The Role of Cryotherapy in Vitreous Concentrations of Topotecan Delivered by Episcleral Hydrogel Implant
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35631489
PubMed Central
PMC9144907
DOI
10.3390/pharmaceutics14050903
PII: pharmaceutics14050903
Knihovny.cz E-zdroje
- Klíčová slova
- HEMA, episcleral implant, hydrogel, intraocular delivery, periocular delivery, retina, retinoblastoma, topotecan, transconjunctival cryotherapy, transscleral diffusion,
- Publikační typ
- časopisecké články MeSH
Transscleral diffusion delivery of chemotherapy is a promising way to reach the vitreal seeds of retinoblastoma, the most common intraocular malignancy in childhood. In this in vivo study, the delivery of topotecan via lens-shaped, bi-layered hydrogel implants was combined with transconjunctival cryotherapy to assess whether cryotherapy leads to higher concentrations of topotecan in the vitreous. The study included 18 New Zealand albino rabbits; nine rabbits received a topotecan-loaded implant episclerally and another nine rabbits received transconjunctival cryotherapy superotemporally 2 weeks before implant administration. Median vitreous total topotecan exposures (area under the curve, AUC) were 455 ng·h/mL for the cryotherapy group and 281 ng·h/mL for the non-cryotherapy group, and were significantly higher in the cryotherapy group, similar to maximum levels. Median plasma AUC were 50 ng·h/mL and 34 ng·h/mL for the cryotherapy and non-cryotherapy groups, respectively, with no statistically significant differences between them. In both groups, AUC values in the vitreous were significantly higher than in plasma, with plasma exposure at only approximately 11-12% of the level of vitreous exposure. The results confirmed the important role of the choroidal vessels in the pharmacokinetics of topotecan during transscleral administration and showed a positive effect of cryotherapy on intravitreal penetration, resulting in a significantly higher total exposure in the vitreous.
Zobrazit více v PubMed
Munier F.L., Beck-Popovic M., Chantada G.L., Cobrinik D., Kivelä T.T., Lohmann D., Maeder P., Moll A.C., Carcaboso A.M., Moulin A., et al. Conservative management of retinoblastoma: Challenging orthodoxy without compromising the state of metastatic grace. “Alive, with good vision and no comorbidity”. Prog. Retin. Eye Res. 2019;73:100764. doi: 10.1016/j.preteyeres.2019.05.005. PubMed DOI
Munier F.L. Classification and Management of Seeds in Retinoblastoma. Ellsworth Lecture Ghent August 24th 2013. Ophthalmic Genet. 2014;35:193–207. doi: 10.3109/13816810.2014.973045. PubMed DOI PMC
Munier F.L., Soliman S., Moulin A.P., Gaillard M.-C., Balmer A., Beck-Popovic M. Profiling safety of intravitreal injections for retinoblastoma using an anti-reflux procedure and sterilisation of the needle track. Br. J. Ophthalmol. 2012;96:1084–1087. doi: 10.1136/bjophthalmol-2011-301016. PubMed DOI
Francis J.H., Brodie S.E., Marr B., Zabor E.C., Mondesire-Crump I., Abramson D.H. Efficacy and Toxicity of Intravitreous Chemotherapy for Retinoblastoma: Four-Year Experience. Ophthalmology. 2017;124:488–495. doi: 10.1016/j.ophtha.2016.12.015. PubMed DOI PMC
Ghassemi F., Shields C.L., Ghadimi H., Khodabandeh A., Roohipoor R. Combined Intravitreal Melphalan and Topotecan for Refractory or Recurrent Vitreous Seeding From Retinoblastoma. JAMA Ophthalmol. 2014;132:936. doi: 10.1001/jamaophthalmol.2014.414. PubMed DOI
Shields C.L., Douglass A.M., Beggache M., Say E.A.T., Shields J.A. Intravitreous Chemotherapy for Active Vitreous Seeding from Retinoblastoma. Retina. 2016;36:1184–1190. doi: 10.1097/IAE.0000000000000903. PubMed DOI
Koç I., Kiratli H., Chawla B. Update on Intravitreal Chemotherapy for Retinoblastoma. Adv. Ophthalmol. Optom. 2021;6:101–118. doi: 10.1016/j.yaoo.2021.04.008. DOI
Francis J.H., Schaiquevich P., Buitrago E., Del Sole M.J., Zapata G., Croxatto J.O., Marr B.P., Brodie S.E., Berra A., Chantada G.L., et al. Local and Systemic Toxicity of Intravitreal Melphalan for Vitreous Seeding in Retinoblastoma. Ophthalmology. 2014;121:1810–1817. doi: 10.1016/j.ophtha.2014.03.028. PubMed DOI
Munier F.L., Gaillard M.-C., Balmer A., Soliman S., Podilsky G., Moulin A.P., Beck-Popovic M. Intravitreal chemotherapy for vitreous disease in retinoblastoma revisited: From prohibition to conditional indications. Br. J. Ophthalmol. 2012;96:1078–1083. doi: 10.1136/bjophthalmol-2011-301450. PubMed DOI
Schaiquevich P., Fabius A.W., Francis J.H., Chantada G.L., Abramson D.H. Ocular pharmacology of chemotherapy for retinoblastoma. Retina. 2017;37:1–10. doi: 10.1097/IAE.0000000000001275. PubMed DOI
Buitrago E., Del Sole M.J., Torbidoni A., Fandino A., Asprea M., Croxatto J.O., Chantada G.L., Bramuglia G.F., Schaiquevich P. Ocular and systemic toxicity of intravitreal topotecan in rabbits for potential treatment of retinoblastoma. Exp. Eye Res. 2013;108:103–109. doi: 10.1016/j.exer.2013.01.002. PubMed DOI
Del Sole M.J., Clausse M., Nejamkin P., Cancela B., Del Río M., Lamas G., Lubieniecki F., Francis J.H., Abramson D.H., Chantada G., et al. Ocular and systemic toxicity of high-dose intravitreal topotecan in rabbits: Implications for retinoblastoma treatment. Exp. Eye Res. 2022;218:109026. doi: 10.1016/j.exer.2022.109026. PubMed DOI PMC
Rao R., Honavar S.G., Mulay K., Reddy V.A.P. Eye salvage in diffuse anterior retinoblastoma using systemic chemotherapy with periocular and intravitreal topotecan. J. Am. Assoc. Pediatr. Ophthalmol. Strabismus. 2018;22:235–237.e2. doi: 10.1016/j.jaapos.2017.11.013. PubMed DOI
Bogan C.M., Kaczmarek J.V., Pierce J.M., Chen S., Boyd K.L., Calcutt M.W., Bridges T.M., Lindsley C.W., Nadelmann J.B., Liao A., et al. Evaluation of intravitreal topotecan dose levels, toxicity and efficacy for retinoblastoma vitreous seeds: A preclinical and clinical study. Br. J. Ophthalmol. 2022;106:288–296. doi: 10.1136/bjophthalmol-2020-318529. PubMed DOI PMC
Pascual-Pasto G., Olaciregui N.G., Opezzo J.A.W., Castillo-Ecija H., Cuadrado-Vilanova M., Paco S., Rivero E.M., Vila-Ubach M., Restrepo-Perdomo C.A., Torrebadell M., et al. Increased delivery of chemotherapy to the vitreous by inhibition of the blood-retinal barrier. J. Control. Release. 2017;264:34–44. doi: 10.1016/j.jconrel.2017.08.018. PubMed DOI
Taich P., Moretton M.A., Del Sole M.J., Winter U., Bernabeu E., Croxatto J.O., Oppezzo J., Williams G., Chantada G.L., Chiappetta D.A., et al. Sustained-release hydrogels of topotecan for retinoblastoma. Colloids Surf. B Biointerfaces. 2016;146:624–631. doi: 10.1016/j.colsurfb.2016.07.001. PubMed DOI
Huo Y., Wang Q., Liu Y., Wang J., Li Q., Li Z., Dong Y., Huang Y., Wang L. A temperature-sensitive phase-change hydrogel of topotecan achieves a long-term sustained antitumor effect on retinoblastoma cells. Onco. Targets. Ther. 2019;12:6069–6082. doi: 10.2147/OTT.S214024. PubMed DOI PMC
Delrish E., Jabbarvand M., Ghassemi F., Amoli F.A., Atyabi F., Lashay A., Soleimani M., Aghajanpour L., Dinarvand R. Efficacy of topotecan nanoparticles for intravitreal chemotherapy of retinoblastoma. Exp. Eye Res. 2021;204:108423. doi: 10.1016/j.exer.2020.108423. PubMed DOI
Francis J.H., Abramson D.H., Ji X., Shields C.L., Teixeira L.F., Schefler A.C., Cassoux N., Hadjistilianou D., Berry J.L., Frenkel S., et al. Risk of Extraocular Extension in Eyes With Retinoblastoma Receiving Intravitreous Chemotherapy. JAMA Ophthalmol. 2017;135:1426. doi: 10.1001/jamaophthalmol.2017.4600. PubMed DOI PMC
Carcaboso A.M., Chiappetta D.A., Opezzo J.A.W.W., Höcht C., Fandiño A.C., Croxatto J.O., Rubio M.C., Sosnik A., Abramson D.H., Bramuglia G.F., et al. Episcleral Implants for Topotecan Delivery to the Posterior Segment of the Eye. Investig. Opthalmology Vis. Sci. 2010;51:2126. doi: 10.1167/iovs.09-4050. PubMed DOI
Pontes de Carvalho R.A., Krausse M.L., Murphree A.L., Schmitt E.E., Campochiaro P.A., Maumenee I.H. Delivery from Episcleral Exoplants. Investig. Opthalmology Vis. Sci. 2006;47:4532. doi: 10.1167/iovs.06-0030. PubMed DOI
Meng Y., Sun S., Li J., Nan K., Lan B., Jin Y., Chen H., Cheng L. Sustained release of triamcinolone acetonide from an episcleral plaque of multilayered poly-ε-caprolactone matrix. Acta Biomater. 2014;10:126–133. doi: 10.1016/j.actbio.2013.09.022. PubMed DOI
Huang D., Chen Y.-S., Rupenthal I.D. Overcoming ocular drug delivery barriers through the use of physical forces. Adv. Drug Deliv. Rev. 2018;126:96–112. doi: 10.1016/j.addr.2017.09.008. PubMed DOI
Edelhauser H.F., Rowe-Rendleman C.L., Robinson M.R., Dawson D.G., Chader G.J., Grossniklaus H.E., Rittenhouse K.D., Wilson C.G., Weber D.A., Kuppermann B.D., et al. Ophthalmic drug delivery systems for the treatment of retinal diseases: Basic research to clinical applications. Investig. Ophthalmol. Vis. Sci. 2010;51:5403–5420. doi: 10.1167/iovs.10-5392. PubMed DOI PMC
Agban Y., Thakur S.S., Mugisho O.O., Rupenthal I.D. Depot formulations to sustain periocular drug delivery to the posterior eye segment. Drug Discov. Today. 2019;24:1458–1469. doi: 10.1016/j.drudis.2019.03.023. PubMed DOI
Kim S.H., Lutz R.J., Wang N.S., Robinson M.R. Transport barriers in transscleral drug delivery for retinal diseases. Ophthalmic Res. 2007;39:244–254. doi: 10.1159/000108117. PubMed DOI
Robinson M.R., Lee S.S., Kim H., Kim S., Lutz R.J., Galban C., Bungay P.M., Yuan P., Wang N.S., Kim J., et al. A rabbit model for assessing the ocular barriers to the transscleral delivery of triamcinolone acetonide. Exp. Eye Res. 2006;82:479–487. doi: 10.1016/j.exer.2005.08.007. PubMed DOI
Wilson T.W. Penetration of Chemotherapy Into Vitreous Is Increased by Cryotherapy and Cyclosporine in Rabbits. Arch. Ophthalmol. 1996;114:1390. doi: 10.1001/archopht.1996.01100140590011. PubMed DOI
Dunker S., Faulborn J., Haller E.-M., Reich M.-E. The effect of retinal cryoapplication on the vitreous. Retina. 1997;17:338–343. doi: 10.1097/00006982-199717040-00010. PubMed DOI
Steel D.H.W., West J., Cambell W.G. A randomized controlled study of the use of the transscleral diode laser and cryotherapy in the management of rhegmatogenous retinal detachment. Retin. Jiurnal Retin. Vitr. Dis. 2000;20:346–357. doi: 10.1097/00006982-200007000-00005. PubMed DOI
Abramson D., Ellsworth R., Rozakis G. Cryotherapy for retinoblastoma. Arch. Ophthalmol. 1982;100:1253–1256. doi: 10.1001/archopht.1982.01030040231003. PubMed DOI
Shields J.A., Parsons H., Shields C.L., Giblin M.E. The role of cryotherapy in the management of retinoblastoma. Am. J. Ophthalmol. 1989;108:260–264. doi: 10.1016/0002-9394(89)90116-5. PubMed DOI
Anagnoste S.R., Scott I.U., Murray T.G., Kramer D., Toledano S. Rhegmatogenous retinal detachment in retinoblastoma patients undergoing chemoreduction and cryotherapy. Am. J. Ophthalmol. 2000;129:817–819. doi: 10.1016/S0002-9394(00)00407-4. PubMed DOI
Hamel P., Heon E., Gallie B.L., Budning A.S. Focal therapy in the management of retinoblastoma: When to start and when to stop. J. Am. Assoc. Pediatr. Ophthalmol. Strabismus. 2000;4:334–337. doi: 10.1067/mpa.2000.107902. PubMed DOI
Abramson D.H., Schefler A.C. Transpupillary thermotherapy as initial treatment for small intraocular retinoblastoma. Ophthalmology. 2004;111:984–991. doi: 10.1016/j.ophtha.2003.08.035. PubMed DOI
Ancona-Lezama D., Dalvin L., Shields C. Modern treatment of retinoblastoma: A 2020 review. Indian J. Ophthalmol. 2020;68:2356. doi: 10.4103/ijo.IJO_721_20. PubMed DOI PMC
Khaqan H.A., Imtiaz U., Buksh H.M., Ur Rehman H.A., Naz R. Outcomes of intravitreal melphalan for vitreous seedings in retinoblastoma resistant to systemic chemotherapy. Pediatr. Hematol. Oncol. J. 2021;6:22–25. doi: 10.1016/j.phoj.2020.10.002. DOI
Cocarta A.-I., Hobzova R., Sirc J., Cerna T., Hrabeta J., Svojgr K., Pochop P., Kodetova M., Jedelska J., Bakowsky U., et al. Hydrogel implants for transscleral drug delivery for retinoblastoma treatment. Mater. Sci. Eng. C. 2019;103:109799. doi: 10.1016/j.msec.2019.109799. PubMed DOI
Cocarta A.I., Hobzova R., Trchova M., Svojgr K., Kodetova M., Pochop P., Uhlik J., Sirc J. 2-Hydroxyethyl Methacrylate Hydrogels for Local Drug Delivery: Study of Topotecan and Vincristine Sorption/Desorption Kinetics and Polymer-Drug Interaction by ATR-FTIR Spectroscopy. Macromol. Chem. Phys. 2021;2100086:1–11. doi: 10.1002/macp.202100086. DOI
Hobzova R., Kodetova M., Pochop P., Uhlik J., Dunovska K., Svojgr K., Hrabeta J., Feriancikova B., Cocarta A.I., Sirc J. Hydrogel implants for transscleral diffusion delivery of topotecan: In vivo proof of concept in a rabbit eye model. Int. J. Pharm. 2021;606:120832. doi: 10.1016/j.ijpharm.2021.120832. PubMed DOI
Thrimawithana T.R., Young S., Bunt C.R., Green C., Alany R.G. Drug delivery to the posterior segment of the eye. Drug Discov. Today. 2011;16:270–277. doi: 10.1016/j.drudis.2010.12.004. PubMed DOI
Pescina S., Govoni P., Antopolsky M., Murtomaki L., Padula C., Santi P., Nicoli S. Permeation of Proteins, Oligonucleotide and Dextrans Across Ocular Tissues: Experimental Studies and a Literature Update. J. Pharm. Sci. 2015;104:2190–2202. doi: 10.1002/jps.24465. PubMed DOI
Kim E.S., Durairaj C., Kadam R.S., Lee S.J., Mo Y., Geroski D.H., Kompella U.B., Edelhauser H.F. Human Scleral Diffusion of Anticancer Drugs from Solution and Nanoparticle Formulation. Pharm. Res. 2009;26:1155–1161. doi: 10.1007/s11095-009-9835-0. PubMed DOI
Ranta V.-P., Mannermaa E., Lummepuro K., Subrizi A., Laukkanen A., Antopolsky M., Murtomäki L., Hornof M., Urtti A. Barrier analysis of periocular drug delivery to the posterior segment. J. Control. Release. 2010;148:42–48. doi: 10.1016/j.jconrel.2010.08.028. PubMed DOI
Carcaboso A.M., Bramuglia G.F., Chantada G.L., Fandiño A.C., Chiappetta D.A., De Davila M.T.G., Rubio M.C., Abramson D.H. Topotecan vitreous levels after periocular or intravenous delivery in rabbits: An alternative for retinoblastoma chemotherapy. Investig. Ophthalmol. Vis. Sci. 2007;48:3761–3767. doi: 10.1167/iovs.06-1152. PubMed DOI
Ghate D., Brooks W., McCarey B.E., Edelhauser H.F. Pharmacokinetics of Intraocular Drug Delivery by Periocular Injections Using Ocular Fluorophotometry. Investig. Opthalmology Vis. Sci. 2007;48:2230. doi: 10.1167/iovs.06-0954. PubMed DOI
Tsui J.Y., Dalgard C., Van Quill K.R., Lee L., Grossniklaus H.E., Edelhauser H.F., O’Brien J.M. Subconjunctival Topotecan in Fibrin Sealant in the Treatment of Transgenic Murine Retinoblastoma. Investig. Opthalmology Vis. Sci. 2008;49:490. doi: 10.1167/iovs.07-0653. PubMed DOI
Mallipatna A.C., Dimaras H., Chan H.S.L., Héon E., Gallie B.L. Periocular Topotecan for Intraocular Retinoblastoma. Arch. Ophthalmol. 2011;129:738. doi: 10.1001/archophthalmol.2011.130. PubMed DOI
Miller D.J., Li S.K., Tuitupou A.L., Kochambilli R.P., Papangkorn K., Mix D.C., Jr., Higuchi W.I., Higuchi J.W. Passive and Oxymetazoline-Enhanced Delivery with a Lens Device: Pharmacokinetics and Efficacy Studies with Rabbits. J. Ocul. Pharmacol. Ther. 2008;24:385–391. doi: 10.1089/jop.2007.0116. PubMed DOI PMC
Wang H., Yang J., Pan H., Tai M.C., Maher M.H., Jia R., Ge S., Lu L. Dinutuximab Synergistically Enhances the Cytotoxicity of Natural Killer Cells to Retinoblastoma Through the Perforin-Granzyme B Pathway. Onco. Targets. Ther. 2020;13:3903–3920. doi: 10.2147/OTT.S228532. PubMed DOI PMC