-C) Following SARS-CoV-2 Infection: Review of Clinical Presentation, Hypothetical Pathogenesis, and Proposed Management. Children (Basel) 7 (7):69. 10.3390/children7070069 PubMed DOI PMC
Pinto R. A., Arredondo S. M., Bono M. R., Gaggero A. A., Diaz P. V. (2006). T helper 1/T helper 2 cytokine imbalance in respiratory syncytial virus infection is associated with increased endogenous plasma cortisol. Pediatrics 117 (5), e878–e886. 10.1542/peds.2005-2119 PubMed DOI
Quin C., Zhou L., Hu Z., Zhang S., Yang S., Tao Y., et al. . (2020). Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin. Infect. Dis. 71 (15), 762–768. 10.1093/cid/ciaa248 PubMed DOI PMC
Quinti I., Lougaris V., Milito C., Cinetto F., Pecoraro A., Mezzaroma I., et al. . (2020). A possible role for B cells in COVID-19?: lesson from patients with agammaglobulinemia. J. Allergy Clin. Immunol. 146 (1), 211–213.e4. 10.1016/j.jaci.2020.04.013 PubMed DOI PMC
Rao K.-S., Suryaprakash V., Senthilkumar R., Preethy S., Katoh S., Ikewaki N., et al. . (2020). Role of Immune Dysregulation in Increased Mortality Among a Specific Subset of COVID-19 Patients and Immune-Enhancement Strategies for Combatting Through Nutritional Supplements. Front. Immunol. 11, 1548.eCollection 2020:1548. 10.3389/fimmu.2020.01548.eCollection2020 PubMed DOI PMC
Sokolovsky S., Soni P., Hoffman T., Kahn P., Scheers-Masters J., et al. . (2021). COVID-19 associated Kawasaki-like multisystem inflammatory disease in an adult. Am. J. Emerg. Med. 39, 253.e1–253.e2. 10.1016/j.ajem.2020.06.053 PubMed DOI PMC
Song J. W., Zhang C., Fan X., Meng F. P., Xu Z., Xia P., et al. . (2020). Immunological and inflammatory profiles in mild and severe cases of COVID-19. Nat. Commun. 11 (1), 3410. 10.1038/s41467-020-17240-2 PubMed DOI PMC
Soresina A., Moratto D., Chiarini M., Paolillo C., Baresi G., Foca E., et al. . (2020). Favorable outcome of COVID19 in two patients with X-linked agammaglobulinemia. Pediatr. Allergy Immunol. 00, 1–5. 10.1111/pai.13263 PubMed DOI PMC
Tan L., Wang Q., Zhang D., Ding J., Huang Q., Tang Y.-Q., et al. . (2020). Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study. Signal Transduct. Target Ther. 5, 33. 10.1038/s41392-020-0148-4 PubMed DOI PMC
Terpos E., Ntanasis-Stathopoulos I., Elalamy I., Kastritis E., Sergentanis T. N., Politou M., et al. . (2020). Hematological findings and complications of COVID-19. Am. J. Hematol. 95 (7), 834–847. 10.1002/ajh.25829 PubMed DOI PMC
Thevarajan I., Nguyen T. H. O., Koutsakos M., Druce J., Caly L., van de Sandt C. E., et al. . (2020). Breadth of concomitant immune responses prior to patient recovery: a case report of non-severe COVID-19. Nat. Med. 26, 453–455. 10.1038/s41591-020-0819-2 PubMed DOI PMC
Urra J. M., Cabrera C. M., Porras L., Ródenas I. (2020). Selective CD8 cell reduction by SARS-CoV-2 is associated with a worse prognosis and systemic inflammation in COVID-19 patients. Clin. Immunol. 217, 108486. 10.1016/j.clim.2020.108486 PubMed DOI PMC
Viza D., Pizza G., De Vinci C., Brandi G., Ablashi D. (2020). Transfer Factor as an Option for Managing the COVID-19 Pandemic. Folia Biol. 66 (3), 86–90. PubMed
Wang D., Hu B., Hu C., Zhu F., Liu X., Zhang J., et al. . (2020). Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 323 (11), 1061–1069. 10.1001/jama.2020.1585 PubMed DOI PMC
Wang F., Hou H., Luo I., Tang G., Wu S., Huang M., et al. . (2020). The laboratory tests and host immunity of COVID-19 patients with different severity of illness. JCI Insight 5 (10), e137799. 10.1172/jci.insight.137799 PubMed DOI PMC
Xu H., Zhong L., Deng J., Peng J., Dan H., Zeng X., et al. . (2020). High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int. J. Oral. Sci. 12 (1), 8. 10.1038/s41368-020-0074-x PubMed DOI PMC
Zheng H. Y., Zhang M., Yang C. X., Zhang N., Wang X. C., Yang X. P., et al. . (2020). Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cell Mol. Immunol. 17, 541–543. 10.1038/s41423-020-0401-3 PubMed DOI PMC
Zheng M., Gao Y., Wang G., Song G., Liu S., Sun D., et al. . (2020). Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol. Immunol. 17, 533–535. 10.1038/s41423-020-0402-2 PubMed DOI PMC
Zhou Y., Han T., Chen X., Hou C., Hua L., He S., et al. . (2020). Clinical and Autoimmune Characteristics of Severe and Critical Cases of COVID-19. Clin. Trans. Sci. 13 (6), 1077–1086. 10.1111/cts.12805 PubMed DOI PMC
Zhu J., Yamane H., Paul W. E. (2009). Differentiation of effector CD4 T cell populations. Annu. Rev. Immunol. 28, 445–489. 10.1146/annurev-immunol-030409-101212 PubMed DOI PMC
TIM3 in COVID-19; A potential hallmark?
Inhibitory immune checkpoint molecules and exhaustion of T cells in COVID-19