Controlled gentamicin release from multi-layered electrospun nanofibrous structures of various thicknesses
Jazyk angličtina Země Nový Zéland Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23071393
PubMed Central
PMC3469095
DOI
10.2147/ijn.s35781
PII: ijn-7-5315
Knihovny.cz E-zdroje
- Klíčová slova
- drug release, electrospinning, gentamicin, morphology, multilayered structure, nanofibers,
- MeSH
- antibakteriální látky aplikace a dávkování chemie MeSH
- difuze MeSH
- elektrochemie metody MeSH
- gentamiciny aplikace a dávkování MeSH
- grampozitivní bakterie účinky léků fyziologie MeSH
- léky s prodlouženým účinkem aplikace a dávkování chemie MeSH
- nanokapsle chemie ultrastruktura MeSH
- rotace MeSH
- testování materiálů MeSH
- velikost částic MeSH
- viabilita buněk účinky léků MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky MeSH
- gentamiciny MeSH
- léky s prodlouženým účinkem MeSH
- nanokapsle MeSH
Polyvinyl alcohol nanofibers incorporating the wide spectrum antibiotic gentamicin were prepared by Nanospider™ needleless technology. A polyvinyl alcohol layer, serving as a drug reservoir, was covered from both sides by polyurethane layers of various thicknesses. The multilayered structure of the nanofibers was observed using scanning electron microscopy, the porosity was characterized by mercury porosimetry, and nitrogen adsorption/desorption measurements were used to determine specific surface areas. The stability of the gentamicin released from the electrospun layers was proved by high-performance liquid chromatography (HPLC) and inhibition of bacterial growth. Drug release was investigated using in vitro experiments with HPLC/MS quantification, while the antimicrobial efficacy was evaluated on Gram-positive Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa. Both experiments proved that the released gentamicin retained its activity and showed that the retention of the drug in the nanofibers was prolonged with the increasing thickness of the covering layers.
Zobrazit více v PubMed
Vasita R, Katti DS. Nanofibers and their applications in tissue engineering. Int J Nanomedicine. 2006;1(1):15–30. PubMed PMC
Kubinova S, Sykova E. Nanotechnologies in regenerative medicine. Minim Invasive Ther Allied Technol. 2010;19(3–4):144–156. PubMed
Khang D, Carpenter J, Chun YW, Pareta R, Webster TJ. Nanotechnology for regenerative medicine. Biomed Microdevices. 2010;12(4):575–587. PubMed
Kumbar SG, Nair LS, Bhattacharyya S, Laurencin CT. Polymeric nanofibers as novel carriers for the delivery of therapeutic molecules. J Nanosci Nanotechnol. 2006;6(9–10):2591–2607. PubMed
Chandrasekaran AR, Venugopal J, Sundarrajan S, Ramakrishna S. Fabrication of a nanofibrous scaffold with improved bioactivity for culture of human dermal fibroblasts for skin regeneration. Biomed Mater. 2011;6(1):1–10. PubMed
Noh HK, Lee SW, Kim JM, et al. Electrospinning of chitin nanofibers: Degradation behavior and cellular response to normal human keratinocytes and fibroblasts. Biomaterials. 2006;27(21):3934–3944. PubMed
Park CJ, Clark SG, Lichtensteiger CA, Jamison RD, Johnson AJW. Accelerated wound closure of pressure ulcers in aged mice by chitosan scaffolds with and without bFGF. Acta Biomater. 2009;5(6):1926–1936. PubMed
Rho KS, Jeong L, Lee G, et al. Electrospinning of collagen nanofibers: Effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials. 2006;27(8):1452–1461. PubMed
Verreck G, Chun I, Rosenblatt J, et al. Incorporation of drugs in an amorphous state into electrospun nanofibers composed of a water-insoluble, nonbiodegradable polymer. J Control Release. 2003;92(3):349–360. PubMed
Liu X, Lin T, Fang JA, et al. In vivo wound healing and antibacterial performances of electrospun nanofibre membranes. J Biomed Mater Res Part A. 2010;94A(2):499–508. PubMed
Babaeijandaghi F, Shabani I, Seyedjafari E, et al. Accelerated epidermal regeneration and improved dermal reconstruction achieved by polyethersulfone nanofibers. Tissue Eng Part A. 2010;16(11):3527–3536. PubMed
Katti DS, Robinson KW, Ko FK, Laurencin CT. Bioresorbable nanofiber-based systems for wound healing and drug delivery: Optimization of fabrication parameters. J Biomed Mater Res Part B. 2004;70B(2):286–296. PubMed
Thakur RA, Florek CA, Kohn J, Michniak BB. Electrospun nanofibrous polymeric scaffold with targeted drug release profiles for potential application as wound dressing. Int J Phar. 2008;364(1):87–93. PubMed
Peng HS, Zhou SB, Guo T, et al. In vitro degradation and release profiles for electrospun polymeric fibers containing paracetanol. Colloids Surf B Biointerfaces. 2008;66(2):206–212. PubMed
Choi JS, Leong KW, Yoo HS. In vivo wound healing of diabetic ulcers using electrospun nanofibers immobilized with human epidermal growth factor (EGF) Biomaterials. 2008;29(5):587–596. PubMed
Huang Z, Zhang Y, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol. 2003;63:2223–2253.
Martins A, Reis R, Neves N. Electrospinning: processing technique for tissue engineering scaffolding. Int Mater Rev. 2008;53(5):257–274.
Bellan L, Craighead H. Applications of controlled electrospinning systems. Polym Adv Technol. 2011;22:304–309.
Thompson C, Chase G, Yarin A, Reneker D. Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer. 2007;48(23):6913–6922.
Lee GH, Song JC, Yoon KB. Controlled wall thickness and porosity of polymeric hollow nanofibers by coaxial electrospinning. Macromol Res. 2010;18(6):571–576.
Wang C, Yan K, Lin Y, Hsieh P. Biodegradable core/shell fibers by coaxial electrospinning: Processing, fiber characterization, and its application in sustained drug release. Macromolecules. 2010;43(15):6389–6397.
Jirsak O, Sanetrnik F, Lukas D, Kotek L, Martinova L, Chaloupek J, inventors. Technical University of Liberec, assignee. United States patent US 20060290031. Method of nanofibers production from polymer solution using electrostatic spinning and a device for carrying out the method. 2006 Dec 28;
Lukas D, Sarkar A, Pokorny P. Self-organization of jets in electrospinning from free liquid surface: A generalized approach. J Appl Phys. 2008;103(084309)
Barnes CP, Sell SA, Boland ED, Simpson DG, Bowlin GL. Nanofiber technology: Designing the next generation of tissue engineering scaffolds. Adv Drug Deliv Rev. 2007;59(14):1413–1433. PubMed
Taylor G. Electrically driven jets. Proc R Soc Lond A Math Phys Sci. 1969:453–475.
Park JC, inventor. Finetex Ene, Inc, assignee. United States patent US 7980838. Electric spinning apparatus for mass-production of nano-fiber. 2008 Mar 26;
Holan V, Chudickova M, Trosan P, et al. Cyclosporine A-loaded and stem cell-seeded electrospun nanofibers for cell-based therapy and local immunosuppression. J Control Release. 2011;156(3):406–412. PubMed
Srikar R, Yarin AL, Megaridis CM, Bazilevsky AV, Kelley E. Desorption- limited mechanism of release from polymer nanofibers. Langmuir. 2008;24(3):965–974. PubMed
Gandhi M, Srikar R, Yarin AL, Megaridis CM, Gemeinhart RA. Mechanistic examination of protein release from polymer nanofibers. Mol Phar. 2009;6(2):641–647. PubMed PMC
Huang ZM, He CL, Yang AZ, et al. Encapsulating drugs in biodegradable ultrafine fibers through co-axial electrospinning. J Biomed Mater Res Part A. 2006;77A(1):169–179. PubMed
Chen DWC, Liao JY, Liu SJ, Chan EC. Novel biodegradable sandwich-structured nanofibrous drug-eluting membranes for repair of infected wounds: an in vitro and in vivo study. Int J Nanomedicine. 2012;7:763–771. PubMed PMC
Kim G, Yoon H, Park Y. Drug release from various thicknesses of layered mats consisting of electrospun polycaprolactone and polyethylene oxide micro/nanofibers. Appl Phys A Mater Sci Process. 2010;100(4):1197–1204.
Fathi-Azarbayjani A, Chan SY. Single and multi-layered nanofibers for rapid and controlled drug delivery. Chem Pharm Bull. 2010;58(2):143–146. PubMed
Gibson PW, Schreuder-Gibson HL, Rivin D. Electrospun fiber mats: Transport properties. AIChE J. 1999;45(1):190–195.
Dubsky M, Kubinova S, Sirc J, et al. Nanofibers prepared by needleless electrospinning technology as scaffolds for wound healing. J Mater Sci Mater Med. 2012;23(4):931–941. PubMed
Zajicova A, Pokorna K, Lencova A, et al. Treatment of ocular surface injuries by limbal and mesenchymal stem cells growing on nanofiber scaffolds. Cell Transplant. 2010;19(10):1281–1290. PubMed
Mesenchymal stem cells, nanofiber scaffolds and ocular surface reconstruction