Muscle Dysfunction and Functional Status in COVID-19 Patients during Illness and after Hospital Discharge

. 2024 Feb 19 ; 12 (2) : . [epub] 20240219

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38398063

Grantová podpora
(General University Hospital in Prague - VFN, 00064165) MH CZ - DRO

BACKGROUND: COVID-19 pneumonia is associated with SIRS and hypercatabolism. The aim of this study was to determine muscle loss during the acute phase of COVID-19 pneumonia and evaluate long-term sequelae in discharged patients. METHODS: A total of 16 patients with COVID-19 pneumonia and respiratory insufficiency were included in the study. Selected parameters (weight, BMI, LBM = lean body mass, albumin, CRP, NLR = neutrophil-to-lymphocyte ratio, ultrasound measured thickness of rectus femoris muscle = US RF and rectus femoris + vastus intermedius = US RF + VI, handgrip strength, quality of life = EQ-5D questionnaire, and activities of daily living = Barthel's ADLs) were recorded on admission, discharge, and 1, 3, and 6 months after discharge. RESULTS: The most significant changes were between hospital admission and discharge: US RF and RF + VI (-1.28 ± 1.97 mm, p = 0.046; -1.76 ± 2.94 mm, p = 0.05), EQ-5D score (14.6 ± 19.2, p = 0.02), and ADLs (17.1 ± 22.6; p = 0.02). There was a significant positive correlation between US RF + VI and handgrip strength (p = 0.014) and a negative correlation between weight and Barthel index (p = 0.012). There was an association between muscle function with an EQ-5D score and ADLs during outpatient check-ups, most noticeably between handgrip strength, US RF+VI, and ADLs (p = 0.08; p = 0.1, respectively). Conclusions: In patients with COVID-19 pneumonia, there is a significant reduction of health-related quality of life, impaired even 6 months after hospital discharge, influenced mainly by muscle loss. During the hospital stay, there was a significant muscle mass reduction. Ultrasound measurement of thigh muscle thickness may be a useful method to monitor muscle loss.

Zobrazit více v PubMed

Pascarella G., Strumia A., Piliego C., Bruno F., Del Buono R., Costa F., Scarlata S., Agrò F.E. COVID-19 diagnosis and management: A comprehensive review. J. Intern. Med. 2020;288:192–206. doi: 10.1111/joim.13091. PubMed DOI PMC

Anka A.U., Tahir M.I., Abubakar S.D., Alsabbagh M., Zian Z., Hamedifar H., Sabzevari A., Azizi G. Coronavirus disease 2019 (COVID-19): An overview of the immunopathology, serological diagnosis and management. Scand. J. Immunol. 2021;93:e12998. doi: 10.1111/sji.12998. PubMed DOI PMC

Guan W.J., Ni Z.Y., Hu Y., Liang W.H., Ou C.Q., He J.X., Liu L., Shan H., Lei C.L., Hui D.S.C., et al. China Medical Treatment Expert Group for Covid-19. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020;382:1708–1720. doi: 10.1056/NEJMoa2002032. PubMed DOI PMC

Huang L., Li X., Gu X., Zhang H., Ren L., Guo L., Liu M., Wang Y., Cui D., Wang Y., et al. Health outcomes in people 2 years after surviving hospitalisation with COVID-19: A longitudinal cohort study. Lancet Respir. Med. 2022;10:863–876. doi: 10.1016/S2213-2600(22)00126-6. PubMed DOI PMC

Carod-Artal F.J. Post-COVID-19 syndrome: Epidemiology, diagnostic criteria and pathogenic mechanisms involved. Rev. Neurol. 2021;72:384–396. doi: 10.33588/rn.7211.2021230. (In Spanish) PubMed DOI

Malik P., Patel K., Pinto C., Jaiswal R., Tirupathi R., Pillai S., Patel U. Post-acute COVID-19 syndrome (PCS) and health-related quality of life (HRQoL)—A systematic review and meta-analysis. J. Med. Virol. 2022;94:253–262. doi: 10.1002/jmv.27309. PubMed DOI PMC

Di Filippo L., De Lorenzo R., D’Amico M., Sofia V., Roveri L., Mele R., Saibene A., Rovere-Querini P., Conte C. COVID-19 is associated with clinically significant weight loss and risk of malnutrition, independent of hospitalisation: A post-hoc analysis of a prospective cohort study. Clin. Nutr. 2021;40:2420–2426. doi: 10.1016/j.clnu.2020.10.043. PubMed DOI PMC

Wierdsma N.J., Kruizenga H.M., Konings L.A., Krebbers D., Jorissen J.R., Joosten M.-H.I., van Aken L.H., Tan F.M., van Bodegraven A.A., Soeters M.R., et al. Poor nutritional status, risk of sarcopenia and nutrition related complaints are prevalent in COVID-19 patients during and after hospital admission. Clin. Nutr. ESPEN. 2021;43:369–376. doi: 10.1016/j.clnesp.2021.03.021. PubMed DOI PMC

Beaudart C., Zaaria M., Pasleau F., Reginster J.-Y., Bruyère O. Health Outcomes of Sarcopenia: A Systematic Review and Meta-Analysis. PLoS ONE. 2017;12:e0169548. doi: 10.1371/journal.pone.0169548. PubMed DOI PMC

Cruz-Jentoft A.J., Bahat G., Bauer J., Boirie Y., Bruyère O., Cederholm T., Cooper C., Landi F., Rolland Y., Sayer A.A., et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing. 2019;48:16–31. doi: 10.1093/ageing/afy169. PubMed DOI PMC

Buckinx F., Landi F., Cesari M., Fielding R.A., Visser M., Engelke K., Maggi S., Dennison E., Al-Daghri N.M., Allepaerts S., et al. Pitfalls in the measurement of muscle mass: A need for a reference standard. J. Cachexia Sarcopenia Muscle. 2018;9:269–278. doi: 10.1002/jcsm.12268. PubMed DOI PMC

Looijaard W.G., Molinger J., Weijs P.J. Measuring and monitoring lean body mass in critical illness. Curr. Opin. Crit. Care. 2018;24:241–247. doi: 10.1097/MCC.0000000000000511. PubMed DOI PMC

De Rosa S., Umbrello M., Pelosi P., Battaglini D. Update on Lean Body Mass Diagnostic Assessment in Critical Illness. Diagnostics. 2023;13:888. doi: 10.3390/diagnostics13050888. PubMed DOI PMC

Perkisas S., Bastijns S., Baudry S., Bauer J., Beaudart C., Beckwée D., Cruz-Jentoft A., Gasowski J., Hobbelen H., Jager-Wittenaar H., et al. Application of ultrasound for muscle assessment in sarcopenia: 2020 SARCUS update. Eur. Geriatr. Med. 2021;12:45–59. doi: 10.1007/s41999-020-00433-9. PubMed DOI

Zhang W., Wu J., Gu Q., Gu Y., Zhao Y., Ge X., Sun X., Lian J., Zeng Q. Changes in muscle ultrasound for the diagnosis of intensive care unit acquired weakness in critically ill patients. Sci. Rep. 2021;11:18280. doi: 10.1038/s41598-021-97680-y. PubMed DOI PMC

Tillquist M., Kutsogiannis D.J., Wischmeyer P.E., Kummerlen C., Leung R., Stollery D., Karvellas C.J., Preiser J., Bird N., Kozar R., et al. Bedside Ultrasound Is a Practical and Reliable Measurement Tool for Assessing Quadriceps Muscle Layer Thickness. J. Parenter. Enter. Nutr. 2013;38:886–890. doi: 10.1177/0148607113501327. PubMed DOI PMC

Hadda V., Kumar R., Khilnani G.C., Kalaivani M., Madan K., Tiwari P., Mittal S., Mohan A., Bhalla A.S., Guleria R. Trends of loss of peripheral muscle thickness on ultrasonography and its relationship with outcomes among patients with sepsis. J. Intensive Care. 2018;6:81. doi: 10.1186/s40560-018-0350-4. PubMed DOI PMC

Umbrello M., Guglielmetti L., Formenti P., Antonucci E., Cereghini S., Filardo C., Montanari G., Muttini S. Qualitative and quantitative muscle ultrasound changes in patients with COVID-19–related ARDS. Nutrition. 2021;91–92:111449. doi: 10.1016/j.nut.2021.111449. PubMed DOI PMC

Damanti S., Cilla M., Tuscano B., De Lorenzo R., Manganaro G., Merolla A., Pacioni G., Pomaranzi C., Tiraferri V., Martinenghi S., et al. Evaluation of Muscle Mass and Stiffness with Limb Ultrasound in COVID-19 Survivors. Front. Endocrinol. 2022;13:801133. doi: 10.3389/fendo.2022.801133. PubMed DOI PMC

Martín C.A.G., Zepeda E.M., Méndez O.A.L. Bedside Ultrasound Measurement of Rectus Femoris: A Tutorial for the Nutrition Support Clinician. J. Nutr. Metab. 2017;2017:2767232. doi: 10.1155/2017/2767232. PubMed DOI PMC

Puthucheary Z.A., Rawal J., McPhail M., Connolly B., Ratnayake G., Chan P., Hopkinson N.S., Padhke R., Dew T., Sidhu P.S., et al. Acute Skeletal Muscle Wasting in Critical Illness. JAMA. 2013;310:1591–1600. doi: 10.1001/jama.2013.278481. PubMed DOI

Koratala A., Ronco C., Kazory A. Diagnosis of Fluid Overload: From Conventional to Contemporary Concepts. Cardiorenal Med. 2022;12:141–154. doi: 10.1159/000526902. PubMed DOI

Moonen H.P.F.X., Van Zanten A.R.H. Bioelectric impedance analysis for body composition measurement and other potential clinical applications in critical illness. Curr. Opin. Crit. Care. 2021;27:344–353. doi: 10.1097/MCC.0000000000000840. PubMed DOI PMC

Peolsson A., Hedlund R., Öberg B. Intra-and inter-tester reliability and reference values for hand strength. J. Rehabil. Med. 2001;33:36–41. doi: 10.1080/165019701300006524. PubMed DOI

Bittner E.A., Martyn J.A., George E., Frontera W.R., Eikermann M. Measurement of muscle strength in the intensive care unit. Crit. Care Med. 2009;37:S321–S330. doi: 10.1097/CCM.0b013e3181b6f727. PubMed DOI

Cottereau G., Messika J., Megarbane B., Guérin L., da Silva D., Bornstain C., Santos M., Ricard J.-D., Sztrymf B. Handgrip strength to predict extubation outcome: A prospective multicenter trial. Ann. Intensiv. Care. 2021;11:144. doi: 10.1186/s13613-021-00932-3. PubMed DOI PMC

Mayer K.P., Bastin M.L.T., Montgomery-Yates A.A., Pastva A.M., Dupont-Versteegden E.E., Parry S.M., Morris P.E. Acute skeletal muscle wasting and dysfunction predict physical disability at hospital discharge in patients with critical illness. Crit. Care. 2020;24:637. doi: 10.1186/s13054-020-03355-x. PubMed DOI PMC

Soares M.N., Eggelbusch M., Naddaf E., Gerrits K.H.L., van der Schaaf M., van den Borst B., Wiersinga W.J., van Vugt M., Weijs P.J.M., Murray A.J., et al. Skeletal muscle alterations in patients with acute Covid-19 and post-acute sequelae of Covid-19. J. Cachex. Sarcopenia Muscle. 2022;13:11–22. doi: 10.1002/jcsm.12896. PubMed DOI PMC

Sanaie S., Hosseini M.-S., Karrubi F., Iranpour A., Mahmoodpoor A. Impact of Body Mass Index on the Mortality of Critically Ill Patients Admitted to the Intensive Care Unit: An Observational Study. Anesthesiol. Pain Med. 2020;11:e108561. doi: 10.5812/aapm.108561. PubMed DOI PMC

Prescott H.C., Chang V.W., O’Brien J.M., Jr., Langa K.M., Iwashyna T.J. Obesity and 1-Year Outcomes in Older Americans with Severe Sepsis. Crit. Care Med. 2014;42:1766–1774. doi: 10.1097/CCM.0000000000000336. PubMed DOI PMC

Akinnusi M.E., Pineda L.A., El Solh A.A. Effect of obesity on intensive care morbidity and mortality: A meta-analysis. Crit. Care Med. 2008;36:151–158. doi: 10.1097/01.CCM.0000297885.60037.6E. PubMed DOI

de Leeuw A.J.M., Luttikhuis M.A.M.O., Wellen A.C., Müller C., Calkhoven C.F. Obesity and its impact on COVID-19. J. Mol. Med. 2021;99:899–915. doi: 10.1007/s00109-021-02072-4. PubMed DOI PMC

Ponti G., Maccaferri M., Ruini C., Tomasi A., Ozben T. Biomarkers associated with COVID-19 disease progression. Crit. Rev. Clin. Lab. Sci. 2020;57:389–399. doi: 10.1080/10408363.2020.1770685. PubMed DOI PMC

Bivona G., Agnello L., Ciaccio M. Biomarkers for Prognosis and Treatment Response in COVID-19 Patients. Ann. Lab. Med. 2021;41:540–548. doi: 10.3343/alm.2021.41.6.540. PubMed DOI PMC

Paces J., Strizova Z., Smrz D., Cerny J. COVID-19 and the Immune System. Physiol. Res. 2020;69:379–388. doi: 10.33549/physiolres.934492. PubMed DOI PMC

McGonagle D., Sharif K., O’Regan A., Bridgewood C. The Role of Cytokines including Interleukin-6 in COVID-19 induced Pneumonia and Macrophage Activation Syndrome-Like Disease. Autoimmun. Rev. 2020;19:102537. doi: 10.1016/j.autrev.2020.102537. PubMed DOI PMC

Zeng F., Huang Y., Guo Y., Yin M., Chen X., Xiao L., Deng G. Association of inflammatory markers with the severity of COVID-19: A meta-analysis. Int. J. Infect. Dis. 2020;96:467–474. doi: 10.1016/j.ijid.2020.05.055. PubMed DOI PMC

Annetta M.G., Pittiruti M., Silvestri D., Grieco D.L., Maccaglia A., La Torre M.F., Magarelli N., Mercurio G., Caricato A., Antonelli M. Ultrasound assessment of rectus femoris and anterior tibialis muscles in young trauma patients. Ann. Intensive Care. 2017;7:104. doi: 10.1186/s13613-017-0326-x. PubMed DOI PMC

Parry S.M., Burtin C., Denehy L., Puthucheary Z.A., Bear D. Ultrasound Evaluation of Quadriceps Muscle Dysfunction in Respiratory Disease. Cardiopulm. Phys. Ther. J. 2019;30:15–23. doi: 10.1097/CPT.0000000000000102. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace