Cyclosporine A Loaded Electrospun Poly(D,L-Lactic Acid)/Poly(Ethylene Glycol) Nanofibers: Drug Carriers Utilizable in Local Immunosuppression

. 2017 Jul ; 34 (7) : 1391-1401. [epub] 20170412

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28405914
Odkazy

PubMed 28405914
DOI 10.1007/s11095-017-2155-x
PII: 10.1007/s11095-017-2155-x
Knihovny.cz E-zdroje

PURPOSE: The present study aims to prepare poly(D,L-lactic acid) (PLA) nanofibers loaded by the immunosuppressant cyclosporine A (CsA, 10 wt%). Amphiphilic poly(ethylene glycol)s (PEG) additives were used to modify the hydrophobic drug release kinetics. METHODS: Four types of CsA-loaded PLA nanofibrous carriers varying in the presence and molecular weight (MW) of PEG (6, 20 and 35 kDa) were prepared by needleless electrospinning. The samples were extracted for 144 h in phosphate buffer saline or tissue culture medium. A newly developed and validated LC-MS/MS method was utilized to quantify the amount of released CsA from the carriers. In vitro cell experiments were used to evaluate biological activity. RESULTS: Nanofibers containing 15 wt% of PEG showed improved drug release characteristics; significantly higher release rates were achieved in initial part of experiment (24 h). The highest released doses of CsA were obtained from the nanofibers with PEG of the lowest MW (6 kDa). In vitro experiments on ConA-stimulated spleen cells revealed the biological activity of the released CsA for the whole study period of 144 h and nanofibers containing PEG with the lowest MW exhibited the highest impact (inhibition). CONCLUSIONS: The addition of PEG of a particular MW enables to control CsA release from PLA nanofibrous carriers. The biological activity of CsA-loaded PLA nanofibers with PEG persists even after 144 h of previous extraction. Prepared materials are promising for local immunosuppression in various medical applications.

Zobrazit více v PubMed

J Mater Sci Mater Med. 2012 Apr;23(4):931-41 PubMed

Methods Mol Biol. 2011;726:243-58 PubMed

J Mass Spectrom. 2001 Jun;36(6):670-6 PubMed

Eur J Pharm Biopharm. 2012 Jun;81(2):257-64 PubMed

Cell Transplant. 2010;19(10):1281-90 PubMed

Transplant Proc. 1988 Apr;20(2 Suppl 2):650-5 PubMed

Int J Nanomedicine. 2012;7:5315-25 PubMed

J Tissue Eng Regen Med. 2017 May;11(5):1456-1465 PubMed

J Pharm Biomed Anal. 2007 Jan 4;43(1):277-84 PubMed

Exp Eye Res. 2016 Jun;147:128-37 PubMed

Transplant Proc. 2005 May;37(4):1741-4 PubMed

Biotechnol Adv. 2011 May-Jun;29(3):322-37 PubMed

Int J Pharm. 2013 Aug 16;452(1-2):233-40 PubMed

Int J Pharm. 2015 Apr 30;484(1-2):57-74 PubMed

Beilstein J Nanotechnol. 2015 Sep 25;6:1939-45 PubMed

J Control Release. 2011 Dec 20;156(3):406-12 PubMed

Acta Biomater. 2011 May;7(5):1973-83 PubMed

Int J Nanomedicine. 2014 Aug 08;9:3791-800 PubMed

Int J Nanomedicine. 2012;7:763-71 PubMed

J Mater Sci Mater Med. 2005 Oct;16(10):933-46 PubMed

Ther Drug Monit. 2013 Aug;35(4):450-8 PubMed

J Chromatogr B Biomed Sci Appl. 1997 Mar 7;690(1-2):367-72 PubMed

Clin Biochem. 2008 Jul;41(10-11):910-3 PubMed

J Control Release. 2014 Jul 10;185:12-21 PubMed

Mater Sci Eng C Mater Biol Appl. 2014 Dec;45:659-70 PubMed

Clin Pharmacokinet. 1993 Jun;24(6):472-95 PubMed

J Pharm Biomed Anal. 2009 Feb 20;49(2):540-6 PubMed

J Chromatogr B Analyt Technol Biomed Life Sci. 2013 Jun 1;928:9-15 PubMed

Anal Bioanal Chem. 2005 May;382(1):223-30 PubMed

Curr Med Chem. 2015;22(5):604-17 PubMed

J Control Release. 2007 Apr 2;118(2):161-8 PubMed

J Control Release. 2011 May 10;151(3):286-94 PubMed

J Chromatogr B Analyt Technol Biomed Life Sci. 2010 May 1;878(15-16):1153-62 PubMed

J Control Release. 2015 Dec 28;220(Pt B):584-91 PubMed

Biomed Chromatogr. 2003 Sep;17(6):404-10 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...