Antiadhesive Nanofibrous Materials for Medicine: Preventing Undesirable Tissue Adhesions
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
37323398
PubMed Central
PMC10268260
DOI
10.1021/acsomega.3c00341
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Undesirable postoperative tissue adhesions remain among the most common complications after surgery. Apart from pharmacological antiadhesive agents, various physical barriers have been developed in order to prevent postoperative tissue adhesions. Nevertheless, many introduced materials suffer from shortcomings during in vivo application. Thus, there is an increasing need to develop a novel barrier material. However, various challenging criteria have to be met, so this issue pushes the research in materials to its current limits. Nanofibers play a major role in breaking the wall of this issue. Due to their properties, such as a large surface area for functionalization, tunable degradation rate, or the possibility of layering individual nanofibrous materials, it is feasible to create an antiadhesive surface while maintaining biocompatibility. There are many ways to produce nanofibrous material; electrospinning is the most used and versatile technique. This review reveals the different approaches and puts them into context.
Zobrazit více v PubMed
Schnüriger B.; et al. Prevention of postoperative peritoneal adhesions: A review of the literature. Am. J. Surg. 2011, 201, 111–121. 10.1016/j.amjsurg.2010.02.008. PubMed DOI
Titan A. L.; Foster D. S.; Chang J.; Longaker M. T. Flexor Tendon: Development, Healing, Adhesion Formation, and Contributing Growth Factors. Plast. Reconstr. Surg. 2019, 144, 639e–647e. 10.1097/PRS.0000000000006048. PubMed DOI PMC
Peters S. E.; Jha B.; Ross M. Rehabilitation following surgery for flexor tendon injuries of the hand. Cochrane Database Syst. Rev. 2021, 2021 (1), CD012479.10.1002/14651858.CD012479.pub2. PubMed DOI PMC
Van Goor H. Consequences and complications of peritoneal adhesions. Colorectal Dis. 2007, 9 (s2), 25–34. 10.1111/j.1463-1318.2007.01358.x. PubMed DOI
Arung W.; Meurisse M.; Detry O. Pathophysiology and prevention of postoperative peritoneal adhesions. World J. Gastroenterol. WJG 2011, 17, 4545–4553. 10.3748/wjg.v17.i41.4545. PubMed DOI PMC
Capella-Monsonís H.; Kearns S.; Kelly J.; Zeugolis D. I. Battling adhesions: From understanding to prevention. BMC Biomed. Eng. 2019, 1, 5.10.1186/s42490-019-0005-0. PubMed DOI PMC
Ko J. E.; Ko Y.-G.; Kim W. I.; Kwon O. K.; Kwon O. H. Nanofiber mats composed of a chitosan-poly(d,l-lactic-co-glycolic acid)-poly(ethylene oxide) blend as a postoperative anti-adhesion agent. J. Biomed. Mater. Res. B Appl. Biomater. 2017, 105, 1906–1915. 10.1002/jbm.b.33726. PubMed DOI
Wu W.; et al. Advances in biomaterials for preventing tissue adhesion. J. Controlled Release 2017, 261, 318–336. 10.1016/j.jconrel.2017.06.020. PubMed DOI
Kheilnezhad B.; Hadjizadeh A. A review: Progress in preventing tissue adhesions from a biomaterial perspective. Biomater. Sci. 2021, 9, 2850–2873. 10.1039/D0BM02023K. PubMed DOI
Rosendorf J.; et al. Experimental fortification of intestinal anastomoses with nanofibrous materials in a large animal model. Sci. Rep. 2020, 10, 1134.10.1038/s41598-020-58113-4. PubMed DOI PMC
Rosendorf J.; et al. Double-layered nanofibrous patch for prevention of anastomotic leakage and peritoneal adhesions, experimental study. Vivo Athens Greece 2021, 35, 731–741. 10.21873/invivo.12314. PubMed DOI PMC
Rosendorf J.; et al. Reinforcement of colonic anastomosis with improved ultrafine nanofibrous patch: Experiment on pig. Biomedicines 2021, 9, 102.10.3390/biomedicines9020102. PubMed DOI PMC
Alghoraibi I.; Alomari S.. Different methods for nanofiber design and fabrication. In Handbook of Nanofibers; Barhoum A., Bechelany M., Makhlouf A., Eds.; Springer International Publishing: 2018; pp 1–46.10.1007/978-3-319-42789-8_11-2. DOI
Li W.-J.; Shanti R. M.; Tuan R. S. Electrospinning technology for nanofibrous scaffolds in tissue engineering. Nanotechnologies Life Sci. 2007, 10.1002/9783527610419.ntls0097. DOI
Partheniadis I.; Nikolakakis I.; Laidmäe I.; Heinämäki J. A Mini-review: Needleless electrospinning of nanofibers for pharmaceutical and biomedical applications. Processes 2020, 8, 673.10.3390/pr8060673. DOI
Dinarvand P.; et al. Function of poly (lactic-co-glycolic acid) nanofiber in reduction of adhesion bands. J. Surg. Res. 2012, 172, e1–9. 10.1016/j.jss.2011.10.014. PubMed DOI
Gholami A.; et al. Prevention of postsurgical abdominal adhesion using electrospun TPU nanofibers in rat model. BioMed. Res. Int. 2021, 2021, 9977142.10.1155/2021/9977142. PubMed DOI PMC
Zong X.; et al. Prevention of postsurgery-induced abdominal adhesions by electrospun bioabsorbable nanofibrous poly(lactide-co-glycolide)-based membranes. Ann. Surg. 2004, 240, 910–915. 10.1097/01.sla.0000143302.48223.7e. PubMed DOI PMC
Bölgen N.; Vargel I.; Korkusuz P.; Menceloğlu Y. Z.; Pişkin E. In vivo performance of antibiotic embedded electrospun PCL membranes for prevention of abdominal adhesions. J. Biomed. Mater. Res. 2007, 81B, 530–543. 10.1002/jbm.b.30694. PubMed DOI
Liu S.; et al. Electrospun fibrous membranes featuring sustained release of ibuprofen reduce adhesion and improve neurological function following lumbar laminectomy. J. Control. Release Off. J. Control. Release Soc. 2017, 264, 1–13. 10.1016/j.jconrel.2017.08.011. PubMed DOI
Zhao X.; et al. Optimization of intrinsic and extrinsic tendon healing through controllable water-soluble mitomycin-C release from electrospun fibers by mediating adhesion-related gene expression. Biomaterials 2015, 61, 61–74. 10.1016/j.biomaterials.2015.05.012. PubMed DOI
Shin Y. C.; et al. PLGA nanofiber membranes loaded with epigallocatechin-3-O-gallate are beneficial to prevention of postsurgical adhesions. Int. J. Nanomedicine 2014, 9, 4067–4078. 10.2147/IJN.S68197. PubMed DOI PMC
Chen S.-H.; Chen C.-H.; Fong Y. T.; Chen J.-P. Prevention of peritendinous adhesions with electrospun chitosan-grafted polycaprolactone nanofibrous membranes. Acta Biomater. 2014, 10, 4971–4982. 10.1016/j.actbio.2014.08.030. PubMed DOI
Babadi D.; Rabbani S.; Akhlaghi S.; Haeri A. Curcumin polymeric membranes for postoperative peritoneal adhesion: Comparison of nanofiber vs. film and phospholipid-enriched vs. non-enriched formulations. Int. J. Pharm. 2022, 614, 121434.10.1016/j.ijpharm.2021.121434. PubMed DOI
Li J.; et al. Prevention of intra-abdominal adhesion using electrospun PEG/PLGA nanofibrous membranes. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 78, 988–997. 10.1016/j.msec.2017.04.017. PubMed DOI
Klapstova A.; et al. A PVDF electrospun antifibrotic composite for use as a glaucoma drainage implant. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 119, 111637.10.1016/j.msec.2020.111637. PubMed DOI
Cheng L.; et al. Hydration-enhanced lubricating electrospun nanofibrous membranes prevent tissue adhesion. Research 2020, 2020, 4907185.10.34133/2020/4907185. PubMed DOI PMC
Fan Q.; Wu H.; Kong Q. Superhydrophilic PLGA-graft-PVP/PC nanofiber membranes for the prevention of epidural adhesion. Int. J. Nanomedicine 2022, 17, 1423–1435. 10.2147/IJN.S356250. PubMed DOI PMC
Jiang S.; Wang W.; Yan H.; Fan C. Prevention of intra-abdominal adhesion by bi-layer electrospun membrane. Int. J. Mol. Sci. 2013, 14, 11861–11870. 10.3390/ijms140611861. PubMed DOI PMC
Deepthi S.; Nivedhitha Sundaram M.; Deepti Kadavan J.; Jayakumar R. Layered chitosan-collagen hydrogel/aligned PLLA nanofiber construct for flexor tendon regeneration. Carbohydr. Polym. 2016, 153, 492–500. 10.1016/j.carbpol.2016.07.124. PubMed DOI
Shalumon K. T.; et al. Multi-functional electrospun antibacterial core-shell nanofibrous membranes for prolonged prevention of post-surgical tendon adhesion and inflammation. Acta Biomater. 2018, 72, 121–136. 10.1016/j.actbio.2018.03.044. PubMed DOI
Klicova M.; et al. Novel double-layered planar scaffold combining electrospun PCL fibers and PVA hydrogels with high shape integrity and water stability. Mater. Lett. 2020, 263, 127281.10.1016/j.matlet.2019.127281. DOI
Klicova M.; et al. Biomimetic hierarchical nanofibrous surfaces inspired by superhydrophobic lotus leaf structure for preventing tissue adhesions. Mater. Des. 2022, 217, 110661.10.1016/j.matdes.2022.110661. DOI