Multilayered Polyurethane/Poly(vinyl alcohol) Nanofibrous Mats for Local Topotecan Delivery as a Potential Retinoblastoma Treatment

. 2023 May 03 ; 15 (5) : . [epub] 20230503

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37242640
Odkazy

PubMed 37242640
PubMed Central PMC10222511
DOI 10.3390/pharmaceutics15051398
PII: pharmaceutics15051398
Knihovny.cz E-zdroje

Local chemotherapy using polymer drug delivery systems has the potential to treat some cancers, including intraocular retinoblastoma, which is difficult to treat with systemically delivered drugs. Well-designed carriers can provide the required drug concentration at the target site over a prolonged time, reduce the overall drug dose needed, and suppress severe side effects. Herein, nanofibrous carriers of the anticancer agent topotecan (TPT) with a multilayered structure composed of a TPT-loaded inner layer of poly(vinyl alcohol) (PVA) and outer covering layers of polyurethane (PUR) are proposed. Scanning electron microscopy showed homogeneous incorporation of TPT into the PVA nanofibers. HPLC-FLD proved the good loading efficiency of TPT (≥85%) with a content of the pharmacologically active lactone TPT of more than 97%. In vitro release experiments demonstrated that the PUR cover layers effectively reduced the initial burst release of hydrophilic TPT. In a 3-round experiment with human retinoblastoma cells (Y-79), TPT showed prolonged release from the sandwich-structured nanofibers compared with that from a PVA monolayer, with significantly enhanced cytotoxic effects as a result of an increase in the PUR layer thickness. The presented PUR-PVA/TPT-PUR nanofibers appear to be promising carriers of active TPT lactone that could be useful for local cancer therapy.

Zobrazit více v PubMed

Englert C., Brendel J.C., Majdanski T.C., Yildirim T., Schubert S., Gottschaldt M., Windhab N., Schubert U.S. Pharmapolymers in the 21st century: Synthetic polymers in drug delivery applications. Prog. Polym. Sci. 2018;87:107–164. doi: 10.1016/j.progpolymsci.2018.07.005. DOI

Talebian S., Foroughi J., Wade S.J., Vine K.L., Dolatshahi-Pirouz A., Mehrali M., Conde J., Wallace G.G. Biopolymers for antitumor implantable drug delivery systems: Recent advances and future outlook. Adv. Mater. 2018;30:1706665. doi: 10.1002/adma.201706665. PubMed DOI

Kopeckova K., Eckschlager T., Sirc J., Hobzova R., Plch J., Hrabeta J., Michalek J. Nanodrugs used in cancer therapy. Biomed. Pap. 2019;163:122–131. doi: 10.5507/bp.2019.010. PubMed DOI

Hu X., Liu S., Zhou G., Huang Y., Xie Z., Jing X. Electrospinning of polymeric nanofibers for drug delivery applications. J. Control. Release. 2014;185:12–21. doi: 10.1016/j.jconrel.2014.04.018. PubMed DOI

Meinel A.J., Germershaus O., Luhmann T., Merkle H.P., Meinel L. Electrospun matrices for localized drug delivery: Current technologies and selected biomedical applications. Eur. J. Pharm. Biopharm. 2012;81:1–13. doi: 10.1016/j.ejpb.2012.01.016. PubMed DOI

Fu Y., Li X., Ren Z., Mao C., Han G. Multifunctional Electrospun Nanofibers for Enhancing Localized Cancer Treatment. Small. 2018;14:1801183. doi: 10.1002/smll.201801183. PubMed DOI PMC

Poláková L., Širc J., Hobzová R., Cocârță A.-I., Heřmánková E. Electrospun nanofibers for local anticancer therapy: Review of in vivo activity. Int. J. Pharm. 2019;558:268–283. doi: 10.1016/j.ijpharm.2018.12.059. PubMed DOI

Tyo K., Minooei F., Curry K., NeCamp S., Graves D., Fried J., Steinbach-Rankins J. Relating Advanced Electrospun Fiber Architectures to the Temporal Release of Active Agents to Meet the Needs of Next-Generation Intravaginal Delivery Applications. Pharmaceutics. 2019;11:160. doi: 10.3390/pharmaceutics11040160. PubMed DOI PMC

Wang C., Wang J., Zeng L., Qiao Z., Liu X., Liu H., Zhang J., Ding J. Fabrication of electrospun polymer nanofibers with diverse morphologies. Molecules. 2019;24:834. doi: 10.3390/molecules24050834. PubMed DOI PMC

Yang G., Li X., He Y., Ma J., Ni G., Zhou S. From nano to micro to macro: Electrospun hierarchically structured polymeric fibers for biomedical applications. Prog. Polym. Sci. 2018;81:80–113. doi: 10.1016/j.progpolymsci.2017.12.003. DOI

Yu D., Wang M., Ge R. Strategies for sustained drug release from electrospun multi-layer nanostructures. WIREs Nanomed. Nanobiotechnol. 2022;14:e1772. doi: 10.1002/wnan.1772. PubMed DOI

Hawthorne D., Pannala A., Sandeman S., Lloyd A. Sustained and targeted delivery of hydrophilic drug compounds: A review of existing and novel technologies from bench to bedside. J. Drug Deliv. Sci. Technol. 2022;78:103936. doi: 10.1016/j.jddst.2022.103936. DOI

Širc J., Hobzová R., Kostina N., Munzarová M., Juklíčková M., Lhotka M., Kubinová Š., Zajícová A., Michálek J. Morphological Characterization of Nanofibers: Methods and Application in Practice. J. Nanomater. 2012;2012:121. doi: 10.1155/2012/327369. DOI

Hrib J., Sirc J., Hobzova R., Hampejsova Z., Bosakova Z., Munzarova M., Michalek J. Nanofibers for drug delivery—Incorporation and release of model molecules, influence of molecular weight and polymer structure. Beilstein J. Nanotechnol. 2015;6:1939–1945. doi: 10.3762/bjnano.6.198. PubMed DOI PMC

Sirc J., Hampejsova Z., Trnovska J., Kozlik P., Hrib J., Hobzova R., Zajicova A., Holan V., Bosakova Z. Cyclosporine A Loaded Electrospun Poly(D,L-Lactic Acid)/Poly(Ethylene Glycol) Nanofibers: Drug Carriers Utilizable in Local Immunosuppression. Pharm. Res. 2017;34:1391–1401. doi: 10.1007/s11095-017-2155-x. PubMed DOI

Plch J., Venclikova K., Janouskova O., Hrabeta J., Eckschlager T., Kopeckova K., Hampejsova Z., Bosakova Z., Sirc J., Hobzova R. Paclitaxel-Loaded Polylactide/Polyethylene Glycol Fibers with Long-Term Antitumor Activity as a Potential Drug Carrier for Local Chemotherapy. Macromol. Biosci. 2018;18:1800011. doi: 10.1002/mabi.201800011. PubMed DOI

Hobzova R., Hampejsova Z., Cerna T., Hrabeta J., Venclikova K., Jedelska J., Bakowsky U., Bosakova Z., Lhotka M., Vaculin S., et al. Poly(d,l-lactide)/polyethylene glycol micro/nanofiber mats as paclitaxel-eluting carriers: Preparation and characterization of fibers, in vitro drug release, antiangiogenic activity and tumor recurrence prevention. Mater. Sci. Eng. C. 2019;98:982–993. doi: 10.1016/j.msec.2019.01.046. PubMed DOI

Alhusein N., Blagbrough I.S., de Bank P.A. Electrospun matrices for localised controlled drug delivery: Release of tetracycline hydrochloride from layers of polycaprolactone and poly(ethylene-co-vinyl acetate) Drug Deliv. Transl. Res. 2012;2:477–488. doi: 10.1007/s13346-012-0106-y. PubMed DOI

Asgari S., Mohammadi Ziarani G., Badiei A., Pourjavadi A., Kiani M. A smart tri-layered nanofibrous hydrogel thin film with controlled release of dual drugs for chemo-thermal therapy of breast cancer. J. Drug Deliv. Sci. Technol. 2022;76:103702. doi: 10.1016/j.jddst.2022.103702. DOI

Cortez Tornello P.R., Feresin G.E., Tapia A., Cuadrado T.R., Abraham G.A. Multilayered electrospun nanofibrous scaffolds for tailored controlled release of embelin. Soft Mater. 2018;16:51–61. doi: 10.1080/1539445X.2017.1398173. DOI

Laha A., Sharma C.S., Majumdar S. Sustained drug release from multi-layered sequentially crosslinked electrospun gelatin nanofiber mesh. Mater. Sci. Eng. C. 2017;76:782–786. doi: 10.1016/j.msec.2017.03.110. PubMed DOI

Lu J., Li Y., Zhang A., Liu W., Wang X., Zhang F., Linhardt R.J., Lin Z., Sun P. Sustained release of Ganoderma lucidum antitumor drugs using a sandwich structured material prepared by electrospinning. J. Drug Deliv. Sci. Technol. 2021;64:102627. doi: 10.1016/j.jddst.2021.102627. DOI

Rezk A.I., Rajan Unnithan A., Hee Park C., Sang Kim C. Rational design of bone extracellular matrix mimicking tri-layered composite nanofibers for bone tissue regeneration. Chem. Eng. J. 2018;350:812–823. doi: 10.1016/j.cej.2018.05.185. DOI

Sebe I., Ostorházi E., Bodai Z., Eke Z., Szakács J., Kovács N.K., Zelkó R. In vitro and in silico characterization of fibrous scaffolds comprising alternate colistin sulfate-loaded and heat-treated polyvinyl alcohol nanofibrous sheets. Int. J. Pharm. 2017;523:151–158. doi: 10.1016/j.ijpharm.2017.03.044. PubMed DOI

Wang P., Li Y., Zhang C., Feng F., Zhang H. Sequential electrospinning of multilayer ethylcellulose/gelatin/ethylcellulose nanofibrous film for sustained release of curcumin. Food Chem. 2020;308:125599. doi: 10.1016/j.foodchem.2019.125599. PubMed DOI

Zhang Z., Liu S., Qi Y., Zhou D., Xie Z., Jing X., Chen X., Huang Y. Time-programmed DCA and oxaliplatin release by multilayered nanofiber mats in prevention of local cancer recurrence following surgery. J. Control. Release. 2016;235:125–133. doi: 10.1016/j.jconrel.2016.05.046. PubMed DOI

Liu S., Wang X., Zhang Z., Zhang Y., Zhou G., Huang Y., Xie Z., Jing X. Use of asymmetric multilayer polylactide nanofiber mats in controlled release of drugs and prevention of liver cancer recurrence after surgery in mice. Nanomed. Nanotechnol. Biol. Med. 2015;11:1047–1056. doi: 10.1016/j.nano.2015.03.001. PubMed DOI

Falde E.J., Freedman J.D., Herrera V.L.M., Yohe S.T., Colson Y.L., Grinstaff M.W. Layered superhydrophobic meshes for controlled drug release. J. Control. Release. 2015;214:23–29. doi: 10.1016/j.jconrel.2015.06.042. PubMed DOI PMC

Wang J., Wu M., Zhu Y., Wang Z., Cao H., Li X., Yin Y., Ren X., Tian Y., Guo Z., et al. A Multilayer Nanofibrous Mat for the Topical Chemotherapy of the Positive Margin in Bladder Cancer. Tissue Eng. Part A. 2022;28:958–967. doi: 10.1089/ten.tea.2022.0096. PubMed DOI PMC

[(accessed on 26 April 2023)]. Available online: www.ema.europa.eu/en/documents/product-information/hycamtin-epar-product-information_en.pdf.

Schaiquevich P., Carcaboso A.M., Buitrago E., Taich P., Opezzo J., Bramuglia G., Chantada G.L. Ocular pharmacology of topotecan and its activity in retinoblastoma. Retina. 2014;34:1719–1727. doi: 10.1097/IAE.0000000000000253. PubMed DOI

Schaiquevich P., Francis J.H., Cancela M.B., Carcaboso A.M., Chantada G.L., Abramson D.H. Treatment of Retinoblastoma: What Is the Latest and What Is the Future. Front. Oncol. 2022;12:822330. doi: 10.3389/fonc.2022.822330. PubMed DOI PMC

Fassberg J., Stella V.J. A kinetic and mechanistic study of the hydrolysis of camptothecin and some analogues. J. Pharm. Sci. 1992;81:676–684. doi: 10.1002/jps.2600810718. PubMed DOI

Underberg W.J.M., Goossen R.M.J., Smith B.R., Beijnen J.H. Equilibrium kinetics of the new experimental anti-tumour compound SK&F 104864-A in aqueous solution. J. Pharm. Biomed. Anal. 1990;8:681–683. doi: 10.1016/0731-7085(90)80102-U. PubMed DOI

Herben V.M.M., ten Bokkel Huinink W.W., Beijnen J.H. Clinical pharmacokinetics of topotecan. Clin. Pharmacokinet. 1996;31:85–102. doi: 10.2165/00003088-199631020-00001. PubMed DOI

Burke T.G., Bom D. Campthotecin Design and Delivery Approaches for Elevating Anti-Topoisomerase I Activities in Vivo. Ann. N. Y. Acad. Sci. 2006;922:36–45. doi: 10.1111/j.1749-6632.2000.tb07023.x. PubMed DOI

Drummond D.C., Noble C.O., Guo Z., Hayes M.E., Connolly-Ingram C., Gabriel B.S., Hann B., Liu B., Park J.W., Hong K. Development of a highly stable and targetable nanoliposomal formulation of topotecan. J. Control. Release. 2010;141:13–21. doi: 10.1016/j.jconrel.2009.08.006. PubMed DOI

Lalloo A., Chao P., Hu P., Stein S., Sinko P.J. Pharmacokinetic and pharmacodynamic evaluation of a novel in situ forming poly(ethylene glycol)-based hydrogel for the controlled delivery of the camptothecins. J. Control. Release. 2006;112:333–342. doi: 10.1016/j.jconrel.2006.03.002. PubMed DOI

Souza L.G.G., Silva E.J.J., Martins A.L.L.L.L., Mota M.F.F., Braga R.C.C., Lima E.M.M., Valadares M.C.C., Taveira S.F.F., Marreto R.N.N. Development of topotecan loaded lipid nanoparticles for chemical stabilization and prolonged release. Eur. J. Pharm. Biopharm. 2011;79:189–196. doi: 10.1016/j.ejpb.2011.02.012. PubMed DOI

Xing R., Mustapha O., Ali T., Rehman M., Zaidi S.S., Baseer A., Batool S., Mukhtiar M., Shafique S., Malik M., et al. Development, Characterization, and Evaluation of SLN-Loaded Thermoresponsive Hydrogel System of Topotecan as Biological Macromolecule for Colorectal Delivery. Biomed. Res. Int. 2021;2021:9968602. doi: 10.1155/2021/9968602. PubMed DOI PMC

Zhang Z., Pan Y., Zhao Y., Ren M., Li Y., Lu G., Wu K., He S. Topotecan-loaded thermosensitive nanocargo for tumor therapy: In vitro and in vivo analyses. Int. J. Pharm. 2021;606:120871. doi: 10.1016/j.ijpharm.2021.120871. PubMed DOI

Chang G., Ci T., Yu L., Ding J. Enhancement of the fraction of the active form of an antitumor drug topotecan via an injectable hydrogel. J. Control. Release. 2011;156:21–27. doi: 10.1016/j.jconrel.2011.07.008. PubMed DOI

Huo Y., Wang Q., Liu Y., Wang J., Li Q., Li Z., Dong Y., Huang Y., Wang L. A temperature-sensitive phase-change hydrogel of topotecan achieves a long-term sustained antitumor effect on retinoblastoma cells. Onco. Targets Ther. 2019;12:6069–6082. doi: 10.2147/OTT.S214024. PubMed DOI PMC

Taich P., Moretton M.A., Del Sole M.J., Winter U., Bernabeu E., Croxatto J.O., Oppezzo J., Williams G., Chantada G.L., Chiappetta D.A., et al. Sustained-release hydrogels of topotecan for retinoblastoma. Colloids Surf. B Biointerfaces. 2016;146:624–631. doi: 10.1016/j.colsurfb.2016.07.001. PubMed DOI

Carcaboso A.M., Chiappetta D.A., Opezzo J.A.W.W., Höcht C., Fandiño A.C., Croxatto J.O., Rubio M.C., Sosnik A., Abramson D.H., Bramuglia G.F., et al. Episcleral Implants for Topotecan Delivery to the Posterior Segment of the Eye. Investig. Opthalmol. Vis. Sci. 2010;51:2126. doi: 10.1167/iovs.09-4050. PubMed DOI

Cocarta A.-I., Hobzova R., Sirc J., Cerna T., Hrabeta J., Svojgr K., Pochop P., Kodetova M., Jedelska J., Bakowsky U., et al. Hydrogel implants for transscleral drug delivery for retinoblastoma treatment. Mater. Sci. Eng. C. 2019;103:109799. doi: 10.1016/j.msec.2019.109799. PubMed DOI

Kumar A., Han S.S. PVA-based hydrogels for tissue engineering: A review. Int. J. Polym. Mater. Polym. Biomater. 2017;66:159–182. doi: 10.1080/00914037.2016.1190930. DOI

Aslam M., Kalyar M.A., Raza Z.A. Polyvinyl alcohol: A review of research status and use of polyvinyl alcohol based nanocomposites. Polym. Eng. Sci. 2018;58:2119–2132. doi: 10.1002/pen.24855. DOI

Sirc J., Kubinová S., Hobzova R., Stranska D., Kozlik P., Bosakova Z., Marekova D., Holan V., Sykova E., Michalek J. Controlled gentamicin release from multi-layered electrospun nanofibrous structures of various thicknesses. Int. J. Nanomed. 2012;7:5315–5325. doi: 10.2147/IJN.S35781. PubMed DOI PMC

Hobzova R., Kodetova M., Pochop P., Uhlik J., Dunovska K., Svojgr K., Hrabeta J., Feriancikova B., Cocarta A.I., Sirc J. Hydrogel implants for transscleral diffusion delivery of topotecan: In vivo proof of concept in a rabbit eye model. Int. J. Pharm. 2021;606:120832. doi: 10.1016/j.ijpharm.2021.120832. PubMed DOI

Jirsák O., Sanetrník F., Lukáš D., Kotek V., Martinová L., Chaloupek J. A Method of Nanofibres Production from a Polymer Solution Using Electrostatic Spinning and a Device for Carrying out the Method. No. 7,585,437. U.S. Patent. 2006 December 28;

Zeng J., Yang L., Liang Q., Zhang X., Guan H., Xu X., Chen X., Jing X. Influence of the drug compatibility with polymer solution on the release kinetics of electrospun fiber formulation. J. Control. Release. 2005;105:43–51. doi: 10.1016/j.jconrel.2005.02.024. PubMed DOI

Laurie N.A., Gray J.K., Zhang J., Leggas M., Relling M., Egorin M., Stewart C., Dyer M.A. Topotecan combination chemotherapy in two new rodent models of retinoblastoma. Clin. Cancer Res. 2005;11:7569–7578. doi: 10.1158/1078-0432.CCR-05-0849. PubMed DOI

Winter U., Mena H.A., Negrotto S., Arana E., Pascual-Pasto G., Laurent V., Suñol M., Chantada G.L., Carcaboso A.M., Schaiquevich P. Schedule-dependent antiangiogenic and cytotoxic effects of chemotherapy on vascular endothelial and retinoblastoma cells. PLoS ONE. 2016;11:e0160094. doi: 10.1371/journal.pone.0160094. PubMed DOI PMC

Winter U., Aschero R., Fuentes F., Buontempo F., Zugbi S., Sgroi M., Sampor C., Abramson D., Carcaboso A., Schaiquevich P. Tridimensional Retinoblastoma Cultures as Vitreous Seeds Models for Live-Cell Imaging of Chemotherapy Penetration. Int. J. Mol. Sci. 2019;20:1077. doi: 10.3390/ijms20051077. PubMed DOI PMC

Rosing H., Doyle E., Davies B.E., Beijnen J.H. High-performance liquid chromatographic determination of the novel antitumour drug topotecan and topotecan as the total of the lactone plus carboxylate forms, in human plasma. J. Chromatogr. B Biomed. Sci. Appl. 1995;668:107–115. doi: 10.1016/0378-4347(95)00054-M. PubMed DOI

Kodetova M., Hobzova R., Sirc J., Uhlik J., Dunovska K., Svojgr K., Cocarta A., Felsoova A., Slanar O., Sima M., et al. The Role of Cryotherapy in Vitreous Concentrations of Topotecan Delivered by Episcleral Hydrogel Implant. Pharmaceutics. 2022;14:903. doi: 10.3390/pharmaceutics14050903. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace