The Role of ATRA, Natural Ligand of Retinoic Acid Receptors, on EMT-Related Proteins in Breast Cancer: Minireview

. 2021 Dec 12 ; 22 (24) : . [epub] 20211212

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34948142

The knowledge of the structure, function, and abundance of specific proteins related to the EMT process is essential for developing effective diagnostic approaches to cancer with the perspective of diagnosis and therapy of malignancies. The success of all-trans retinoic acid (ATRA) differentiation therapy in acute promyelocytic leukemia has stimulated studies in the treatment of other tumors with ATRA. This review will discuss the impact of ATRA use, emphasizing epithelial-mesenchymal transition (EMT) proteins in breast cancer, of which metastasis and recurrence are major causes of death.

Zobrazit více v PubMed

International Agency for Research on Cancer (IARC) in December 2020. [(accessed on 5 March 2021)]. Available online: https://www.who.int/news/item/03-02-2021-breast-cancer-now-most-common-form-of-cancer-who-taking-action.

Howlader N., Noone A.M., Krapcho M., Miller D., Brest A., Yu M., Ruhl J., Tatalovich Z., Mariotto A., Lewis D.R., et al., editors. SEER Cancer Statistics Review, 1975–2016, Section 4: Breast Cancer. National Cancer Institute; Bethesda, MD, USA: 2019. [(accessed on 22 October 2019)]. Updated April 2019. Available online: https://seer.cancer.gov/csr/1975_2016/results_merged/sect_04_breast.pdf.

Qin X.-J., Ling B.X. Proteomic studies in breast cancer. Oncol. Lett. 2012;3:735–743. PubMed PMC

Tyanova S., Albrechtsen R., Kronqvist P., Cox J., Mann M., Geiger T. Proteomic maps of breast cancer subtypes. Nat. Commun. 2016;7:10259. doi: 10.1038/ncomms10259. PubMed DOI PMC

Yanovich G., Agmon H., Harel M., Sonnenblick A., Peretz T., Geiger T. Clinical proteomics of breast cancer reveals a novel layer of breast cancer classification. Cancer Res. 2018;78:6001–6010. doi: 10.1158/0008-5472.CAN-18-1079. PubMed DOI PMC

Liang C.Y., Qiao G.A.P., Liu Y.Z., Tian L., Hui N., Li J., Ma Y.L., Li H., Zhao Q.Q., Cao W.Q., et al. Overview of all-trans retinoic acid (ATRA) and its analogues: Structures, activities, and mechanisms in acute promyelocytic leukaemia. Eur. J. Med. Chem. 2021;220:113451. doi: 10.1016/j.ejmech.2021.113451. PubMed DOI

Chlapek P., Slavikova V., Mazanek P., Sterba J., Veselska R. Why differentiation therapy sometimes fails: Molecular mechanisms of resistance to retinoids. Int. J. Mol. Sci. 2018;19:132. doi: 10.3390/ijms19010132. PubMed DOI PMC

Sasmita A.O., Wong Y.P. Organoids as reliable breast cancer study models: An update. Int. J. Oncol. Res. 2018;1:008.

Bouchal P., Schubert O.T., Faktor J., Capkova L., Imrichova H., Zoufalova K., Paralova V., Hrstka R., Liu Y., Ebhardt H.A., et al. Breast cancer classification based on proteotypes obtained by SWATH mass spectrometry. Cell Rep. 2019;28:832–843. doi: 10.1016/j.celrep.2019.06.046. PubMed DOI PMC

Fragomeni S.M., Sciallis A., Jerus J.S. Molecular subtypes and local-regional control of breast. Surg. Oncol. Clin. N. Am. 2018;27:95–120. doi: 10.1016/j.soc.2017.08.005. PubMed DOI PMC

Abotaleb M., Kubatka P., Caprnda M., Varghese E., Zolakova B., Zubor P., Opatrilova R., Kruzliak P., Stefanicka P., Busselberg D. Chemotherapeutic agents for the treatment of metastatic breast cancer: An update. Biomed. Pharmacother. 2018;101:458–477. doi: 10.1016/j.biopha.2018.02.108. PubMed DOI

Li Z.-H., Hu P.-H., Tu J.-H., Yu N.-S. Luminal B breast cancer: Patterns of recurrence and clinical outcome. Oncotarget. 2016;7:65024–65033. doi: 10.18632/oncotarget.11344. PubMed DOI PMC

Pan Y., Yuan Y., Liu G., Wei Y. P53 and Ki-67 as prognostic markers in triple-negative breast cancer patients. PLoS ONE. 2017;12:e0172324. doi: 10.1371/journal.pone.0172324. PubMed DOI PMC

Yin L., Duan J.-J., Bian X.-W., Yu S.-C. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020;22:61. doi: 10.1186/s13058-020-01296-5. PubMed DOI PMC

Wang J., Xu B. Targeted therapeutic options and future perspectives for HER2-positive breast cancer. Sig. Transduct. Target Ther. 2019;4:34. doi: 10.1038/s41392-019-0069-2. PubMed DOI PMC

Liskova A., Koklesova L., Samec M., Smejkal K., Samuel S.M., Varghese E., Abotaleb M., Biringer K., Kudela E., Danko J., et al. Flavonoids in cancer metastasis. Cancer. 2020;12:1498. doi: 10.3390/cancers12061498. PubMed DOI PMC

Kalluri R., Weinberg R.A. The basics of epithelial-mesenchymal transition. J. Clin. Investig. 2009;119:1420–1428. doi: 10.1172/JCI39104. PubMed DOI PMC

Swa H.L.F., Shaik A.A., Lim L.H.K., Gunaratne J. Mass spectrometry based quantitative proteomics and integrative network analysis accentuates modulating roles of annexin-1 in mammary tumorigenesis. Proteomics. 2015;15:408–418. doi: 10.1002/pmic.201400175. PubMed DOI

Niu W., Luo Y., Zhou Y., Li M., Wu C., Duan Y., Wang H., Fan S., Li Z., Xiong W., et al. BRD7 suppresses invasion and metastasis in breast cancer by negatively regulating YB1-induced EMT. J. Exp. Clin. Cancer Res. 2020;39:30. doi: 10.1186/s13046-019-1493-4. PubMed DOI PMC

Chen C.-L., Wang Y., Pan Q.-Z., Tang Y., Wang Q.-J., Pan K., Huang L.-X., He J., Zhao J.-J., Jiang S.-S., et al. Bromodomain-containing protein 7 (BRD7) as a potential tumor suppressor in hepatocellular carcinoma. Oncotarget. 2016;7:16248–16261. doi: 10.18632/oncotarget.7637. PubMed DOI PMC

Prieto-García E., Díaz-García C.V., García-Ruiz I., Agulló-Ortuño M.T. Epithelial-to-mesenchymal transition in tumour progression. Med. Oncol. 2017;34:122. doi: 10.1007/s12032-017-0980-8. PubMed DOI

Morandi A., Taddei M.L., Chiarugi P., Giannoni E. Targeting the metabolic reprogramming that controls epithelial-to-mesenchymal transition in aggressive tumours. Front. Oncol. 2017;7:40. doi: 10.3389/fonc.2017.00040. PubMed DOI PMC

Wang Y., Qin J., Liu Q., Hong X., Li T., Zhu Y., He L., Zheng B., Li M. SNF2H promotes hepatocellular carcinoma proliferation by activating the Wnt/β-catenin signaling pathway. Oncol. Lett. 2016;12:1329–1336. doi: 10.3892/ol.2016.4681. PubMed DOI PMC

Strouhalova D., Macejova D., Lastovickova M., Brtko J., Bobalova J. CD44 and vimentin, markers involved with epithelial-mesenchymal transition: A proteomic analysis of sequential proteins extraction of triple-negative breast cancer cells after treatment with all-trans retinoic acid. Gen. Physiol. Biophys. 2020;39:399–405. doi: 10.4149/gpb_2020026. PubMed DOI

Xu H., Tian Y., Yuan X., Wu H., Liu Q., Pestell R.G., Wu K. The role of CD44 in epithelial–mesenchymal transition and cancer development. OncoTargets Ther. 2015;8:3783–3792. PubMed PMC

Badaoui M., Mimsy-Julienne C., Saby C., Van Gulick L., Peretti M., Jeannesson P., Morjani H., Ouadid-Ahidouch H. Collagen type 1 promotes survival of human breast cancer cells by overexpressing Kv10.1 potassium and Orai1 calcium channels through DDR1-dependent pathway. Oncotarget. 2018;9:24653–24671. doi: 10.18632/oncotarget.19065. PubMed DOI PMC

Neagu M., Constantin C., Bostan M., Caruntu C., Ignat S.R., Dinescu S., Costache M. Proteomic technology “lens” for epithelial-mesenchymal transition process identification in oncology. Anal. Cell. Pathol. 2019 doi: 10.1155/2019/3565970. PubMed DOI PMC

Wang Z.N., Xu H.M. Relationship between collagen IV expression and biological behavior of gastric cancer. World J. Gastroenterol. 2000;6:438–439. doi: 10.3748/wjg.v6.i3.438. PubMed DOI PMC

Jung H., Kim B., Moon B.I., Oh E.-S. Cytokeratin 18 is necessary for initiation of TGF-b1-induced epithelial–mesenchymal transition in breast epithelial cells. Mol. Cell Biochem. 2016;423:21–28. doi: 10.1007/s11010-016-2818-7. PubMed DOI

Donato R., Cannon B.R., Sorci G., Riuzzi F., Hsu K., Weber D.J., Geczy C.L. Functions of S100 proteins. Curr. Mol. Med. 2013;13:24–57. doi: 10.2174/156652413804486214. PubMed DOI PMC

Zhou G., Yang L., Gray A., Srivastava A.K., Li C., Zhang G., Cui T. The role of desmosomes in carcinogenesis. OncoTargets Ther. 2017;10:4059–4063. doi: 10.2147/OTT.S136367. PubMed DOI PMC

Orre L.M., Panizza E., Kaminskyy V.O., Vernet E., Graeslund T., Zhivotovsky B., Lehtioe J. S100A4 interacts with p53 in the nucleus and promotes p53 degradation. Oncogene. 2018;32:5531–5540. doi: 10.1038/onc.2013.213. PubMed DOI

Liu F., Gu L.-N., Shan B.-E., Geng C.-Z., Sang M.-X. Biomarkers for EMT and MET in breast cancer: An update. Oncol. Lett. 2016;12:4869–4876. doi: 10.3892/ol.2016.5369. PubMed DOI PMC

Roussellea P., Scoazecb J.Y. Laminin 332 in cancer: When the extracellular matrix turns signals from cell anchorage to cell. Semin. Cancer Biol. 2020;62:149–165. doi: 10.1016/j.semcancer.2019.09.026. PubMed DOI

Rachow S., Zorn-Kruppa M., Ohnemus U., Kirschner N., Vidal-y-Sy S., von den Driesch P., Bornchen C., Eberle J., Mildner M., Vettorazzi E., et al. Occludin is involved in adhesion, apoptosis, differentiation and Ca2+ homeostasis of human keratinocytes: Implications for tumorigenesis. PLoS ONE. 2013;8:e55116. PubMed PMC

Kang E., Seo J., Yoon H., Cho S. The post-translational regulation of epithelial–mesenchymal transition-inducing transcription factors in cancer metastasis. Int. J. Mol. Sci. 2021;22:3591. doi: 10.3390/ijms22073591. PubMed DOI PMC

Ibrahim S.A., Gadalla R., El-Ghonaimy E.A., Samir O., Mohamed H.T., Hassan H., Greve B., El-Shinawi M., Mohamed M.M., Götte M. Syndecan-1 is a novel molecular marker for triple negative inflammatory breast cancer and modulates the cancer stem cell phenotype via the IL-6/STAT3, Notch and EGFR signaling pathways. Mol. Cancer. 2017;16:57. doi: 10.1186/s12943-017-0621-z. PubMed DOI PMC

Tailor D., Resendez A., Garcia-Marques F.J., Pandrala M., Going C.C., Bermudez A., Kumar V., Rafat M., Nambiar D.K., Honkala A., et al. Y box binding protein 1 inhibition as a targeted therapy for ovarian cancer. Cell Chem. Biol. 2021;28:1206–1220.e6. doi: 10.1016/j.chembiol.2021.02.014. PubMed DOI

Soen B., Vandamme N., Berx G., Schwaller J., Van Vlierberghe P., Goossens S. ZEB proteins in leukemia: Friends, foes, or friendly foes? Hemasphere. 2018;2:e43. doi: 10.1097/HS9.0000000000000043. PubMed DOI PMC

Dekky B., Ruff M., Bonnier D., Legagneux V., Théret N. Proteomic screening identifies the zonula occludens protein ZO-1 as a new partner for ADAM12 in invadopodia-like structures. Oncotarget. 2018;9:21366–21382. doi: 10.18632/oncotarget.25106. PubMed DOI PMC

Zeisberg M., Hanai J.-I., Sugimoto H., Mammoto T., Charytan D., Strutz F., Kalluri R. BMP-7 counteracts TGFbeta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat. Med. 2003;9:964–968. doi: 10.1038/nm888. PubMed DOI

Okada H., Danoff T.M., Kalluri R., Neilson E.G. Early role of Fsp1 in epithelial-mesenchymal transformation. Am. J. Physiol. 1997;273:F563–F574. doi: 10.1152/ajprenal.1997.273.4.F563. PubMed DOI

Yang J., Weinberg R.A. Epithelial mesenchymal transition: At the crossroads of development and tumor metastasis. Dev. Cell. 2008;14:818–829. doi: 10.1016/j.devcel.2008.05.009. PubMed DOI

Roche J. The epithelial-to-mesenchymal transition in cancer. Cancers. 2018;10:52. doi: 10.3390/cancers10020052. PubMed DOI PMC

Hamilton G., Rath B. Mesenchymal-epithelial transition and circulating tumor cells in small cell lung cancer. Adv. Exp. Med. Biol. 2017;994:229–245. PubMed

Loh C.-Y., Chai J.Y., Tang T.F., Wong W.F., Sethi G., Shanmugam M.K., Chong P.P., Looi C.Y. The E-cadherin and N-cadherin switch in epithelial-to-mesenchymal transition: Signaling, therapeutic implications, and challenges. Cells. 2019;8:1118. doi: 10.3390/cells8101118. PubMed DOI PMC

Lamouille S., Xu J., Derynck R. Molecular mechanisms of epithelial–mesenchymal transition. Nat. Rev. Mol. Cell Biol. 2014;15:178–196. doi: 10.1038/nrm3758. PubMed DOI PMC

Zanetti A., Affatato R., Centritto F., Fratelli M., Kurosaki M., Barzago M.M., Bolis M., Terao M., Garattini E., Paroni G. All-trans-retinoic acid modulates the plasticity and inhibits the motility of breast cancer cells role of Notch1 and Transforming Growth Factor (Tgf) J. Biol. Chem. 2015;290:17690–17709. doi: 10.1074/jbc.M115.638510. PubMed DOI PMC

Doi A., Ishikawa K., Shibata N., Ito E., Fujimoto J., Yamamoto M., Shiga H., Mochizuki H., Kawamura Y., Goshima N., et al. Enhanced expression of retinoic acid receptor alpha (RARA) induces epithelial-to-mesenchymal transition and disruption of mammary acinar structures. Mol. Oncol. 2015;9:355–364. doi: 10.1016/j.molonc.2014.09.005. PubMed DOI PMC

Fisher K.R., Durrans A., Lee S., Sheng J., Li F., Wong S.T.C., Choi H., El Rayes T., Ryu S., Troeger J., et al. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature. 2015;527:472–476. doi: 10.1038/nature15748. PubMed DOI PMC

Zheng X., Carstens J.L., Kim J., Scheible M., Kaye J., Sugimoto H., Wu C.-C., LeBleu V.S., Kalluri R. Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature. 2015;527:525–530. doi: 10.1038/nature16064. PubMed DOI PMC

Garattini E., Gianni M., Terao M. Retinoids as differentiating agents in oncology: A network of interactions with intracellular pathways as the basis for rational therapeutic combinations. Curr. Pharm. Des. 2007;13:1375–1400. doi: 10.2174/138161207780618786. PubMed DOI

Berbis P. Retinoids: Mechanisms of action. Ann. Dermatol. Venereol. 2010;137:S97–S103. doi: 10.1016/S0151-9638(10)70036-3. PubMed DOI

Brtko J., Dvorak Z. Natural and synthetic retinoid X receptor ligands and their role in selected nuclear receptor action. Biochimie. 2020;179:157–168. doi: 10.1016/j.biochi.2020.09.027. PubMed DOI

Lotan R. Retinoids and apoptosis: Implication for cancer chemoprevention and therapy. J. Natl. Cancer Inst. 1995;87:1655–1657. doi: 10.1093/jnci/87.22.1655. PubMed DOI

Sun S.Y., Lotan R. Retinoids and their receptors in cancer development and chemoprevention. Crit. Rev. Oncol. Hematol. 2002;41:41–55. doi: 10.1016/S1040-8428(01)00144-5. PubMed DOI

Brtko J., Dvorak Z. Role of retinoids, rexinoids and thyroid hormone in the expression of cytochrome P450 enzymes. Curr. Drug Metab. 2011;12:71–88. doi: 10.2174/138920011795016881. PubMed DOI

Brtko J., Dvorak Z. Triorganotin compounds—ligands for “rexinoid“ inducible transcription factors: Biological effects. Toxicol. Lett. 2015;234:50–58. doi: 10.1016/j.toxlet.2015.02.009. PubMed DOI

le Maire A., Alvarez S., Shankaranarayanan P., R de Lera A., Bourguet W., Gronemeyer H. Retinoid receptors and therapeutic applications of RAR/RXR modulators. Curr. Top. Med. Chem. 2012;12:505–527. doi: 10.2174/156802612799436687. PubMed DOI

Hunsu V.O., Facey C.O.B., Fields J.Z., Boman B.M. Retinoids as chemo-preventive and molecular-targeted anticancer therapies. Int. J. Mol. Sci. 2021;22:7731. doi: 10.3390/ijms22147731. PubMed DOI PMC

Nguyen P.H., Giraud J., Staedel C., Chambonnier L., Dubus P., Chevret E., Bœuf H., Gauthereau X., Rousseau B., Fevre M., et al. All-trans retinoic acid targets gastric cancer stem cells and inhibits patient-derived gastric carcinoma tumor growth. Oncogene. 2016;35:5619–5628. doi: 10.1038/onc.2016.87. PubMed DOI

Dobrotkova V., Chlapek P., Mazanek P., Sterba J., Veselska R. Traffic lights for retinoids in oncology: Molecular markers of retinoid resistance and sensitivity and their use in the management of cancer differentiation therapy. BMC Cancer. 2018;18:1059. doi: 10.1186/s12885-018-4966-5. PubMed DOI PMC

Wille J.J., Park J.Y., Shealy Y.F. Cancer chemopreventive retinoids: Validation and analysis of in vivo and in vitro bioassay results. J. Cancer Ther. 2016;7:1008–1033. doi: 10.4236/jct.2016.713098. DOI

Shilkaitis A., Green A., Christov K. Retinoids induce cellular senescence in breast cancer cells by RAR-β dependent and independent pathways: Potential clinical implications. Int. J. Oncol. 2015;47:35–42. doi: 10.3892/ijo.2015.3013. PubMed DOI PMC

Brtko J. Retinoids, rexinoids and their cognate nuclear receptors: Character and their role in chemoprevention of selected malignant diseases. Biomed. Pap. Med. 2007;151:187–194. doi: 10.5507/bp.2007.033. PubMed DOI

Cui J.J., Gong M.J., He Y., Li Q.L., He T.C., Bi Y. All-trans retinoic acid inhibits proliferation, migration, invasion and induces differentiation of hepa1-6 cells through reversing EMT in vitro. Int. J. Oncol. 2016;48:349–357. doi: 10.3892/ijo.2015.3235. PubMed DOI

Guan J., Zhang H., Wen Z., Gu Y.M., Cheng Y., Sun Y., Zhang T.T., Jia C.W., Lu Z.H., Chen J. Retinoic acid inhibits pancreatic cancer cell migration and EMT through the downregulation of IL-6 in cancer associated fibroblast cells. Cancer Lett. 2014;345:132–139. doi: 10.1016/j.canlet.2013.12.006. PubMed DOI

Fang S.Y., Hu C.Q., Xu L., Cui J.J., Tao L., Gong M.J., Wang Y., He Y., He T.C., Bi Y. All-trans-retinoic acid inhibits the malignant behaviors of hepatocarcinoma cells by regulating autophagy. Am. J. Transl. Res. 2020;12:6793–6810. PubMed PMC

Garattini E., Bolis M., Garattini S.K., Fratelli M., Centritto F., Paroni G., Gianni M., Zanetti A., Pagani A., Fisher J.N., et al. Retinoids and breast cancer: From basic studies to the clinic and back again. Cancer Treat. Rev. 2014;40:739–749. doi: 10.1016/j.ctrv.2014.01.001. PubMed DOI

Costantini L., Molinari R., Farinon B., Merendino N. Retinoic acids in the treatment of most lethal solid cancers. J. Clin. Med. 2020;9:360. doi: 10.3390/jcm9020360. PubMed DOI PMC

Uray I.P., Dmitrovsky E., Brown P.H. Retinoids and rexinoids in cancer prevention: From laboratory to clinic. Semin. Oncol. 2016;43:49–64. doi: 10.1053/j.seminoncol.2015.09.002. PubMed DOI PMC

Lacroix M., Leclercq G. Relevance of breast cancer cell lines as models for breast tumors: An update. Breast Cancer Res. Treat. 2004;83:249–289. doi: 10.1023/B:BREA.0000014042.54925.cc. PubMed DOI

Reinhardt A., Liu H.Y., Ma Y.X., Zhou Y.G., Zang C.B., Habbel J.P., Possinger K., Eucker J. Tumor cell-selective synergism of TRAIL- and ATRA-induced cytotoxicity in breast cancer cells. Anticancer Res. 2018;38:2669–2682. PubMed

Coyle K.M., Dean C.A., Thomas M.L., Giacomantonio C.A., Helyer L., Marcato P. DNA methylation predicts the response of triple-negative breast cancers to all-trans retinoic acid. Cancers. 2018;10:397. doi: 10.3390/cancers10110397. PubMed DOI PMC

Enikeev A.D., Komelkov A.V., Axelrod M.E., Galetsky S.A., Kuzmichev S.A., Tchevkina E.M. CRABP1 and CRABP2 protein levels correlate with each other but do not correlate with sensitivity of breast cancer cells to retinoic acid. Biochemistry. 2021;86:217–229. doi: 10.1134/S0006297921020103. PubMed DOI

Huang S., Chen Y., Liang Z.-M., Li N.-N., Liu Y., Zhu Y., Liao D., Zhou X.Z., Lu K.P., Yao Y., et al. Targeting pin1 by all-trans retinoic acid (ATRA) overcomes tamoxifen resistance in breast cancer via multifactorial mechanisms. Front. Cell Dev. Biol. 2019;7:322. doi: 10.3389/fcell.2019.00322. PubMed DOI PMC

Kamal A.H.M., Han B.S., Choi J.-S., Cho K., Kim S.Y., Kim W.K., Lee S.C., Bae K.-H. Proteomic analysis of the effect of retinoic acids on the human breast cancer cell line MCF-7. Mol. Biol. Rep. 2014;41:3499–3507. doi: 10.1007/s11033-014-3212-8. PubMed DOI

Flodrova D., Benkovska D., Macejova D., Bialesova L., Hunakova L., Brtko J., Bobalova J. Proteomic analysis of changes in the protein composition of MCF-7 human breast cancer cells induced by all-trans retinoic acid, 9-cis retinoic acid, and their combination. Toxicol. Lett. 2015;232:226–232. doi: 10.1016/j.toxlet.2014.09.030. PubMed DOI

Croker A.K., Allan A.L. Inhibition of aldehyde dehydrogenase (ALDH) activity reduces chemotherapy and radiation resistance of stem-like ALDHhiCD44+ human breast cancer cells. Breast Cancer Res. Treat. 2012;133:75–87. doi: 10.1007/s10549-011-1692-y. PubMed DOI

Flodrova D., Toporova L., Lastovickova M., Macejova D., Hunakova L., Brtko J., Bobalova J. Consequences of the natural retinoid/retinoid X receptor ligands action in human breast cancer MDA-MB-231 cell line: Focus on functional proteomics. Toxicol. Lett. 2017;281:26–34. doi: 10.1016/j.toxlet.2017.09.001. PubMed DOI

Ahrens T., Sleeman J.P., Schempp C.M., Howells N., Hofmann M., Ponta H., Herrlich P., Simon J.C. Soluble CD44 inhibits melanoma tumor growth by blocking cell surface CD44 binding to hyaluronic acid. Oncogene. 2001;20:3399–3408. doi: 10.1038/sj.onc.1204435. PubMed DOI

Li C.W., Heidt D.G., Dalerba P., Burant C.F., Zhang L.J., Asday V., Wicha M., Clarke M.F., Simeone D.M. Identification of pancreatic cancer stem cells. Cancer Res. 2007;67:1030–1037. doi: 10.1158/0008-5472.CAN-06-2030. PubMed DOI

Martincuks A., Li P.-C., Zhao Q., Zhang C., Li Y.-J., Yu H., Rodriguez-Rodriguez L. CD44 in ovarian cancer progression and therapy resistance—A critical role for STAT3. Front. Oncol. 2020;10:589601. doi: 10.3389/fonc.2020.589601. PubMed DOI PMC

Yaghobi Z., Movassaghpour A., Talebi M., Shadbad M.A., Hajiasgharzadeh K., Pourvahdani S., Baradaran B. The role of CD44 in cancer chemoresistance: A concise review. Eur. J. Pharmacol. 2021;903:174147. doi: 10.1016/j.ejphar.2021.174147. PubMed DOI

Xu H., Tian Y., Yuan X., Liu Y., Wu H., Liu Q., Wu G.S., Wu K. Enrichment of CD44 in basal-type breast cancer correlates with EMT, cancer stem cell gene profile, and prognosis. OncoTargets Ther. 2016;9:431–444. PubMed PMC

Chen C., Zhao S., Karnad A., Freeman J.W. The biology and role of CD44 in cancer progression: Therapeutic implications. J. Hematol. Oncol. 2018;11:64. doi: 10.1186/s13045-018-0605-5. PubMed DOI PMC

Eibl R.H., Pietsch T., Moll J., Skroch-Angel P., Heider K.-H., von Ammon K., Wiestler O.D., Ponta H., Kleihues P., Herrlich P. Expression of variant CD44 epitopes in human astrocytic brain tumors. J. Neurooncol. 1995;26:165–170. doi: 10.1007/BF01052619. PubMed DOI

Naor D., Nedvetzki S., Golan I., Melnik L., Faitelson Y. CD44 in cancer. Crit. Rev. Clin. Lab. Sci. 2002;39:527–579. doi: 10.1080/10408360290795574. PubMed DOI

Ni X., Hu G., Cai X. The success and the challenge of all-trans retinoic acid in the treatment of cancer. Crit. Rev. Food Sci. Nutr. 2019;59:S71–S80. doi: 10.1080/10408398.2018.1509201. PubMed DOI

Giuli M.V., Hanieh P.N., Giuliani E., Rinaldi F., Marianecci C., Screpanti I., Checquolo S., Carafa M. Current trends in ATRA delivery for cancer therapy. Pharmaceutics. 2020;12:707. doi: 10.3390/pharmaceutics12080707. PubMed DOI PMC

Giovannelli P., Di Donato M., Galasso G., Di Zazzo E., Medici N., Bilancio A., Migliaccio A., Castoria G. Breast cancer stem cells: The role of sex steroid receptors. World J. Stem Cells. 2019;11:594–603. doi: 10.4252/wjsc.v11.i9.594. PubMed DOI PMC

Li N., Zhu Y. Targeting liver cancer stem cells for the treatment of hepatocellular carcinoma. Ther. Adv. Gastroenterol. 2019;12:1756284818821560. doi: 10.1177/1756284818821560. PubMed DOI PMC

Koshiuka K., Elstner E., Williamson E., Said J.W., Tada Y., Koeffler H.P. Novel therapeutic approach: Organic arsenical (melarsoprol) alone or with all-trans-retinoic acid markedly inhibit growth of human breast and prostate cancer cells in vitro and in vivo. Br. J. Cancer. 2000;82:452–458. doi: 10.1054/bjoc.1999.0942. PubMed DOI PMC

Annuar S.N.S., Kamaludin F., Awang N., Chan K.M. Cellular basis of organotin(IV) derivatives as anticancer metallodrugs: A review. Front. Chem. 2021;9:657599. doi: 10.3389/fchem.2021.657599. PubMed DOI PMC

Hunakova L., Horvathova E., Majerova K., Bobal P., Otevrel J., Brtko J. Genotoxic effects of tributyltin and triphenyltin isothiocyanates, cognate RXR ligands: Comparison in human breast carcinoma MCF 7 and MDA-MB-231 cells. Int. J. Mol. Sci. 2019;20:1198. doi: 10.3390/ijms20051198. PubMed DOI PMC

Alama A., Tasso B., Novelli F., Sparatore F. Organometalic compounds in oncology: Implications of novel organotins as antitumour agents. Drug Discov. Today. 2009;14:500–508. doi: 10.1016/j.drudis.2009.02.002. PubMed DOI

Watanabe M., Kakuta H. Retinoid X receptor antagonists. Int. J. Mol. Sci. 2018;19:2354. doi: 10.3390/ijms19082354. PubMed DOI PMC

Fickova M., Macho L., Brtko J. A comparison of the effects of tributyltin chloride and triphenyltin chloride on cell proliferation, proapoptotic p53, Bax, and antiapoptotic Bcl-2 protein levels in human breast cancer MCF-7 cell line. Toxicol. In Vitro. 2015;29:727–731. doi: 10.1016/j.tiv.2015.02.007. PubMed DOI

Strouhalova D., Toporova L., Lastovickova M., Macejova D., Bobalova J., Brtko J. Novel insights into the combined effect of triorganotin compounds and all-trans retinoic acid on expression of selected proteins associated with tumor progression in breast cancer cell line MDA-MB-231: Proteomic approach. Gen. Physiol. Biophys. 2019;38:135–144. doi: 10.4149/gpb_2018042. PubMed DOI

Strouhalova D., Macejova D., Mosna B., Bobal P., Otevrel J., Lastovickova M., Brtko J., Bobalova J. Down-regulation of vimentin by triorganotin isothiocyanates-nuclear retinoid X receptor agonists: A proteomic approach. Toxicol. Lett. 2020;318:22–29. doi: 10.1016/j.toxlet.2019.10.004. PubMed DOI

Satelli A., Li S. Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell. Mol. Life Sci. 2011;68:3033–3046. doi: 10.1007/s00018-011-0735-1. PubMed DOI PMC

Jørgensen C.L.T., Forsare C., Bendahl P.-O., Falck A.-K., Fernö M., Lövgren K., Aaltonen K., Rydén L. Expression of epithelial-mesenchymal transition-related markers and phenotypes during breast cancer progression. Breast Cancer Res. Treat. 2020;181:369–381. doi: 10.1007/s10549-020-05627-0. PubMed DOI PMC

Strouhalova K., Přechová M., Gandalovičová A., Brábek J., Gregor M., Rosel D. Vimentin intermediate filaments as potential target for cancer treatment. Cancers. 2020;12:184. doi: 10.3390/cancers12010184. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...