Alveolar type II cells and pulmonary surfactant in COVID-19 era
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články, přehledy
PubMed
34913352
PubMed Central
PMC8884364
DOI
10.33549/physiolres.934763
PII: 934763
Knihovny.cz E-zdroje
- MeSH
- angiotensin-konvertující enzym 2 metabolismus MeSH
- COVID-19 imunologie metabolismus virologie MeSH
- farmakoterapie COVID-19 MeSH
- interakce hostitele a patogenu MeSH
- internalizace viru MeSH
- lidé MeSH
- plíce účinky léků imunologie metabolismus virologie MeSH
- plicní surfaktanty terapeutické užití MeSH
- pneumocyty účinky léků imunologie metabolismus virologie MeSH
- proteiny asociované s plicním surfaktantem metabolismus MeSH
- SARS-CoV-2 imunologie patogenita MeSH
- serinové endopeptidasy metabolismus MeSH
- virové receptory metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- ACE2 protein, human MeSH Prohlížeč
- angiotensin-konvertující enzym 2 MeSH
- plicní surfaktanty MeSH
- proteiny asociované s plicním surfaktantem MeSH
- serinové endopeptidasy MeSH
- TMPRSS2 protein, human MeSH Prohlížeč
- virové receptory MeSH
In this review, we discuss the role of pulmonary surfactant in the host defense against respiratory pathogens, including novel coronavirus SARS-CoV-2. In the lower respiratory system, the virus uses angiotensin-converting enzyme 2 (ACE2) receptor in conjunction with serine protease TMPRSS2, expressed by alveolar type II (ATII) cells as one of the SARS-CoV-2 target cells, to enter. ATII cells are the main source of surfactant. After their infection and the resulting damage, the consequences may be severe and may include injury to the alveolar-capillary barrier, lung edema, inflammation, ineffective gas exchange, impaired lung mechanics and reduced oxygenation, which resembles acute respiratory distress syndrome (ARDS) of other etiology. The aim of this review is to highlight the key role of ATII cells and reduced surfactant in the pathogenesis of the respiratory form of COVID-19 and to emphasize the rational basis for exogenous surfactant therapy in COVID-19 ARDS patients.
Zobrazit více v PubMed
ABATE W, ALGHAITHY AA, PARTON J, JONES KP, JACKSON SK. Surfactant lipids regulate LPS-induced interleukin-8 production in A549 lung epithelial cells by inhibiting translocation of TLR4 into lipid raft domains. J Lipid Res. 2010;51:334–344. doi: 10.1194/jlr.M000513. PubMed DOI PMC
ABO KM, MA L, MATTE T, HUANG J, ALYSANDRATOS KD, WERDER RB, MITHAL A, BEERMANN ML, LINDSTROM-VAUTRIN J, MOSTOSLAVSKY G, IKONOMOU L, KOTTON DN, HAWKINS F, WILSON A, VILLACORTA-MARTIN C. Human iPSC-derived alveolar and airway epithelial cells can be cultured at air-liquid interface and express SARS-CoV-2 host factors. BioRxiv (Preprint) 2020;2020:132639. doi: 10.1101/2020.06.03.132639. DOI
ABOUDOUNYA MM, HEADS RJ. COVID-19 and toll-like receptor 4 (TLR4): SARS-CoV-2 may bind and activate TLR4 to increase ACE2 expression, facilitating entry and causing hyperinflammation. Mediators Inflamm. 2021;2021:8874339. doi: 10.1155/2021/8874339. PubMed DOI PMC
ABOUHASHEM AS, SINGH K, AZZAZY HME, SEN CK. Is low alveolar type II cell SOD3 in the lungs of elderly linked to the observed severity of COVID-19? Antioxid Redox Signal. 2020;33:59–65. doi: 10.1089/ars.2020.8111. PubMed DOI PMC
ARDS DEFINITION TASK FORCE. RANIERI VM, RUBENFELD GD, THOMPSON BT, FERGUSON ND, CALDWELL E, FAN E, CAMPOROTA L, SLUTSKY AS. Acute respiratory distress syndrome: The Berlin definition. JAMA. 2012;307:2526–2533. doi: 10.1001/jama.2012.5669. PubMed DOI
BAKER SA, KWOK S, BERRY GJ, MONTINE TJ. Angiotensin-converting enzyme 2 (ACE2) expression increases with age in patients requiring mechanical ventilation. PLoS One. 2021;16:e0247060. doi: 10.1371/journal.pone.0247060. PubMed DOI PMC
BEERS MF, MOODLEY Y. When is an alveolar type 2 cell an alveolar type 2 cell? A conundrum for lung stem cell biology and regenerative medicine. Am J Respir Cell Mol Biol. 2017;57:18–27. doi: 10.1165/rcmb.2016-0426PS. PubMed DOI PMC
BEZARA MEO, THURMAN A, PEZZULO AA, LEIDINGER MR, KLESNEY-TAIT JA, KARP PH, PING TAN P, WOHLFORD-LENANE C, McCRAY PB, JR, MEYERHOLZ DK. Heterogeneous expression of the SARS-Coronavirus-2 receptor ACE2 in the human respiratory tract. BioRxiv (Preprint) 2020;2020:056127. doi: 10.1101/2020.04.22.056127. PubMed DOI PMC
BOLLAG WB, GONZALES J. Phosphatidylglycerol and surfactant: A potential treatment for COVID-19? Med Hypotheses. 2020;144:110277. doi: 10.1016/j.mehy.2020.110277. PubMed DOI PMC
BRADLEY BT, MAIOLI H, JOHNSTON R, CHAUDHRY I, FINK SL, XU H, NAJAFIAN B, DEUTSCH G, LACY JM, WILLIAMS T, YARID N, MARSHALL DA. Histopathology and ultrastructural findings of fatal COVID-19 infections in Washington State: a case series. Lancet. 2020;396:320–332. doi: 10.1016/S0140-6736(20)31305-2. PubMed DOI PMC
BUSANI S, DALL’ARA L, TONELLI R. Surfactant replacement might help recovery of low-compliance lung in severe COVID-19 pneumonia. Ther Adv Respir Dis. 2020;14:1–6. doi: 10.1177/1753466620951043. PubMed DOI PMC
CARCATERRA M, CARUSO C. Alveolar epithelial cell type II as main target of SARS-CoV-2 virus and COVID-19 development via NF-Kb pathway deregulation: A physio-pathological theory. Med Hypotheses. 2021;146:110412. doi: 10.1016/j.mehy.2020.110412. PubMed DOI PMC
CATTEL F, GIORDANO S, BERTIOND C, LUPIA T, CORCIONE S, SCALDAFERRI M, ANGELONE L, De ROSA FG. Use of exogenous pulmonary surfactant in acute respiratory distress syndrome (ARDS): Role in SARS-CoV-2-related lung injury. Respir Physiol Neurobiol. 2021;288:103645. doi: 10.1016/j.resp.2021.103645. PubMed DOI PMC
CHEN R, LAN Z, YE J, PANG L, LIU Y, WU W, QIN X, GUO Y, ZHANG P. Cytokine storm: The primary determinant for the pathophysiological evolution of COVID-19 deterioration. Front Immunol. 2021;12:589095. doi: 10.3389/fimmu.2021.589095. PubMed DOI PMC
CHEN Q, LIU Y. Heterogeneous groups of alveolar type II cells in lung homeostasis and repair. Am J Physiol Cell Physiol. 2020;319:C991–C996. doi: 10.1152/ajpcell.00341.2020. PubMed DOI PMC
CHEN XJ, LI K, XU L, YU YJ, WU B, HE YL, ZHAO WE, LI D, LUAN CX, HU L, WANG J, DING JJ, YU YF, LI JX, TAN ZM, LIU XF, WEI D, ZHANG ZH, GUO XJ, SU C, HU ZB, GUO YS, CHEN JY, CHEN F. Novel insight from the first lung transplant of a COVID-19 patient. Eur J Clin Invest. 2021;51:e13443. doi: 10.1111/eci.13443. PubMed DOI
CHILOSI M, POLETTI V, RAVAGLIA C, ROSSI G, DUBINI A, PICIUCCHI S, PEDICA F, BRONTE V, PIZZOLO G, MARTIGNONI G, DOGLIONI C. The pathogenic role of epithelial and endothelial cells in early-phase COVID-19 pneumonia: victims and partners in crime. Mod Pathol. 2021;34:1444–1455. doi: 10.1038/s41379-021-00808-8. PubMed DOI PMC
DABBAGH A, RAJAEI S, GHAHREMANI M, FATHI M, MASSOUDI N, TAVANA S, FANI K, NOORAEE N, MALEKPOUR ALAMDARI N, BESHARAT S, NAJAFI ABRANDABADI A, PIRSALEHI A, KHABIRI KHATIRI MA. The effect of surfactant on clinical outcome of patients with COVID-19 under mechanical ventilation: A structured summary of a study protocol for a randomised controlled trial. Trials. 2020;21:919. doi: 10.1186/s13063-020-04815-z. PubMed DOI PMC
D'ALESSANDRO M, CAMELI P, REFINI RM, BERGANTINI L, ALONZI V, LANZARONE N, BENNETT D, RANA GD, MONTAGNANI F, SCOLLETTA S, FRANCHI F, FREDIANI B, VALENTE S, MAZZEI MA, BONELLA F, BARGAGLI E. Serum KL-6 concentrations as a novel biomarker of severe COVID-19. J Med Virol. 2020;92:2216–2220. doi: 10.1002/jmv.26087. PubMed DOI PMC
DIMBATH E, MADDIPATI V, STAHL J, SEWELL K, DOMIRE Z, GEORGE S, VAHDATI A. Implications of microscale lung damage for COVID-19 pulmonary ventilation dynamics: A narrative review. Life Sci. 2021;274:119341. doi: 10.1016/j.lfs.2021.119341. PubMed DOI PMC
DOGLIONI C, RAVAGLIA C, CHILOSI M, ROSSI G, DUBINI A, PEDICA F, PICIUCCHI S, VIZZUSO A, STELLA F, MAITAN S, AGNOLETTI V, PUGLISI S, POLETTI G, SAMBRI V, PIZZOLO G, BRONTE V, WELLS AU, POLETTI V. Covid-19 interstitial pneumonia: Histological and immunohistochemical features on cryobiopsies. Respiration. 2021;100:488–498. doi: 10.1159/000514822. PubMed DOI PMC
DUSHIANTHAN A, CLARK H, MADSEN J, MOGG R, MATTHEWS L, BERRY L, De la SERNA JB, BATCHELOR J, BREALEY D, HUSSELL T, PORTER J, DJUKANOVIC R, FEELISCH M, POSTLE A, GROCOTT MPW. Nebulised surfactant for the treatment of severe COVID-19 in adults (COV-Surf): A structured summary of a study protocol for a randomized controlled trial. Trials. 2020;21:1014. doi: 10.1186/s13063-020-04944-5. PubMed DOI PMC
FISHER HK. Hypoxemia in COVID-19 patients: An hypothesis. Med Hypotheses. 2020;143:110022. doi: 10.1016/j.mehy.2020.110022. PubMed DOI PMC
GATTINONI L, CHIUMELLO D, ROSSI S. COVID-19 pneumonia: ARDS or not? Crit Care. 2020;24:154. doi: 10.1186/s13054-020-02880-z. PubMed DOI PMC
GHATI A, DAM P, TASDEMIR D, KATI A, SELLAMI H, SEZGIN GC, ILDIZ N, FRANCO OL, MANDAL AK, OCSOY I. Exogenous pulmonary surfactant: A review focused on adjunctive therapy for severe acute respiratory syndrome coronavirus 2 including SP-A and SP-D as added clinical marker. Curr Opin Colloid Interface Sci. 2021;51:101413. doi: 10.1016/j.cocis.2020.101413. PubMed DOI PMC
GILLE C, SPRING B, BERNHARD W, GEBHARD C, BASILE D, LAUBER K, POETS CF, ORLIKOWSKY TW. Differential effect of surfactant and its saturated phosphatidylcholines on human blood macrophages. J Lipid Res. 2007;48:307–317. doi: 10.1194/jlr.M600451-JLR200. PubMed DOI
GLASSER SW, WITT TL, SENFT AP, BAATZ JE, FOLGER D, MAXFIELD MD, AKINBI HT, NEWTON DA, PROWS DR, KORFHAGEN TR. Surfactant protein C-deficient mice are susceptible to respiratory syncytial virus infection. Am J Physiol Lung Cell Mol Physiol. 2009;297:L64–L72. doi: 10.1152/ajplung.90640.2008. PubMed DOI PMC
GOTTS JE, ABBOTT J, MATTHAY MA. Influenza causes prolonged disruption of the alveolar-capillary barrier in mice unresponsive to mesenchymal stem cell therapy. Am J Physiol Lung Cell Mol Physiol. 2014;307:L395–L406. doi: 10.1152/ajplung.00110.2014. PubMed DOI PMC
HAN S, MALLAMPALLI RK. The role of surfactant in lung disease and host defense against pulmonary infections. Ann Am Thorac Soc. 2015;12:765–774. doi: 10.1513/AnnalsATS.201411-507FR. PubMed DOI PMC
HAN Y, DUAN X, YANG L, NILSSON-PAYANT BE, WANG P, DUAN F, TANG X, YARON TM, ZHANG T, UHL S, BRAM Y, RICHARDSON C, ZHU J, ZHAO Z, REDMOND D, HOUGHTON S, NGUYEN DT, XU D, WANG X, JESSURUN J, ET AL. Identification of SARS-CoV-2 inhibitors using lung and colonic organoids. Nature. 2021;589:270–275. doi: 10.1038/s41586-020-2901-9. PubMed DOI PMC
HARTSHORN KL. Role of surfactant protein A and D (SP-A and SP-D) in human antiviral host defense. Front Biosci (Schol Ed) 2010;2:527–546. doi: 10.2741/s83. PubMed DOI
HECHING M, LEV S, SHITENBERG D, DICKER D, KRAMER MR. Surfactant for the treatment of ARDS in a patient with coronavirus disease 2019. Chest. 2021;160:E9–E12. doi: 10.1016/j.chest.2021.01.028. PubMed DOI PMC
HENNIGHAUSEN L, LEE HK. Activation of the SARS-CoV-2 receptor Ace2 by cytokines through pan JAK-STAT enhancers. BioRxiv (Preprint) 2020;2020:089045. doi: 10.1101/2020.05.11.089045. Update in: Cell Rep 32: 108199, 2020. DOI
HERTING E, HÄRTEL C, GÖPEL W. Less invasive surfactant administration: Best practices and unanswered questions. Curr Opin Pediatr. 2020;32:228–234. doi: 10.1097/MOP.0000000000000878. PubMed DOI PMC
HIEMSTRA PS, AMATNGALIM GD, Van der DOES AM, TAUBE C. Antimicrobial peptides and innate lung defenses: Role in infectious and noninfectious lung diseases and therapeutic applications. Chest. 2016;149:545–551. doi: 10.1378/chest.15-1353. PubMed DOI
HSIEH MH, BEIRAG N, MURUGAIAH V, CHOU YC, KUO WS, KAO HF, MADAN T, KISHORE U, WANG JY. Human surfactant protein D binds spike protein and acts as an entry inhibitor of SARS-CoV-2 pseudotyped viral particles. Front Immunol. 2021;12:641360. doi: 10.3389/fimmu.2021.641360. PubMed DOI PMC
ISLAM ABMMK, KHAN MA. Lung transcriptome of a COVID-19 patient and systems biology predictions suggest impaired surfactant production which may be druggable by surfactant therapy. Sci Rep. 2020;10:19395. doi: 10.1038/s41598-020-76404-8. PubMed DOI PMC
JOHANSSON J, CURSTEDT T. Molecular structures and interactions of pulmonary surfactant components. Eur J Biochem. 1997;244:675–693. doi: 10.1111/j.1432-1033.1997.00675.x. PubMed DOI
KANDASAMY P, NUMATA M, BERRY KZ, FICKES R, LESLIE CC, MURPHY RC, VOELKER DR. Structural analogs of pulmonary surfactant phosphatidylglycerol inhibit toll-like receptor 2 and 4 signaling. J Lipid Res. 2016;57:993–1005. doi: 10.1194/jlr.M065201. PubMed DOI PMC
KATSURA H, SONTAKE V, TATA A, KOBAYASHI Y, EDWARDS CE, HEATON BE, KONKIMALLA A, ASAKURA T, MIKAMI Y, FRITCH EJ, LEE PJ, HEATON NS, BOUCHER RC, RANDELL SH, BARIC RS, TATA PR. Human lung stem cell-based alveolospheres provide insights into SARS-CoV-2-mediated interferon responses and pneumocyte dysfunction. Cell Stem Cell. 2020;27:890–904.e8. doi: 10.1016/j.stem.2020.10.005. PubMed DOI PMC
KERGET B, KERGET F, KOÇAK AO, KIZILTUNÇ A, ARAZ ÖUÇ, AR EY, AKGÜN M. Are serum interleukin 6 and surfactant protein D levels associated with the clinical course of COVID-19? Lung. 2020;198:777–784. doi: 10.1007/s00408-020-00393-8. PubMed DOI PMC
KISHORE U, BULLA R, MADAN T. Editorial: Odyssey of surfactant proteins SP-A and SP-D: Innate immune surveillance molecules. Front Immunol. 2020;11:394. doi: 10.3389/fimmu.2020.00394. PubMed DOI PMC
KITAOKA H, KOBAYASHI H, TAKIMOTO T, KIJIMA T. Proposal of selective wedge instillation of pulmonary surfactant for COVID-19 pneumonia based on computational fluid dynamics simulation. BMC Pulm Med. 2021;21:62. doi: 10.1186/s12890-021-01435-4. PubMed DOI PMC
KOLOMAZNIK M, NOVA Z, CALKOVSKA A. Pulmonary surfactant and bacterial lipopolysaccharide: the interaction and its functional consequences. Physiol Res. 2017;66(Suppl 2):S147–S157. doi: 10.33549/physiolres.933672. PubMed DOI
KONOPKA KE, NGUYEN T, JENTZEN JM, RAYES O, SCHMIDT CJ, WILSON AM, FARVER CF, MYERS JL. Diffuse alveolar damage (DAD) resulting from coronavirus disease 2019 infection is morphologically indistinguishable from other causes of DAD. Histopathology. 2020;77:570–578. doi: 10.1111/his.14180. PubMed DOI PMC
KOUMBOURLIS AC, MOTOYAMA EK. Lung mechanics in COVID-19 resemble respiratory distress syndrome, not acute respiratory distress syndrome: Could surfactant be a treatment? Am J Respir Crit Care Med. 2020;202:624–626. doi: 10.1164/rccm.202004-1471LE. PubMed DOI PMC
KUMAR P. Co-aerosolized pulmonary surfactant and ambroxol for COVID-19 ARDS intervention: What are we waiting for? Front Bioeng Biotechnol. 2020;8:577172. doi: 10.3389/fbioe.2020.577172. PubMed DOI PMC
KURONUMA K, MITSUZAWA H, TAKEDA K, NISHITANI C, CHAN ED, KUROKI Y, NAKAMURA M, VOELKER DR. Anionic pulmonary surfactant phospholipids inhibit inflammatory responses from alveolar macrophages and U937 cells by binding the lipopolysaccharide-interacting proteins CD14 and MD-2. J Biol Chem. 2009;284:25488–25500. doi: 10.1074/jbc.M109.040832. PubMed DOI PMC
LAMERS MM, Van der VAART J, KNOOPS K, RIESEBOSCH S, BREUGEM TI, MYKYTYN AZ, BEUMER J, SCHIPPER D, BEZSTAROSTI K, KOOPMAN CD, GROEN N, RAVELLI RBG, DUIMEL HQ, DEMMERS JAA, VERJANS GMGM, KOOPMANS MPG, MURARO MJ, PETERS PJ, CLEVERS H, HAAGMANS BL. An organoid-derived bronchioalveolar model for SARS-CoV-2 infection of human alveolar type II-like cells. EMBO J. 2021;40:e105912. doi: 10.15252/embj.2020105912. PubMed DOI PMC
LEIBEL SL, McVICAR RN, WINQUIST AM, NILES WD, SNYDER EY. Generation of complete multi-cell patient-specific induced pluripotent stem cells for infectious disease modeling and therapeutics validation. Curr Protoc Stem Cell Biol. 2020;54:e118. doi: 10.1002/cpsc.118. PubMed DOI PMC
LEIBEL SL, SUN X. Halting SARS-CoV-2: lung organoids step up to the plate. EMBO J. 2021;40:e107651. doi: 10.15252/embj.2021107651. PubMed DOI PMC
LI X, MA X. Acute respiratory failure in COVID-19: is it “typical” ARDS? Crit Care. 2020;24:198. doi: 10.1186/s13054-020-02911-9. PubMed DOI PMC
LIU A, ZHANG X, LI R, ZHENG M, YANG S, DAI L, WU A, HU C, HUANG Y, XIE M, CHEN Q. Overexpression of the SARS-CoV-2 receptor ACE2 is induced by cigarette smoke in bronchial and alveolar epithelia. J Pathol. 2021;253:17–30. doi: 10.1002/path.5555. PubMed DOI PMC
LOPEZ-RODRIGUEZ E, PEREZ-GIL J. Structure-function relationships in pulmonary surfactant membranes: from biophysics to therapy. Biochim Biophys Acta. 2014;1838:1568–1585. doi: 10.1016/j.bbamem.2014.01.028. PubMed DOI
LUKASSEN S, CHUA RL, TREFZER T, KAHN NC, SCHNEIDER MA, MULEY T, WINTER H, MEISTER M, VEITH C, BOOTS AW, HENNIG BP, KREUTER M, CONRAD C, EILS R. SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. EMBO J. 2020;39:e105114. doi: 10.15252/embj.20105114. PubMed DOI PMC
MADAN T, BISWAS B, VARGHESE PM, SUBEDI R, PANDIT H, IDICULA-THOMAS S, KUNDU I, ROOGE S, AGARWAL R, TRIPATHI DM, KAUR S, GUPTA E, GUPTA SK, KISHORE U. A recombinant fragment of human surfactant protein D binds spike protein and inhibits infectivity and replication of SARS-CoV-2 in clinical samples. Am J Respir Cell Mol Biol. 2021;65:41–53. doi: 10.1165/rcmb.2021-0005OC. PubMed DOI PMC
MANDATO C, VAJRO P. Pulmonary lipid modulation: A possible therapeutic target for SARS-CoV-2 infection. Med Hypotheses. 2021;149:110529. doi: 10.1016/j.mehy.2021.110529. PubMed DOI PMC
MASON RJ. Biology of alveolar type II cells. Respirology. 2006;11(Suppl 1):S12–S15. doi: 10.1111/j.1440-1843.2006.00800.x. PubMed DOI
MASON RJ. Thoughts on the alveolar phase of COVID-19. Am J Physiol Lung Cell Mol Physiol. 2020;319:L115–L120. doi: 10.1152/ajplung.00126.2020. PubMed DOI PMC
MIKOLKA P, CURSTEDT T, FEINSTEIN R, LARSSON A, GRENDAR M, RISING A, JOHANSSON J. Impact of synthetic surfactant CHF5633 with SP-B and SP-C analogues on lung function and inflammation in rabbit model of acute respiratory distress syndrome. Physiol Rep. 2021;9:e14700. doi: 10.14814/phy2.14700. PubMed DOI PMC
MIRASTSCHIJSKI U, DEMBINSKI R, MAEDLER K. Lung surfactant for pulmonary barrier restoration in patients with COVID-19 pneumonia. Front Med (Lausanne) 2020;7:254. doi: 10.3389/fmed.2020.00254. PubMed DOI PMC
MOKRÁ D. Acute lung injury – from pathophysiology to treatment. Physiol Res. 2020;69(Suppl 3):S353–S366. doi: 10.33549/physiolres.934602. PubMed DOI PMC
MORRIS G, BORTOLASCI CC, PURI BK, OLIVE L, MARX W, O’NEIL A, ATHAN E, CARVALHO AF, MAES M, WALDER K, BERK M. The pathophysiology of SARS-CoV-2: A suggested model and therapeutic approach. Life Sci. 2020;258:118166. doi: 10.1016/j.lfs.2020.118166. PubMed DOI PMC
MULUGETA S, BEERS MF. Surfactant protein C: Its unique properties and emerging immunomodulatory role in the lung. Microbes Infect. 2006;8:2317–2323. doi: 10.1016/j.micinf.2006.04.009. PubMed DOI
MYTI D, GUNJAK M, CASADO F, KHAGHANI RAZIABAD S, NARDIELLO C, VADÁSZ I, HEROLD S, PRYHUBER G, SEEGER W, MORTY RE. Elevated FiO2 increases SARS-CoV-2 co-receptor expression in respiratory tract epithelium. Am J Physiol Lung Cell Mol Physiol. 2020;319:L670–L674. doi: 10.1152/japplphysiol.00022.2002. PubMed DOI PMC
NOVA Z, SKOVIEROVA H, CALKOVSKA A. Alveolar-capillary membrane-related pulmonary cells as a target in endotoxin-induced acute lung injury. Int J Mol Sci. 2019;20:831. doi: 10.3390/ijms20040831. PubMed DOI PMC
NOVA Z, SKOVIEROVA H, STRNADEL J, HALASOVA E, CALKOVSKA A. Short-term versus long-term culture of A549 cells for evaluating the effects of lipopolysaccharide on oxidative stress, surfactant proteins and cathelicidin LL-37. Int J Mol Sci. 2020;21:1148. doi: 10.3390/ijms21031148. PubMed DOI PMC
NUMATA M, CHU HW, DAKHAMA A, VOELKER DR. Pulmonary surfactant phosphatidylglycerol inhibits respiratory syncytial virus-induced inflammation and infection. Proc Natl Acad Sci U S A. 2010;107:320–325. doi: 10.1073/pnas.0909361107. PubMed DOI PMC
NUMATA M, MITCHELL JR, TIPPER JL, BRAND JD, TROMBLEY JE, NAGASHIMA Y, KANDASAMY P, CHU HW, HARROD KS, VOELKER DR. Pulmonary surfactant lipids inhibit infections with the pandemic H1N1 influenza virus in several animal models. J Biol Chem. 2020;295:1704–1715. doi: 10.1074/jbc.RA119.012053. PubMed DOI PMC
OCHS M, TIMM S, ELEZKURTAJ S, HORST D, MEINHARDT J, HEPPNER FL, WEBER-CARSTENS S, HOCKE AC, WITZENRATH M. Collapse induration of alveoli is an ultrastructural finding in a COVID-19 patient. Eur Respir J. 2021;57:2004165. doi: 10.1183/13993003.04165-2020. PubMed DOI PMC
OPRINCA GC, MUJA LA. Postmortem examination of three SARS-CoV-2-positive autopsies including histopathologic and immunohistochemical analysis. Int J Legal Med. 2021;135:329–339. doi: 10.1007/s00414-020-02406-w. PubMed DOI PMC
OTÁHAL M, MLČEK M, VÍTKOVÁ I, KITTNAR O. A novel experimental model of acute respiratory distress syndrome in pig. Physiol Res. 2016;65(Suppl 5):S643–S651. doi: 10.33549/physiolres.933539. PubMed DOI
PACES J, STRIZOVA Z, SMRZ D, CERNY J. COVID-19 and the immune system. Physiol Res. 2020;69:379–388. doi: 10.33549/physiolres.934492. PubMed DOI PMC
PEDAN H, JANOSOVA V, HAJTMAN A, CALKOVSKY V. Non-reflex defense mechanisms of upper airway mucosa: Possible clinical application. Physiol Res. 2020;69(Suppl 1):S55–S67. doi: 10.33549/physiolres.934404. PubMed DOI PMC
PIVA S, DIBLASI RM, SLEE AE, JOBE AH, ROCCARO AM, FILIPPINI M, LATRONICO N, BERTONI M, MARSHALL JC, PORTMAN MA. Surfactant therapy for COVID-19 related ARDS: a retrospective case-control pilot study. Respir Res. 2021;22:20. doi: 10.1186/s12931-020-01603-w. PubMed DOI PMC
ROSAS LE, DOOLITTLE LM, JOSEPH LM, EL-MUSA H, NOVOTNY MV, HICKMAN-DAVIS JM, HITE RD, DAVIS IC. Post-exposure liponucleotide prophylaxis and treatment attenuates ARDS in influenza-infected mice. Am J Respir Cell Mol Biol. 2021;64:677–686. doi: 10.1165/rcmb.2020-0465OC. PubMed DOI PMC
RUARO B, SALTON F, BRAGA L, WADE B, CONFALONIERI P, VOLPE MC, BARATELLA E, MAIOCCHI S, CONFALONIERI M. The history and mystery of alveolar epithelial type II cells: Focus on their physiologic and pathologic role in lung. Int J Mol Sci. 2021;22:2566. doi: 10.3390/ijms22052566. PubMed DOI PMC
SANTANA MF, PINTO RAA, MARCON BH, MEDEIROS LCAS, MORAIS TBDN, DIAS LC, SOUZA LP, MELO GC, MONTEIRO WM, LACERDA MVG, VAL FA, LALWANI PJ, FERREIRA LCL. Pathological findings and morphologic correlation of the lungs of autopsied patients with SARS-CoV-2 infection in the Brazilian Amazon using transmission electron microscopy. Rev Soc Bras Med Trop. 2021;54:e0850. doi: 10.1590/0037-8682-0850-2020. PubMed DOI PMC
SCHOUSBOE P, WIESE L, HEIRING C, VERDER H, POORISRISAK P, VERDER P, NIELSEN HB. Assessment of pulmonary surfactant in COVID-19 patients. Crit Care. 2020;24:552. doi: 10.1186/s13054-020-03268-9. PubMed DOI PMC
SZNAJDER JI, FACTOR P, INGBAR DH. Invited review: lung edema clearance: role of Na(+)-K(+)-ATPase. J Appl Physiol (1985) 2002;93:1860–1866. doi: 10.1152/japplphysiol.00022.2002. PubMed DOI
TAKANO H. Pulmonary surfactant itself must be a strong defender against SARS-CoV-2. Med Hypotheses. 2020;144:110020. doi: 10.1016/j.mehy.2020.110020. PubMed DOI PMC
TEKOS F, SKAPERDA Z, GOUTZOURELAS N, PHELPS DS, FLOROS J, KOURETAS D. The importance of redox status in the frame of lifestyle approaches and the genetics of the lung innate immune molecules, SP-A1 and SP-A2, on differential outcomes of COVID-19 infection. Antioxidants (Basel) 2020;9:784. doi: 10.3390/antiox9090784. PubMed DOI PMC
TREVISAN M, RICCETTI S, SINIGAGLIA A, BARZON L. SARS-CoV-2 infection and disease modelling using stem cell technology and organoids. Int J Mol Sci. 2021;22:2356. doi: 10.3390/ijms22052356. PubMed DOI PMC
VAŠKŮ A. Covid-19 infection and the host genetic predisposition: does it exist? Physiol Res. 2020;69:511–514. doi: 10.33549/physiolres.934504. PubMed DOI PMC
VELDHUIZEN RAW, ZUO YY, PETERSEN NO, LEWIS JF, POSSMAYER F. The COVID-19 pandemic: a target for surfactant therapy? Expert Rev Respir Med. 2021;15:597–608. doi: 10.1080/17476348.2021.1865809. PubMed DOI
VOELKER DR, NUMATA M. Phospholipid regulation of innate immunity and respiratory viral infection. J Biol Chem. 2019;294:4282–4289. doi: 10.1074/jbc.AW118.003229. PubMed DOI PMC
WATSON A, MADSEN J, CLARK HW. SP-A and SP-D: Dual functioning immune molecules with antiviral and immunomodulatory properties. Front Immunol. 2021;11:622598. doi: 10.3389/fimmu.2020.622598. PubMed DOI PMC
WRIGHT JR. Immunoregulatory functions of surfactant proteins. Nat Rev Immunol. 2005;5:58–68. doi: 10.1038/nri1528. PubMed DOI
YAMAGATA T, YAMAGATA Y, NISHIMOTO T, HIRANO T, NAKANISHI M, MINAKATA Y, ICHINOSE M, DAGENAIS A, BERTHIAUME Y. The regulation of amiloride-sensitive epithelial sodium channels by tumor necrosis factor-alpha in injured lungs and alveolar type II cells. Respir Physiol Neurobiol. 2009;166:16–23. doi: 10.1016/j.resp.2008.12.008. PubMed DOI
YAO Y, WANG H, LIU Z. Expression of ACE2 in airways: Implication for COVID-19 risk and disease management in patients with chronic inflammatory respiratory diseases. Clin Exp Allergy. 2020;50:1313–1324. doi: 10.1111/cea.13746. PubMed DOI PMC
ZIEGLER CGK, ALLON SJ, NYQUIST SK, MBANO IM, MIAO VN, TZOUANAS CN, CAO Y, YOUSIF AS, BALS J, HAUSER BM, FELDMAN J, MUUS C, WADSWORTH MH, 2ND, KAZER SW, HUGHES TK, DORAN B, GATTER GJ, VUKOVIC M, TALIAFERRO F, MEAD BE, GUO Z, ET AL. SARS-CoV-2 Receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell. 2020;181 doi: 10.1016/j.cell.2020.04.035. PubMed DOI PMC
ZISSEL G, ERNST M, RABE K, PAPADOPOULOS T, MAGNUSSEN H, SCHLAAK M, MULLER-QUERNHEIM J. Human alveolar epithelial cells type II are capable of regulating T-cell activity. J Investig Med. 2000;48:66–75. PubMed
ZOU X, CHEN K, ZOU J, HAN P, HAO J, HAN Z. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 2020;14:185–192. doi: 10.1007/s11684-020-0754-0. PubMed DOI PMC