The Role of Cryotherapy in Vitreous Concentrations of Topotecan Delivered by Episcleral Hydrogel Implant

. 2022 Apr 20 ; 14 (5) : . [epub] 20220420

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35631489
Odkazy

PubMed 35631489
PubMed Central PMC9144907
DOI 10.3390/pharmaceutics14050903
PII: pharmaceutics14050903
Knihovny.cz E-zdroje

Transscleral diffusion delivery of chemotherapy is a promising way to reach the vitreal seeds of retinoblastoma, the most common intraocular malignancy in childhood. In this in vivo study, the delivery of topotecan via lens-shaped, bi-layered hydrogel implants was combined with transconjunctival cryotherapy to assess whether cryotherapy leads to higher concentrations of topotecan in the vitreous. The study included 18 New Zealand albino rabbits; nine rabbits received a topotecan-loaded implant episclerally and another nine rabbits received transconjunctival cryotherapy superotemporally 2 weeks before implant administration. Median vitreous total topotecan exposures (area under the curve, AUC) were 455 ng·h/mL for the cryotherapy group and 281 ng·h/mL for the non-cryotherapy group, and were significantly higher in the cryotherapy group, similar to maximum levels. Median plasma AUC were 50 ng·h/mL and 34 ng·h/mL for the cryotherapy and non-cryotherapy groups, respectively, with no statistically significant differences between them. In both groups, AUC values in the vitreous were significantly higher than in plasma, with plasma exposure at only approximately 11-12% of the level of vitreous exposure. The results confirmed the important role of the choroidal vessels in the pharmacokinetics of topotecan during transscleral administration and showed a positive effect of cryotherapy on intravitreal penetration, resulting in a significantly higher total exposure in the vitreous.

Zobrazit více v PubMed

Munier F.L., Beck-Popovic M., Chantada G.L., Cobrinik D., Kivelä T.T., Lohmann D., Maeder P., Moll A.C., Carcaboso A.M., Moulin A., et al. Conservative management of retinoblastoma: Challenging orthodoxy without compromising the state of metastatic grace. “Alive, with good vision and no comorbidity”. Prog. Retin. Eye Res. 2019;73:100764. doi: 10.1016/j.preteyeres.2019.05.005. PubMed DOI

Munier F.L. Classification and Management of Seeds in Retinoblastoma. Ellsworth Lecture Ghent August 24th 2013. Ophthalmic Genet. 2014;35:193–207. doi: 10.3109/13816810.2014.973045. PubMed DOI PMC

Munier F.L., Soliman S., Moulin A.P., Gaillard M.-C., Balmer A., Beck-Popovic M. Profiling safety of intravitreal injections for retinoblastoma using an anti-reflux procedure and sterilisation of the needle track. Br. J. Ophthalmol. 2012;96:1084–1087. doi: 10.1136/bjophthalmol-2011-301016. PubMed DOI

Francis J.H., Brodie S.E., Marr B., Zabor E.C., Mondesire-Crump I., Abramson D.H. Efficacy and Toxicity of Intravitreous Chemotherapy for Retinoblastoma: Four-Year Experience. Ophthalmology. 2017;124:488–495. doi: 10.1016/j.ophtha.2016.12.015. PubMed DOI PMC

Ghassemi F., Shields C.L., Ghadimi H., Khodabandeh A., Roohipoor R. Combined Intravitreal Melphalan and Topotecan for Refractory or Recurrent Vitreous Seeding From Retinoblastoma. JAMA Ophthalmol. 2014;132:936. doi: 10.1001/jamaophthalmol.2014.414. PubMed DOI

Shields C.L., Douglass A.M., Beggache M., Say E.A.T., Shields J.A. Intravitreous Chemotherapy for Active Vitreous Seeding from Retinoblastoma. Retina. 2016;36:1184–1190. doi: 10.1097/IAE.0000000000000903. PubMed DOI

Koç I., Kiratli H., Chawla B. Update on Intravitreal Chemotherapy for Retinoblastoma. Adv. Ophthalmol. Optom. 2021;6:101–118. doi: 10.1016/j.yaoo.2021.04.008. DOI

Francis J.H., Schaiquevich P., Buitrago E., Del Sole M.J., Zapata G., Croxatto J.O., Marr B.P., Brodie S.E., Berra A., Chantada G.L., et al. Local and Systemic Toxicity of Intravitreal Melphalan for Vitreous Seeding in Retinoblastoma. Ophthalmology. 2014;121:1810–1817. doi: 10.1016/j.ophtha.2014.03.028. PubMed DOI

Munier F.L., Gaillard M.-C., Balmer A., Soliman S., Podilsky G., Moulin A.P., Beck-Popovic M. Intravitreal chemotherapy for vitreous disease in retinoblastoma revisited: From prohibition to conditional indications. Br. J. Ophthalmol. 2012;96:1078–1083. doi: 10.1136/bjophthalmol-2011-301450. PubMed DOI

Schaiquevich P., Fabius A.W., Francis J.H., Chantada G.L., Abramson D.H. Ocular pharmacology of chemotherapy for retinoblastoma. Retina. 2017;37:1–10. doi: 10.1097/IAE.0000000000001275. PubMed DOI

Buitrago E., Del Sole M.J., Torbidoni A., Fandino A., Asprea M., Croxatto J.O., Chantada G.L., Bramuglia G.F., Schaiquevich P. Ocular and systemic toxicity of intravitreal topotecan in rabbits for potential treatment of retinoblastoma. Exp. Eye Res. 2013;108:103–109. doi: 10.1016/j.exer.2013.01.002. PubMed DOI

Del Sole M.J., Clausse M., Nejamkin P., Cancela B., Del Río M., Lamas G., Lubieniecki F., Francis J.H., Abramson D.H., Chantada G., et al. Ocular and systemic toxicity of high-dose intravitreal topotecan in rabbits: Implications for retinoblastoma treatment. Exp. Eye Res. 2022;218:109026. doi: 10.1016/j.exer.2022.109026. PubMed DOI PMC

Rao R., Honavar S.G., Mulay K., Reddy V.A.P. Eye salvage in diffuse anterior retinoblastoma using systemic chemotherapy with periocular and intravitreal topotecan. J. Am. Assoc. Pediatr. Ophthalmol. Strabismus. 2018;22:235–237.e2. doi: 10.1016/j.jaapos.2017.11.013. PubMed DOI

Bogan C.M., Kaczmarek J.V., Pierce J.M., Chen S., Boyd K.L., Calcutt M.W., Bridges T.M., Lindsley C.W., Nadelmann J.B., Liao A., et al. Evaluation of intravitreal topotecan dose levels, toxicity and efficacy for retinoblastoma vitreous seeds: A preclinical and clinical study. Br. J. Ophthalmol. 2022;106:288–296. doi: 10.1136/bjophthalmol-2020-318529. PubMed DOI PMC

Pascual-Pasto G., Olaciregui N.G., Opezzo J.A.W., Castillo-Ecija H., Cuadrado-Vilanova M., Paco S., Rivero E.M., Vila-Ubach M., Restrepo-Perdomo C.A., Torrebadell M., et al. Increased delivery of chemotherapy to the vitreous by inhibition of the blood-retinal barrier. J. Control. Release. 2017;264:34–44. doi: 10.1016/j.jconrel.2017.08.018. PubMed DOI

Taich P., Moretton M.A., Del Sole M.J., Winter U., Bernabeu E., Croxatto J.O., Oppezzo J., Williams G., Chantada G.L., Chiappetta D.A., et al. Sustained-release hydrogels of topotecan for retinoblastoma. Colloids Surf. B Biointerfaces. 2016;146:624–631. doi: 10.1016/j.colsurfb.2016.07.001. PubMed DOI

Huo Y., Wang Q., Liu Y., Wang J., Li Q., Li Z., Dong Y., Huang Y., Wang L. A temperature-sensitive phase-change hydrogel of topotecan achieves a long-term sustained antitumor effect on retinoblastoma cells. Onco. Targets. Ther. 2019;12:6069–6082. doi: 10.2147/OTT.S214024. PubMed DOI PMC

Delrish E., Jabbarvand M., Ghassemi F., Amoli F.A., Atyabi F., Lashay A., Soleimani M., Aghajanpour L., Dinarvand R. Efficacy of topotecan nanoparticles for intravitreal chemotherapy of retinoblastoma. Exp. Eye Res. 2021;204:108423. doi: 10.1016/j.exer.2020.108423. PubMed DOI

Francis J.H., Abramson D.H., Ji X., Shields C.L., Teixeira L.F., Schefler A.C., Cassoux N., Hadjistilianou D., Berry J.L., Frenkel S., et al. Risk of Extraocular Extension in Eyes With Retinoblastoma Receiving Intravitreous Chemotherapy. JAMA Ophthalmol. 2017;135:1426. doi: 10.1001/jamaophthalmol.2017.4600. PubMed DOI PMC

Carcaboso A.M., Chiappetta D.A., Opezzo J.A.W.W., Höcht C., Fandiño A.C., Croxatto J.O., Rubio M.C., Sosnik A., Abramson D.H., Bramuglia G.F., et al. Episcleral Implants for Topotecan Delivery to the Posterior Segment of the Eye. Investig. Opthalmology Vis. Sci. 2010;51:2126. doi: 10.1167/iovs.09-4050. PubMed DOI

Pontes de Carvalho R.A., Krausse M.L., Murphree A.L., Schmitt E.E., Campochiaro P.A., Maumenee I.H. Delivery from Episcleral Exoplants. Investig. Opthalmology Vis. Sci. 2006;47:4532. doi: 10.1167/iovs.06-0030. PubMed DOI

Meng Y., Sun S., Li J., Nan K., Lan B., Jin Y., Chen H., Cheng L. Sustained release of triamcinolone acetonide from an episcleral plaque of multilayered poly-ε-caprolactone matrix. Acta Biomater. 2014;10:126–133. doi: 10.1016/j.actbio.2013.09.022. PubMed DOI

Huang D., Chen Y.-S., Rupenthal I.D. Overcoming ocular drug delivery barriers through the use of physical forces. Adv. Drug Deliv. Rev. 2018;126:96–112. doi: 10.1016/j.addr.2017.09.008. PubMed DOI

Edelhauser H.F., Rowe-Rendleman C.L., Robinson M.R., Dawson D.G., Chader G.J., Grossniklaus H.E., Rittenhouse K.D., Wilson C.G., Weber D.A., Kuppermann B.D., et al. Ophthalmic drug delivery systems for the treatment of retinal diseases: Basic research to clinical applications. Investig. Ophthalmol. Vis. Sci. 2010;51:5403–5420. doi: 10.1167/iovs.10-5392. PubMed DOI PMC

Agban Y., Thakur S.S., Mugisho O.O., Rupenthal I.D. Depot formulations to sustain periocular drug delivery to the posterior eye segment. Drug Discov. Today. 2019;24:1458–1469. doi: 10.1016/j.drudis.2019.03.023. PubMed DOI

Kim S.H., Lutz R.J., Wang N.S., Robinson M.R. Transport barriers in transscleral drug delivery for retinal diseases. Ophthalmic Res. 2007;39:244–254. doi: 10.1159/000108117. PubMed DOI

Robinson M.R., Lee S.S., Kim H., Kim S., Lutz R.J., Galban C., Bungay P.M., Yuan P., Wang N.S., Kim J., et al. A rabbit model for assessing the ocular barriers to the transscleral delivery of triamcinolone acetonide. Exp. Eye Res. 2006;82:479–487. doi: 10.1016/j.exer.2005.08.007. PubMed DOI

Wilson T.W. Penetration of Chemotherapy Into Vitreous Is Increased by Cryotherapy and Cyclosporine in Rabbits. Arch. Ophthalmol. 1996;114:1390. doi: 10.1001/archopht.1996.01100140590011. PubMed DOI

Dunker S., Faulborn J., Haller E.-M., Reich M.-E. The effect of retinal cryoapplication on the vitreous. Retina. 1997;17:338–343. doi: 10.1097/00006982-199717040-00010. PubMed DOI

Steel D.H.W., West J., Cambell W.G. A randomized controlled study of the use of the transscleral diode laser and cryotherapy in the management of rhegmatogenous retinal detachment. Retin. Jiurnal Retin. Vitr. Dis. 2000;20:346–357. doi: 10.1097/00006982-200007000-00005. PubMed DOI

Abramson D., Ellsworth R., Rozakis G. Cryotherapy for retinoblastoma. Arch. Ophthalmol. 1982;100:1253–1256. doi: 10.1001/archopht.1982.01030040231003. PubMed DOI

Shields J.A., Parsons H., Shields C.L., Giblin M.E. The role of cryotherapy in the management of retinoblastoma. Am. J. Ophthalmol. 1989;108:260–264. doi: 10.1016/0002-9394(89)90116-5. PubMed DOI

Anagnoste S.R., Scott I.U., Murray T.G., Kramer D., Toledano S. Rhegmatogenous retinal detachment in retinoblastoma patients undergoing chemoreduction and cryotherapy. Am. J. Ophthalmol. 2000;129:817–819. doi: 10.1016/S0002-9394(00)00407-4. PubMed DOI

Hamel P., Heon E., Gallie B.L., Budning A.S. Focal therapy in the management of retinoblastoma: When to start and when to stop. J. Am. Assoc. Pediatr. Ophthalmol. Strabismus. 2000;4:334–337. doi: 10.1067/mpa.2000.107902. PubMed DOI

Abramson D.H., Schefler A.C. Transpupillary thermotherapy as initial treatment for small intraocular retinoblastoma. Ophthalmology. 2004;111:984–991. doi: 10.1016/j.ophtha.2003.08.035. PubMed DOI

Ancona-Lezama D., Dalvin L., Shields C. Modern treatment of retinoblastoma: A 2020 review. Indian J. Ophthalmol. 2020;68:2356. doi: 10.4103/ijo.IJO_721_20. PubMed DOI PMC

Khaqan H.A., Imtiaz U., Buksh H.M., Ur Rehman H.A., Naz R. Outcomes of intravitreal melphalan for vitreous seedings in retinoblastoma resistant to systemic chemotherapy. Pediatr. Hematol. Oncol. J. 2021;6:22–25. doi: 10.1016/j.phoj.2020.10.002. DOI

Cocarta A.-I., Hobzova R., Sirc J., Cerna T., Hrabeta J., Svojgr K., Pochop P., Kodetova M., Jedelska J., Bakowsky U., et al. Hydrogel implants for transscleral drug delivery for retinoblastoma treatment. Mater. Sci. Eng. C. 2019;103:109799. doi: 10.1016/j.msec.2019.109799. PubMed DOI

Cocarta A.I., Hobzova R., Trchova M., Svojgr K., Kodetova M., Pochop P., Uhlik J., Sirc J. 2-Hydroxyethyl Methacrylate Hydrogels for Local Drug Delivery: Study of Topotecan and Vincristine Sorption/Desorption Kinetics and Polymer-Drug Interaction by ATR-FTIR Spectroscopy. Macromol. Chem. Phys. 2021;2100086:1–11. doi: 10.1002/macp.202100086. DOI

Hobzova R., Kodetova M., Pochop P., Uhlik J., Dunovska K., Svojgr K., Hrabeta J., Feriancikova B., Cocarta A.I., Sirc J. Hydrogel implants for transscleral diffusion delivery of topotecan: In vivo proof of concept in a rabbit eye model. Int. J. Pharm. 2021;606:120832. doi: 10.1016/j.ijpharm.2021.120832. PubMed DOI

Thrimawithana T.R., Young S., Bunt C.R., Green C., Alany R.G. Drug delivery to the posterior segment of the eye. Drug Discov. Today. 2011;16:270–277. doi: 10.1016/j.drudis.2010.12.004. PubMed DOI

Pescina S., Govoni P., Antopolsky M., Murtomaki L., Padula C., Santi P., Nicoli S. Permeation of Proteins, Oligonucleotide and Dextrans Across Ocular Tissues: Experimental Studies and a Literature Update. J. Pharm. Sci. 2015;104:2190–2202. doi: 10.1002/jps.24465. PubMed DOI

Kim E.S., Durairaj C., Kadam R.S., Lee S.J., Mo Y., Geroski D.H., Kompella U.B., Edelhauser H.F. Human Scleral Diffusion of Anticancer Drugs from Solution and Nanoparticle Formulation. Pharm. Res. 2009;26:1155–1161. doi: 10.1007/s11095-009-9835-0. PubMed DOI

Ranta V.-P., Mannermaa E., Lummepuro K., Subrizi A., Laukkanen A., Antopolsky M., Murtomäki L., Hornof M., Urtti A. Barrier analysis of periocular drug delivery to the posterior segment. J. Control. Release. 2010;148:42–48. doi: 10.1016/j.jconrel.2010.08.028. PubMed DOI

Carcaboso A.M., Bramuglia G.F., Chantada G.L., Fandiño A.C., Chiappetta D.A., De Davila M.T.G., Rubio M.C., Abramson D.H. Topotecan vitreous levels after periocular or intravenous delivery in rabbits: An alternative for retinoblastoma chemotherapy. Investig. Ophthalmol. Vis. Sci. 2007;48:3761–3767. doi: 10.1167/iovs.06-1152. PubMed DOI

Ghate D., Brooks W., McCarey B.E., Edelhauser H.F. Pharmacokinetics of Intraocular Drug Delivery by Periocular Injections Using Ocular Fluorophotometry. Investig. Opthalmology Vis. Sci. 2007;48:2230. doi: 10.1167/iovs.06-0954. PubMed DOI

Tsui J.Y., Dalgard C., Van Quill K.R., Lee L., Grossniklaus H.E., Edelhauser H.F., O’Brien J.M. Subconjunctival Topotecan in Fibrin Sealant in the Treatment of Transgenic Murine Retinoblastoma. Investig. Opthalmology Vis. Sci. 2008;49:490. doi: 10.1167/iovs.07-0653. PubMed DOI

Mallipatna A.C., Dimaras H., Chan H.S.L., Héon E., Gallie B.L. Periocular Topotecan for Intraocular Retinoblastoma. Arch. Ophthalmol. 2011;129:738. doi: 10.1001/archophthalmol.2011.130. PubMed DOI

Miller D.J., Li S.K., Tuitupou A.L., Kochambilli R.P., Papangkorn K., Mix D.C., Jr., Higuchi W.I., Higuchi J.W. Passive and Oxymetazoline-Enhanced Delivery with a Lens Device: Pharmacokinetics and Efficacy Studies with Rabbits. J. Ocul. Pharmacol. Ther. 2008;24:385–391. doi: 10.1089/jop.2007.0116. PubMed DOI PMC

Wang H., Yang J., Pan H., Tai M.C., Maher M.H., Jia R., Ge S., Lu L. Dinutuximab Synergistically Enhances the Cytotoxicity of Natural Killer Cells to Retinoblastoma Through the Perforin-Granzyme B Pathway. Onco. Targets. Ther. 2020;13:3903–3920. doi: 10.2147/OTT.S228532. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...