Non-Reflex Defense Mechanisms of Upper Airway Mucosa: Possible Clinical Application
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články, přehledy
PubMed
32228012
PubMed Central
PMC8604065
DOI
10.33549/physiolres.934404
PII: 934404
Knihovny.cz E-zdroje
- MeSH
- aplikace intranazální MeSH
- lidé MeSH
- nosní sliznice účinky léků fyziologie MeSH
- respirační sliznice účinky léků fyziologie MeSH
- sliznice hrtanu účinky léků fyziologie MeSH
- slizniční imunita účinky léků fyziologie MeSH
- trachea účinky léků fyziologie MeSH
- vakcíny aplikace a dávkování MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- vakcíny MeSH
The sinonasal mucosa has an essential role in defense mechanisms of the upper respiratory tract. The innate immune system presents the primary defense against noxious microorganisms followed by induction of the adaptive immune mechanisms as a consequence of the presence of pathogens. This well-known activation of adaptive immune system in response to presence of the antigen on mucosal surfaces is now broadly applicated in vaccinology research. Prevention of infectious diseases belongs to substantial challenges in maintaining the population health. Non-invasive, easily applicable mucosal vaccination purposes various research opportunities that could be usable in daily practice. However, the existence of multiple limitations such as rapid clearance of vaccine from nasal mucosa by means of mucociliary transport represents a great challenge in development of safe and efficient vaccines. Here we give an updated view on nasal functions with focus on nasal mucosal immunity and its potential application in vaccination in nearly future.
Zobrazit více v PubMed
ADAPPA ND, WEI CC, PALMER JN. Nasal irrigation with or without drugs: the evidence. Curr Opin Otolaryngol Head Neck Surg. 2012;20:53–57. doi: 10.1097/MOO.0b013e32834dfa80. PubMed DOI
ANTOSOVA M, MOKRA D, PEPUCHA L, PLEVKOVA J, BUDAY T, STERUSKY M, BENCOVA A. Physiology of nitric oxide in the respiratory system. Physiol Res. 2017a;66(Suppl 2):S159–S172. doi: 10.33549/physiolres.933673. PubMed DOI
ANTOSOVA M, MOKRA D, TONHAJZEROVA I, MIKOLKA P, KOSUTOVA P, MESTANIK M, PEPUCHA L, PLEVKOVA J, BUDAY T, CALKOVSKY V, BENCOVA A. Nasal nitric oxide in healthy adults - reference values and affecting factors. Physiol Res. 2017b;66(Suppl 2):S247–S255. doi: 10.33549/physiolres.933680. PubMed DOI
ANTUNES MB, GUDIS DA, COHEN NA. Epithelium, cilia, and mucus: their importance in chronic rhinosinusitis. Immunol Allergy Clin North Am. 2009;29:631–643. doi: 10.1016/j.iac.2009.07.004. PubMed DOI
BALS R. Epithelial antimicrobial peptides in host defense against infection. Respir Res. 2000;1:141–150. doi: 10.1186/rr25. PubMed DOI PMC
BARANIUK JN, KIM D. Nasonasal reflexes, the nasal cycle, and sneeze. Curr Allergy Asthma Rep. 2007;7:105–111. doi: 10.1007/s11882-007-0007-1. PubMed DOI
BASU S, FENTON MJ. Toll-like receptors: function and roles in lung disease. Am J Physiol Lung Cell Mol Physiol. 2004;286:L887–L892. doi: 10.1152/ajplung.00323.2003. PubMed DOI
BENNETT WD, ZEMAN KL, JARABEK AM. Nasal contribution to breathing and fine particle deposition in children versus adults. J Toxicol Environ Health A. 2007;71:227–237. doi: 10.1080/15287390701598200. PubMed DOI
BRAIMAN A, PRIEL Z. Efficient mucociliary transport relies on efficient regulation of ciliary beating. Respir Physiol Neurobiol. 2008;163:202–207. doi: 10.1016/j.resp.2008.05.010. PubMed DOI
BRANDTZAEG P. Potential of nasopharynx-associated lymphoid tissue for vaccine responses in the airways. Am J Respir Crit Care Med. 2011;183:1595–1604. doi: 10.1164/rccm.201011-1783OC. PubMed DOI
CALKOVSKA A, SOME M, LINDERHOLM B, JOHANSSON J, CURSTEDT T, ROBERTSON B. Biophysical and physiological properties of porcine surfactant enriched with polymyxin B. Biol Neonate. 2005;88:101–108. doi: 10.1159/000085524. PubMed DOI
CALKOVSKA A, MOKRA D, DRGOVA A, ZILA I, JAVORKA K. Bronchoalveolar lavage with pulmonary surfactant/dextran mixture improves clearanceand lung functions in experimental meconium aspiration syndrome. Eur J Pediatr. 2008;167:851–857. doi: 10.1007/s00431-007-0596-7. PubMed DOI
CERUTTI A, CHEN K, CHORNY A. Immunoglobulin responses at the mucosal interface. Ann Rev Immunol. 2011;29:273–293. doi: 10.1146/annurev-immunol-031210-101317. PubMed DOI PMC
CHEN Z, CHEN H, CHEN F, GU D, SUN L, ZHANG W, FAN L, LIN Y, DONG R, LAI K. Vagotomy decreases the neuronal activities of medulla oblongata and alleviates neurogenic inflammation of airways induced by repeated intra-esophageal instillation of HCl in guinea pigs. Physiol Res. 2017;66:1021–1028. doi: 10.33549/physiolres.933574. PubMed DOI
COLE AM, LIAO HI, STUCHLIK O, TILAN J, POHL J, GANZ T. Cationic polypeptides are required for antibacterial activity of human airway fluid. J Immunol. 2002;169:6985–6991. doi: 10.4049/jimmunol.169.12.698. PubMed DOI
CROUCH E, HARTSHORN K, OFEK I. Collectins and pulmonary innate immunity. Immunol Rev. 2000;173:52–65. doi: 10.1034/j.1600-065X.2000.917311.x. PubMed DOI
CUNLIFFE RN, MAHIDA YR. Expression and regulation of antimicrobial peptides in the gastrointestinal tract. J Leukoc Biol. 2004;75:49–58. doi: 10.1189/jlb.0503249. PubMed DOI
CURSTEDT T, CALKOVSKA A, JOHANSSON New generation synthetic surfactants. Neonatology. 2013;103:327–330. doi: 10.1159/000349942. PubMed DOI
de SMET K, CONTRERAS R. Human antimicrobial peptides: defensins, cathelicidins and histatins. Biotechnol Lett. 2005;27:1337–1347. doi: 10.1007/s10529-005-0936-5. PubMed DOI
DEBERTIN AS, TSCHERNIG T, TÖNJES H, KLEEMAN WJ, TRÖGER HD, PABST R. Nasal-associated lymphoid tissue (NALT): frequency and localization in young children. Clin Exp Immunol. 2003;134:503–507. doi: 10.1111/j.1365-2249.2003.02311.x. PubMed DOI PMC
DEBORAH S, PRATHIBHA KM. Measurement of nasal mucociliary clearance. Clin Res Pulmonol. 2014;2:1019.
DELVES PJ, ROITT IM. The immune system. N Engl J Med. 2000;343:37–49. doi: 10.1056/NEJM200007063430107. PubMed DOI
DIAMOND G, LEGARDA D, RYAN LK. The innate immune response of the respiratory epithelium. Immunological Reviews. 2000;173:27–38. doi: 10.1034/j.1600-065X.2000.917304.x. PubMed DOI
DOSS M, WHITE MR, TECLE T, HARTSHORN KL. Human defensins and LL-37 in mucosal immunity. J Leukoc Biol. 2010;87:79–92. doi: 10.1189/jlb.0609382. PubMed DOI PMC
ELAD D, WOLF M, KECK T. Air-conditioning in the human nasal cavity. Respir Physiol Neurobiol. 2008;163:121–127. doi: 10.1016/j.resp.2008.05.002. PubMed DOI
ELWANY S, SALAM SA, SOLIMAN A, MEDANNI A, TALAAT E. The septal body revisited. J Laryngol Otol. 2009;123:303–308. doi: 10.1017/S0022215108003526. PubMed DOI
FERKOL TW, LEIGH MW. Ciliopathies: the central role of cilia in a spectrum of pediatric disorders. J Pediatr. 2012;160:366–371. doi: 10.1016/j.jpeds.2011.11.024. PubMed DOI PMC
FOKKENS WJ, VROOM T, RIJNTJES E, MULDER PGH. CD-1 (T6), HLA-DR-expressing cells, presumably Langerhans cells, in nasal mucosa. Allergy. 1989;44:167–172. doi: 10.1111/j.1398-9995.1989.tb02257.x. PubMed DOI
FOREMAN A, HOLTAPPELS G, PSALTIS AJ, JERVIS-BARDY J, FIELD J, WORMALD PJ, BACHERT C. Adaptive immune responses in Staphylococcus aureus biofilm-associated chronic rhinosinusitis. Allergy. 2011;66:1449–1456. doi: 10.1111/j.1398-9995.2011.02678.x. PubMed DOI
FRYE M, BARGON J, DAULETBAEV N, WEBER A, WAGNER TOF, GROPP R. Expression of human α-defensin 5 (HD5) mRNA in nasal and bronchial epithelial cells. J Clin Pathol. 2000;53:770–773. doi: 10.1136/jcp.53.10.770. PubMed DOI PMC
FUKUYAMA Y, TOKUHARA D, KATAOKA K, GILBERT RS, MCGHEE JR, YUKI Y, KIYONO H, FUJIHASHI K. Novel vaccine development strategies for inducing mucosal immunity. Exp Rev Vaccines. 2012;11:367–379. doi: 10.1586/erv.11.196. PubMed DOI PMC
GANZ T. Antimicrobial polypeptides. J Leukoc Biol. 2004;75:34–38. doi: 10.1189/jlb.0403150. PubMed DOI
GANZ T. Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol. 2003;3:710–720. doi: 10.1038/nri1180. PubMed DOI
GARCIA GJ, TEWKSBURRY EW, WONG BA, KIMBELL JS. Interindividual variability in nasal filtration as a function of nasal cavity geometry. J Aerosol Med Pulm Drug Deliv. 2009;22:139–156. doi: 10.1089/jamp.2008.0713. PubMed DOI
GAZI U, MARTINEZ-POMARES L. Influence of the mannose receptor in host immune responses. Immunobiology. 2009;214:554–561. doi: 10.1016/j.imbio.2008.11.004. PubMed DOI
GUDMUNDSSON GH, AGERBERTH B. Neutrophil antibacterial peptides, multifunctional effector molecules in the mammalian immune system. J Immunol Methods. 1999;232:45–54. doi: 10.1016/S0022-1759(99)00152-0. PubMed DOI
HAMMAD H, LAMBRECHT BN. Dendritic cells and airway epithelial cells at the interface between innate and adaptive immune responses. Allergy. 2011;66:579–587. doi: 10.1111/j.1398-9995.2010.02528.x. PubMed DOI
HARKEMA JR, CAREY SA, WAGNER JG, DINTZIS SM, LIGGITT D. Comparative Anatomy and Histology. Academic Press; 2012. Nose, sinus, pharynx, and larynx; pp. 71–94. DOI
HÄGER M, COWLAND JB, BORREGAARD N. Neutrophil granules in health and disease. J Intern Med. 2010;268:25–34. doi: 10.1111/j.1365-2796.2010.02237.x. PubMed DOI
HERBERT RA, JANARDHAN KS, PANDIRI AR, CESTA MF, MILLER RA. Boorman’s Pathology of the Rat. Academic Press; 2018. Nose, larynx, and trachea; pp. 391–435. DOI
HIMI T, TAKANOA K, OSAGAWARA N, GO M, KUROSE M, KOIZUMI J, KAMEKURA R, KONDO A, OHKUNI T, MASAKI T, KOJIMA T, SAWADA N, TSUTSUMI H. Recent Advances in Tonsils and Mucosal Barriers of the Upper Airways. Karger; 2011. Mucosal immune barrier and antigen-presenting system in human nasal epithelial cells; pp. 28–30. PubMed DOI
HOLMGREN J, CZERKINSKY C. Mucosal immunity and vaccines. Nat Med. 2005;11:S45–S53. doi: 10.1038/nm1213. PubMed DOI
IWASAKI A, MEDZHITOV R. Toll-like receptor control of the adaptive immune responses. Nat Immunol. 2004;5:987–995. doi: 10.1038/ni1112. PubMed DOI
JANEWAY CA, Jr, MEDZHITOV R. Innate immune recognition. Annu Rev Immunol. 2002;20:197–216. doi: 10.1146/annurev.immunol.20.083001.084359. PubMed DOI
JAVORKA K, KULISEK V, CALKOVSKA A. Defensive reflexes of the respiratory system in anaesthetized rabbits during high frequency jet ventilation. Exp Physiol. 1994;79:967–973. doi: 10.1113/expphysiol.1994.sp003821. PubMed DOI
JENEY EVM, RAPHAEL GD, MEREDITH SD, KALINER MA. Abnormal nasal glandular secretion in recurrent sinusitis. J Allergy Clin Immunol. 1990;86:10–18. doi: 10.1016/S0091-6749(05)80117-4. PubMed DOI
JI Z, WANG Z, CHEN Z, JIN H, CHEN C, CHAI S, LV H, YANG L, HU Y, DONG R, LAI K. Melatonin attenuates chronic cough mediated by oxidative stress via transient receptor potential melastatin-2 in guinea pigs exposed to particulate matter 2.5. Physiol Res. 2018;67:293–305. doi: 10.33549/physiolres.933654. PubMed DOI
JOHANSSON EL, BERGQUIST C, EDEBO A, JOHANSSON C, SVENNERHOLM AM. Comparison of different routes of vaccination for eliciting antibody responses in the human stomach. Vaccine. 2004;22:984–990. doi: 10.1016/j.vaccine.2003.09.002. PubMed DOI
KAETZEL CS. The polymeric immunoglobulin receptor: bridging innate and adaptive immune responses at mucosal surfaces. Immunol Rev. 2005;206:83–99. doi: 10.1111/j.0105-2896.2005.00278.x. PubMed DOI
KALINER MA, STORMS W, TILLES S, SPECTOR S, TAN R, LAFORCE C, LANIER BQ, CHIPPS B. Comparison of olopatadine 0.6 % nasal spray versus fluticasone propionate 50 μg in the treatment of seasonal allergic rhinitis. Allergy Asthma Proc. 2009;1:255. doi: 10.2500/aap.2009.30.3232. PubMed DOI
KANG ML, CHO CS, YOO HS. Application of chitosan microspheres for nasal delivery of vaccines. Biotechnol Adv. 2009;27:857–865. doi: 10.1016/j.biotechadv.2009.06.007. PubMed DOI
KEIR J. Why do we have paranasal sinuses? J Laryngol Otol. 2009;123:4–8. doi: 10.1017/S0022215108003976. PubMed DOI
KIM JK, YOON JH, KIM HC, NAM WT, SHIM BD, SHIN AH. Particle image velocimetry measurements for the study of nasal airflow. Acta Otolaryngol. 2006;126:282–287. doi: 10.1080/00016480500361320. PubMed DOI
KIM HC, KIM K, KIM JH, KIM JK, LEE JG, YOON JH. Expression and regulation of PLUNC in human nasal epithelium. Acta Otolaryngol. 2006;126:1073–1078. doi: 10.1080/00016480600606749. PubMed DOI
KINGMA PS, WHITSETT JA. In defense of the lung: surfactant protein A and surfactant protein D. Curr Opin Pharmacol. 2006;6:277–283. doi: 10.1016/j.coph.2006.02.003. PubMed DOI
KOLOMAZNIK M, NOVA Z, CALKOVSKA A. Pulmonary surfactant and bacterial lipopolysaccharide: the interaction and its functional consequences. Physiol Res. 2017;66(Suppl 2):S147–S157. doi: 10.33549/physiolres.933671. PubMed DOI
KOSUTOVA P, MIKOLKA P, BALENTOVA S, ADAMKOV M, MOKRA D. Effects of nitric oxide donor on the lung functions in a saline lavage-induced model of ARDS. Physiol Res. 2019;68(Suppl 3):S265–S273. doi: 10.33549/physiolres.934365. PubMed DOI
KOZLOWSKI PA, CU-UVIN S, NEUTRA MR, FLANIGAN TP. Comparison of the oral, rectal, and vaginal immunization routes for induction of antibodies in rectal and genital tract secretions of women. Infect Immun. 1997;65:1387–1394. doi: 10.1128/IAI.65.4.1387-1394.1997. PubMed DOI PMC
KUPER CF, HAMELEERS DMH, BRUIJNTJES JP, van der VEN I, BIEWENGA J, SMINIA T. Lymphoid and non-lymphoid cells in nasal-associated lymphoid tissue (NALT) in the rat. Cell Tiss Res. 1990;259:371–377. doi: 10.1007/BF00318460. PubMed DOI
KUPER CF, KOORNSTRA PJ, HAMELEERS DMH, BIEWENGA J, SPIT BJ, DUIJVESTIJN AM, van BREDA VRIESMAN PJC, SMINIA T. The role of nasopharyngeal lymphoid tissue. Immunol Today. 1992;13:219–224. doi: 10.1016/0167-5699(92)90158-4. PubMed DOI
KURONO Y, YAMAMOTO M, FUJIHASHI K, KODAMA S, SUZUKI M, MOGI G, McGHEE JR, KIYONO H. Nasal immunization induces Haemophilus influenzae-specific Th1 and Th2 responses with mucosal IgA and systemic IgG antibodies for protective immunity. J Infect Dis. 1999;180:122–132. doi: 10.1086/314827. PubMed DOI
LAMICHHANE A, AZEGAMI T, KIYONO H. The mucosal immune system for vaccine development. Vaccine. 2014;32:6711–6723. doi: 10.1016/j.vaccine.2014.08.089. PubMed DOI
LANE AP. The role of innate immunity in the pathogenesis of chronic rhinosinusitis. Curr Allergy Asthma Rep. 2009;9:205–212. doi: 10.1007/s11882-009-0030-5. PubMed DOI PMC
LANE AP, SAATIAN B, YU XY, SPANNHAKE EW. mRNA for genes associated with antigen presentation are expressed by human middle meatal epithelial cells in culture. Laryngoscope. 2004;114:1827–1832. doi: 10.1097/00005537-200410000-00028. PubMed DOI
LANE AP, TRUONG-TRAN QA, MYERS A, BICKEL C, SCHLEIMER RP. Serum amyloid A, properdin, complement 3, and toll-like receptors are expressed locally in human sinonasal tissue. Am J Rhinol. 2006;20:117–123. doi: 10.1177/194589240602000122. PubMed DOI PMC
LEE SH, KIM JE, LEE HM, LIM HH, CHOI JO. Antimicrobial defensin peptides of the human nasal mucosa. Ann Otol Rhinol Laryngol. 2002;111:135–141. doi: 10.1177/000348940211100205. PubMed DOI
LU X, ZHANG XH, WANG H, LONG XB, YOU XJ, GAO QX, CUI YH, LIU Z. Expression of osteopontin in chronic rhinosinusitis with and without nasal polyps. Allergy. 2009;64:104–111. doi: 10.1111/j.1398-9995.2008.01829.x. PubMed DOI
MEYLAN E, TSCHOPP J, KARIN M. Intracellular pattern recognition receptors in the host response. Nature. 2006;442:39–44. doi: 10.1038/nature04946. PubMed DOI
MOWAT AM. Anatomical basis of tolerance and immunity to intestinal antigens. Nat Rev Immunol. 2003;3:331–341. doi: 10.1038/nri1057. PubMed DOI
MUZIKOVA G, LAGA R. Macromolecular systems for vaccine delivery. Physiol Res. 2016;65(Suppl 2):S203–S216. PubMed
NEYT K, PERROS F, GEURTSVANKESSEL CH, HAMMAD H, LAMBRECHT BN. Tertiary lymphoid organs in infection and autoimmunity. Trends Immunol. 2012;33:297–305. doi: 10.1016/j.it.2012.04.006. PubMed DOI PMC
NISHI Y, TAKENO S, ISHINO T, HIRAKAWA K. Glucocorticoids suppress NF-κB activation induced by LPS and PGN in paranasal sinus epithelial cells. Rhinology. 2009;47:413–418. doi: 10.4193/Rhin08.074. PubMed DOI
ÖNERCI TM. Nasal physiology and pathophysiology of nasal disorders. Springer Science & Business Media; 2013. pp. 15–25. DOI
OOI EH, PSALTIS AJ, WITTERICK IJ, WORMALD PJ. Innate immunity. Otolaryngol Clin North Am. 2010;43:473–487. doi: 10.1016/j.otc.2010.02.020. PubMed DOI
OOI EH, WORMALD PJ, CARNEY AS, JAMES CL, TAN LW. Surfactant protein d expression in chronic rhinosinusitis patients and immune responses in vitro to Aspergillus and alternaria in a nasal explant model. Laryngoscope. 2007;117:51–57. doi: 10.1097/01.mlg.0000243196.75418.6f. PubMed DOI
OOI EH, WORMALD PJ, TAN LW. Innate immunity in the paranasal sinuses: a review of nasal host defenses. Am J Rhinol. 2008;22:13–19. doi: 10.2500/ajr.2008.22.3127. PubMed DOI
PABST R. Mucosal vaccination by the intranasal route. Nose-associated lymphoid tissue (NALT)-structure, function and species differences. Vaccine. 2015;33:4406–4413. doi: 10.1016/j.vaccine.2015.07.022. PubMed DOI
PLOTKIN S. History of vaccination. Proc Nat Acad Sci USA. 2014;111:12283–12287. doi: 10.1073/pnas.1400472111. PubMed DOI PMC
RAPHAEL GD, BARANIUK JN, KALINER MA. How and why the nose runs. J Allergy Clin Immunol. 1991;87:457–467. doi: 10.1016/0091-6749(91)90001-5. PubMed DOI
SAHIN-YILMAZ A, NACLERIO RM. Anatomy and physiology of the upper airway. Proc Am Thorac Soc. 2011;8:31–39. doi: 10.1513/pats.201007-050RN. PubMed DOI
SARIN S, UNDEM BSA, TOGIAS A. The role of the nervous system in rhinitis. J Allergy Clin Immunol. 2006;118:999–1014. doi: 10.1016/j.jaci.2006.09.013. PubMed DOI
SATO S, KIYONO H. The mucosal immune system of the respiratory tract. Curr Opin Virol. 2012;2:225–232. doi: 10.1016/j.coviro.2012.03.009. PubMed DOI
SCOTT A, WELDON S, BUCHANAN PJ, SCHOCK B, ERNST RK, MCAULEY DF, TUNNEY MM, IRWIN CR, ELBORN JS, TAGGART CC. Evaluation of the ability of LL-37 to neutralise LPS in vitro and ex vivo. PloS One. 2011;6:e26525. doi: 10.1371/journal.pone.0026525. PubMed DOI PMC
SHIMODA M, NAKAMURA T, TAKAHASHI Y, ASANUMA H, TAMURA S, KURATA T, MIZUOCHI T, AZUMA N, KANNO C, TAKEMORI T. Isotype-specific selection of high affinity memory B cells in nasal-associated lymphoid tissue. J Exp Med. 2001;194:1597–1608. doi: 10.1084/jem.194.11.1597. PubMed DOI PMC
SCHNEIDER JJ, UNHOLZER A, SCHALLER M, SCHÄFER-KORTING M, KORTING HC. Human defensins. J Mol Med. 2005;83:587–595. doi: 10.1007/s00109-005-0657-1. PubMed DOI
TARRAN R, BUTTON B, BOUCHER RC. Regulation of normal and cystic fibrosis airway surface liquid volume by phasic shear stress. Annu Rev Physiol. 2006;68:543–561. doi: 10.1146/annurev.physiol.68.072304.112754. PubMed DOI
THORNTON DJ, ROUSSEAU K, McGUCKIN MA. Structure and function of the polymeric mucins in airways mucus. Annu Rev Physiol. 2008;70:459–486. doi: 10.1146/annurev.physiol.70.113006.100702. PubMed DOI
TOMEE JF, KOETER GH, HIEMSTRA PS, KAUFFMAN HF. Secretory leukoprotease inhibitor: a native antimicrobial protein presenting a new therapeutic option? Thorax. 1998;53:114–116. doi: 10.1136/thx.53.2.114. PubMed DOI PMC
TOPERCEROVA J, KOLOMAZNIK M, KOPINCOVA J, NOVA Z, URBANOVA A, MOKRA D, MOKRY J, CALKOVSKA A. The effect of pulmonary surfactant on the airway smooth muscle after lipopolysaccharide exposure and its mechanisms. Physiol Res. 2019;68(Suppl 3):S275–S285. doi: 10.33549/physiolres.934410. PubMed DOI
UHLIAROVA B, ADAMKOV M, SVEC M, CALKOVSKA A. The effect of smoking on CT score, bacterial colonization and distribution of inflammatory cells in the upper airways of patients with chronic rhinosinusitis. Inhal Toxicol. 2014;26:419–425. doi: 10.3109/08958378.2014.910284. PubMed DOI
UHLIAROVA B, KOPINCOVA J, KOLOMAZNÍK M, ADAMKOV M, SVEC M, CALKOVSKA A. Comorbidity has no impact on eosinophil inflammation in the upper airways or on severity of the sinonasal disease in patients with nasal polyps. Clin Otolaryngol. 2015;40:429–436. doi: 10.1111/coa.12392. PubMed DOI
UHLIAROVA B, KOPINCOVA J, ADAMKOV M, SVEC M, CALKOVSKA A. Surfactant proteins A and D are related to severity of the disease, pathogenic bacteria and comorbidity in patients with chronic rhinosinusitis with and without nasal polyps. Clin Otolaryngol. 2016;41:249–258. doi: 10.1111/coa.12508. PubMed DOI
van WETERING S, TJABRINGA GS, HIEMSTRA PS. Interactions between neutrophil-derived antimicrobial peptides and airway epithelial cells. J Leukoc Biol. 2005;77:444–450. doi: 10.1189/jlb.0604367. PubMed DOI
von BUBNOFF D, GEIGER E, BIEBER T. Antigen-presenting cells in allergy. J Allergy Clin Immunol. 2001;108:329–339. doi: 10.1067/mai.2001.117457. PubMed DOI
WIESMILLER K, KECK T, LEIACKER R, SIKORA T, RETTINGER G, LINDEMANN J. The impact of expiration on particle deposition within the nasal cavity. Clin Otolaryngol Allied Sci. 2003;28:304–307. doi: 10.1046/j.1365-2273.2003.00707. PubMed DOI
WILSON SS, WIENS ME, SMITH JG. Antiviral mechanisms of human defensins. J Mol Biol. 2013;425:4965–4980. doi: 10.1016/j.jmb.2013.09.038. PubMed DOI PMC
WINE JJ. Parasympathetic control of airway submucosal glands: central reflexes and the airway intrinsic nervous system. Autonomic Neurosci. 2007;133:35–54. doi: 10.1016/j.autneu.2007.01.008. PubMed DOI PMC
WINE JJ, JOO NS. Submucosal glands and airway defense. Proc Am Thorac Soc. 2004;1:47–53. doi: 10.1513/pats.2306015. PubMed DOI
WOODWORTH BA, LATHERS D, NEAL JG, SKINNER M, RICHARDSON M, YOUNG MR, SCHLOSSER RJ. Immunolocalization of surfactant protein A and D in sinonasal mucosa. Am J Rhinol. 2006;20:461–465. doi: 10.2500/ajr.2006.20.2892. PubMed DOI
ZAMAN M, SIMERSKA P, TOTH I. Synthetic polyacrylate polymers as particulate intranasal vaccine delivery systems for the induction of mucosal immune response. Curr Drug Delivery. 2010;7:118–124. doi: 10.2174/15672011079101184. PubMed DOI
ZHOU HS, LI M, SUI BD, WEI L, HOU R, CHEN WS, LI Q, BI SH, ZHANG JZ, YI DH. Lipopolysaccharide impairs permeability of pulmonary microvascular endothelial cells via Connexin40. Microvasc Res. 2018;115:58–67. doi: 10.1016/j.mvr.2017.08.008. PubMed DOI
ZUERCHER AW, COFFIN SE, THURNHEER MC, FUNDOVA P, CEBRA JJ. Nasal-associated lymphoid tissue is a mucosal inductive site for virus-specific humoral and cellular immune responses. J Immunol. 2002;168:1796–1803. doi: 10.4049/jimmunol.168.4.1796. PubMed DOI
Alveolar type II cells and pulmonary surfactant in COVID-19 era
Legacy of Prof. Juraj Korpáš: International Impact of Slovak School of Experimental Respirology