Nanofibers prepared by needleless electrospinning technology as scaffolds for wound healing
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- biokompatibilní materiály * MeSH
- hojení ran * MeSH
- lidé MeSH
- nanovlákna * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biokompatibilní materiály * MeSH
Electrospun gelatin and poly-ε-caprolactone (PCL) nanofibers were prepared using needleless technology and their biocompatibility and therapeutic efficacy have been characterized in vitro in cell cultures and in an experimental model of a skin wound. Human dermal fibroblasts, keratinocytes and mesenchymal stem cells seeded on the nanofibers revealed that both nanofibers promoted cell adhesion and proliferation. The effect of nanofibers on wound healing was examined using a full thickness wound model in rats and compared with a standard control treatment with gauze. Significantly faster wound closure was found with gelatin after 5 and 10 days of treatment, but no enhancement with PCL nanofibers was observed. Histological analysis revealed enhanced epithelialisation, increased depth of granulation tissue and increased density of myofibroblasts in the wound area with gelatin nanofibers. The results show that gelatin nanofibers produced by needleless technology accelerate wound healing and may be suitable as a scaffold for cell transfer and skin regeneration.
Zobrazit více v PubMed
Minim Invasive Ther Allied Technol. 2010 Jun;19(3):144-56 PubMed
Tissue Eng Part A. 2009 Sep;15(9):2617-24 PubMed
Diabetes Care. 2003 Jun;26(6):1701-5 PubMed
J Surg Res. 2010 Jan;158(1):162-70 PubMed
Biomed Mater Eng. 2006;16(4 Suppl):S63-71 PubMed
PLoS One. 2008 Apr 02;3(4):e1886 PubMed
Langmuir. 2008 Mar 4;24(5):2051-6 PubMed
Int J Nanomedicine. 2006;1(1):15-30 PubMed
J Vasc Surg. 2005 May;41(5):837-43 PubMed
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010 Sep-Oct;2(5):510-25 PubMed
Tissue Eng Part A. 2010 Nov;16(11):3527-36 PubMed
Biotechnol Adv. 2010 Jan-Feb;28(1):142-50 PubMed
J Mater Sci Mater Med. 2008 Sep;19(9):3093-104 PubMed
Int J Low Extrem Wounds. 2006 Mar;5(1):27-34 PubMed
Artif Organs. 2007 Nov;31(11):801-8 PubMed
Br J Dermatol. 2005 Jul;153(1):29-36 PubMed
J Nanosci Nanotechnol. 2006 Sep-Oct;6(9-10):2591-607 PubMed
Biomaterials. 2008 Feb;29(5):587-96 PubMed
J Invest Dermatol. 2007 May;127(5):998-1008 PubMed
Acta Biomater. 2008 Sep;4(5):1275-87 PubMed
J Biomed Mater Res B Appl Biomater. 2010 Feb;92(2):568-76 PubMed
Cytotherapy. 2009;11(7):874-85 PubMed
Wound Repair Regen. 2010 Sep-Oct;18(5):506-13 PubMed
Acta Biomater. 2009 Jul;5(6):1926-36 PubMed
J Immunol. 2008 Feb 15;180(4):2581-7 PubMed
J Biomed Mater Res A. 2010 Aug;94(2):499-508 PubMed
Biomaterials. 2010 May;31(13):3536-42 PubMed
Int Rev Cytol. 2007;257:143-79 PubMed
J Am Chem Soc. 2003 Jun 18;125(24):7146-7 PubMed
Recent Pat Nanotechnol. 2009;3(1):21-31 PubMed
Biomaterials. 2008 May;29(15):2293-305 PubMed
Biomed Microdevices. 2010 Aug;12(4):575-87 PubMed
J Drug Target. 2009 Nov;17(9):724-9 PubMed
J Pharm Sci. 2008 Aug;97(8):2892-923 PubMed
Biomed Mater. 2009 Aug;4(4):044106 PubMed
Opt Express. 2008 Jul 7;16(14):10815-22 PubMed
J Biomed Mater Res B Appl Biomater. 2004 Aug 15;70(2):286-96 PubMed
Biomed Mater. 2011 Feb;6(1):015001 PubMed
Biomaterials. 2006 Mar;27(8):1452-61 PubMed
Cell Transplant. 2010;19(10):1281-90 PubMed