Mutations in ANTXR1 cause GAPO syndrome
Language English Country United States Media print-electronic
Document type Case Reports, Journal Article, Research Support, N.I.H., Intramural, Research Support, Non-U.S. Gov't
Grant support
Intramural NIH HHS - United States
PubMed
23602711
PubMed Central
PMC3644626
DOI
10.1016/j.ajhg.2013.03.023
PII: S0002-9297(13)00160-2
Knihovny.cz E-resources
- MeSH
- Alopecia genetics pathology MeSH
- Alternative Splicing genetics MeSH
- Anodontia genetics pathology MeSH
- Optic Atrophies, Hereditary genetics pathology MeSH
- DNA Primers genetics MeSH
- Extracellular Matrix genetics metabolism MeSH
- Fibroblasts MeSH
- Fluorescent Antibody Technique MeSH
- Gene Frequency MeSH
- Genetic Predisposition to Disease genetics MeSH
- Homeostasis genetics MeSH
- Humans MeSH
- Chromosomes, Human, Pair 2 genetics MeSH
- Microfilament Proteins MeSH
- RNA Splice Sites genetics MeSH
- Molecular Sequence Data MeSH
- Neoplasm Proteins genetics MeSH
- Codon, Nonsense genetics MeSH
- Reverse Transcriptase Polymerase Chain Reaction MeSH
- Growth Disorders genetics pathology MeSH
- Receptors, Cell Surface genetics MeSH
- Pedigree MeSH
- Base Sequence MeSH
- Sequence Analysis, DNA MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Publication type
- Journal Article MeSH
- Case Reports MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Intramural MeSH
- Names of Substances
- ANTXR1 protein, human MeSH Browser
- DNA Primers MeSH
- Microfilament Proteins MeSH
- RNA Splice Sites MeSH
- Neoplasm Proteins MeSH
- Codon, Nonsense MeSH
- Receptors, Cell Surface MeSH
The genetic cause of GAPO syndrome, a condition characterized by growth retardation, alopecia, pseudoanodontia, and progressive visual impairment, has not previously been identified. We studied four ethnically unrelated affected individuals and identified homozygous nonsense mutations (c.262C>T [p.Arg88*] and c.505C>T [p.Arg169*]) or splicing mutations (c.1435-12A>G [p.Gly479Phefs*119]) in ANTXR1, which encodes anthrax toxin receptor 1. The nonsense mutations predictably trigger nonsense-mediated mRNA decay, resulting in the loss of ANTXR1. The transcript with the splicing mutation theoretically encodes a truncated ANTXR1 containing a neopeptide composed of 118 unique amino acids in its C terminus. GAPO syndrome's major phenotypic features, which include dental abnormalities and the accumulation of extracellular matrix, recapitulate those found in Antxr1-mutant mice and point toward an underlying defect in extracellular-matrix regulation. Thus, we propose that mutations affecting ANTXR1 function are responsible for this disease's characteristic generalized defect in extracellular-matrix homeostasis.
See more in PubMed
Tipton R.E., Gorlin R.J. Growth retardation, alopecia, pseudo-anodontia, and optic atrophy—the GAPO syndrome: report of a patient and review of the literature. Am. J. Med. Genet. 1984;19:209–216. PubMed
Goloni-Bertollo E.M., Ruiz M.T., Goloni C.B., Muniz M.P., Valério N.I., Pavarino-Bertelli E.C. GAPO syndrome: three new Brazilian cases, additional osseous manifestations, and review of the literature. Am. J. Med. Genet. A. 2008;146A:1523–1529. PubMed
Sinha R., Trikha A., Laha A., Raviraj R., Kumar R. Anesthetic management of a patient with GAPO syndrome for glaucoma surgery. Paediatr. Anaesth. 2011;21:910–912. PubMed
Nanda A., Al-Ateeqi W.A., Al-Khawari M.A., Alsaleh Q.A., Anim J.T. GAPO syndrome: a report of two siblings and a review of literature. Pediatr. Dermatol. 2010;27:156–161. PubMed
Lei S., Iyengar S., Shan L., Cherwek D.H., Murthy S., Wong A.M. GAPO syndrome: a case associated with bilateral interstitial keratitis and hypothyroidism. Clin. Dysmorphol. 2010;19:79–81. PubMed
Castrillon-Oberndorfer G., Seeberger R., Bacon C., Engel M., Ebinger F., Thiele O.C. GAPO syndrome associated with craniofacial vascular malformation. Am. J. Med. Genet. A. 2010;152A:225–227. PubMed
Kocabay G., Mert M. GAPO syndrome associated with dilated cardiomyopathy: an unreported association. Am. J. Med. Genet. A. 2009;149A:415–416. PubMed
Demirgüneş E.F., Ersoy-Evans S., Karaduman A. GAPO syndrome with the novel features of pulmonary hypertension, ankyloglossia, and prognathism. Am. J. Med. Genet. A. 2009;149A:802–805. PubMed
Wajntal A., Koiffmann C.P., Mendonça B.B., Epps-Quaglia D., Sotto M.N., Rati P.B., Opitz J.M. GAPO syndrome (McKusick 23074)—a connective tissue disorder: report on two affected sibs and on the pathologic findings in the older. Am. J. Med. Genet. 1990;37:213–223. PubMed
Meguid N.A., Afifi H.H., Ramzy M.I., Hindawy A., Temtamy S.A. GAPO syndrome: first Egyptian case with ultrastructural changes in the gingiva. Clin. Genet. 1997;52:110–115. PubMed
Baxova A., Kozlowski K., Obersztyn E., Zeman J. GAPO syndrome (Radiographic clues to early diagnosis) Radiol. Med. (Torino) 1997;93:289–291. PubMed
van de Steeg E., Stránecký V., Hartmannová H., Nosková L., Hřebíček M., Wagenaar E., van Esch A., de Waart D.R., Oude Elferink R.P., Kenworthy K.E. Complete OATP1B1 and OATP1B3 deficiency causes human Rotor syndrome by interrupting conjugated bilirubin reuptake into the liver. J. Clin. Invest. 2012;122:519–528. PubMed PMC
Nosková L., Stránecký V., Hartmannová H., Přistoupilová A., Barešová V., Ivánek R., Hůlková H., Jahnová H., van der Zee J., Staropoli J.F. Mutations in DNAJC5, encoding cysteine-string protein alpha, cause autosomal-dominant adult-onset neuronal ceroid lipofuscinosis. Am. J. Hum. Genet. 2011;89:241–252. PubMed PMC
Becker J., Semler O., Gilissen C., Li Y., Bolz H.J., Giunta C., Bergmann C., Rohrbach M., Koerber F., Zimmermann K. Exome sequencing identifies truncating mutations in human SERPINF1 in autosomal-recessive osteogenesis imperfecta. Am. J. Hum. Genet. 2011;88:362–371. PubMed PMC
Gilissen C., Arts H.H., Hoischen A., Spruijt L., Mans D.A., Arts P., van Lier B., Steehouwer M., van Reeuwijk J., Kant S.G. Exome sequencing identifies WDR35 variants involved in Sensenbrenner syndrome. Am. J. Hum. Genet. 2010;87:418–423. PubMed PMC
Hoischen A., van Bon B.W., Gilissen C., Arts P., van Lier B., Steehouwer M., de Vries P., de Reuver R., Wieskamp N., Mortier G. De novo mutations of SETBP1 cause Schinzel-Giedion syndrome. Nat. Genet. 2010;42:483–485. PubMed
Hoischen A., van Bon B.W., Rodríguez-Santiago B., Gilissen C., Vissers L.E., de Vries P., Janssen I., van Lier B., Hastings R., Smithson S.F. De novo nonsense mutations in ASXL1 cause Bohring-Opitz syndrome. Nat. Genet. 2011;43:729–731. PubMed
Cartegni L., Wang J., Zhu Z., Zhang M.Q., Krainer A.R. ESEfinder: A web resource to identify exonic splicing enhancers. Nucleic Acids Res. 2003;31:3568–3571. PubMed PMC
Smith P.J., Zhang C., Wang J., Chew S.L., Zhang M.Q., Krainer A.R. An increased specificity score matrix for the prediction of SF2/ASF-specific exonic splicing enhancers. Hum. Mol. Genet. 2006;15:2490–2508. PubMed
St Croix B., Rago C., Velculescu V., Traverso G., Romans K.E., Montgomery E., Lal A., Riggins G.J., Lengauer C., Vogelstein B., Kinzler K.W. Genes expressed in human tumor endothelium. Science. 2000;289:1197–1202. PubMed
Carson-Walter E.B., Watkins D.N., Nanda A., Vogelstein B., Kinzler K.W., St Croix B. Cell surface tumor endothelial markers are conserved in mice and humans. Cancer Res. 2001;61:6649–6655. PubMed
Bradley K.A., Mogridge J., Mourez M., Collier R.J., Young J.A. Identification of the cellular receptor for anthrax toxin. Nature. 2001;414:225–229. PubMed
Liu S., Leppla S.H. Cell surface tumor endothelium marker 8 cytoplasmic tail-independent anthrax toxin binding, proteolytic processing, oligomer formation, and internalization. J. Biol. Chem. 2003;278:5227–5234. PubMed
Vargas M., Karamsetty R., Leppla S.H., Chaudry G.J. Broad expression analysis of human ANTXR1/TEM8 transcripts reveals differential expression and novel splice variants. PLoS ONE. 2012;7:e43174. PubMed PMC
Nanda A., Carson-Walter E.B., Seaman S., Barber T.D., Stampfl J., Singh S., Vogelstein B., Kinzler K.W., St Croix B. TEM8 interacts with the cleaved C5 domain of collagen alpha 3(VI) Cancer Res. 2004;64:817–820. PubMed
Hotchkiss K.A., Basile C.M., Spring S.C., Bonuccelli G., Lisanti M.P., Terman B.I. TEM8 expression stimulates endothelial cell adhesion and migration by regulating cell-matrix interactions on collagen. Exp. Cell Res. 2005;305:133–144. PubMed
Yang M.Y., Chaudhary A., Seaman S., Dunty J., Stevens J., Elzarrad M.K., Frankel A.E., St Croix B. The cell surface structure of tumor endothelial marker 8 (TEM8) is regulated by the actin cytoskeleton. Biochim. Biophys. Acta. 2011;1813:39–49. PubMed PMC
Werner E., Kowalczyk A.P., Faundez V. Anthrax toxin receptor 1/tumor endothelium marker 8 mediates cell spreading by coupling extracellular ligands to the actin cytoskeleton. J. Biol. Chem. 2006;281:23227–23236. PubMed
Gu J., Faundez V., Werner E. Endosomal recycling regulates Anthrax Toxin Receptor 1/Tumor Endothelial Marker 8-dependent cell spreading. Exp. Cell Res. 2010;316:1946–1957. PubMed PMC
Verma K., Gu J., Werner E. Tumor endothelial marker 8 amplifies canonical Wnt signaling in blood vessels. PLoS ONE. 2011;6:e22334. PubMed PMC
Cullen M., Seaman S., Chaudhary A., Yang M.Y., Hilton M.B., Logsdon D., Haines D.C., Tessarollo L., St Croix B. Host-derived tumor endothelial marker 8 promotes the growth of melanoma. Cancer Res. 2009;69:6021–6026. PubMed PMC
Davies G., Rmali K.A., Watkins G., Mansel R.E., Mason M.D., Jiang W.G. Elevated levels of tumour endothelial marker-8 in human breast cancer and its clinical significance. Int. J. Oncol. 2006;29:1311–1317. PubMed
Chaudhary A., St Croix B. Selective blockade of tumor angiogenesis. Cell Cycle. 2012;11:2253–2259. PubMed PMC
Liu S., Crown D., Miller-Randolph S., Moayeri M., Wang H., Hu H., Morley T., Leppla S.H. Capillary morphogenesis protein-2 is the major receptor mediating lethality of anthrax toxin in vivo. Proc. Natl. Acad. Sci. USA. 2009;106:12424–12429. PubMed PMC
Goucha S., Fazaa B., Ezzine N., Jaber K., Elandaloussi H., Abid R., Kamoun M.R. [GAPO syndrome] Ann. Dermatol. Venereol. 2000;127:501–504. PubMed
Jinnin M., Medici D., Park L., Limaye N., Liu Y., Boscolo E., Bischoff J., Vikkula M., Boye E., Olsen B.R. Suppressed NFAT-dependent VEGFR1 expression and constitutive VEGFR2 signaling in infantile hemangioma. Nat. Med. 2008;14:1236–1246. PubMed PMC
Nicolae C., Olsen B.R. Unexpected matrix diseases and novel therapeutic strategies. Cell Tissue Res. 2010;339:155–165. PubMed
Hanks S., Adams S., Douglas J., Arbour L., Atherton D.J., Balci S., Bode H., Campbell M.E., Feingold M., Keser G. Mutations in the gene encoding capillary morphogenesis protein 2 cause juvenile hyaline fibromatosis and infantile systemic hyalinosis. Am. J. Hum. Genet. 2003;73:791–800. PubMed PMC