The Role of ATRA, Natural Ligand of Retinoic Acid Receptors, on EMT-Related Proteins in Breast Cancer: Minireview
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
34948142
PubMed Central
PMC8705994
DOI
10.3390/ijms222413345
PII: ijms222413345
Knihovny.cz E-zdroje
- Klíčová slova
- ATRA, EMT, breast cancer, protein,
- MeSH
- epitelo-mezenchymální tranzice * MeSH
- lidé MeSH
- metastázy nádorů MeSH
- nádorové proteiny agonisté metabolismus MeSH
- nádory prsu metabolismus mortalita patologie MeSH
- receptory kyseliny retinové agonisté metabolismus MeSH
- tretinoin metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- nádorové proteiny MeSH
- receptory kyseliny retinové MeSH
- tretinoin MeSH
The knowledge of the structure, function, and abundance of specific proteins related to the EMT process is essential for developing effective diagnostic approaches to cancer with the perspective of diagnosis and therapy of malignancies. The success of all-trans retinoic acid (ATRA) differentiation therapy in acute promyelocytic leukemia has stimulated studies in the treatment of other tumors with ATRA. This review will discuss the impact of ATRA use, emphasizing epithelial-mesenchymal transition (EMT) proteins in breast cancer, of which metastasis and recurrence are major causes of death.
Department of Chemical Drugs Faculty of Pharmacy Masaryk University 612 00 Brno Czech Republic
Institute of Analytical Chemistry of the CAS v v i 602 00 Brno Czech Republic
Zobrazit více v PubMed
International Agency for Research on Cancer (IARC) in December 2020. [(accessed on 5 March 2021)]. Available online: https://www.who.int/news/item/03-02-2021-breast-cancer-now-most-common-form-of-cancer-who-taking-action.
Howlader N., Noone A.M., Krapcho M., Miller D., Brest A., Yu M., Ruhl J., Tatalovich Z., Mariotto A., Lewis D.R., et al., editors. SEER Cancer Statistics Review, 1975–2016, Section 4: Breast Cancer. National Cancer Institute; Bethesda, MD, USA: 2019. [(accessed on 22 October 2019)]. Updated April 2019. Available online: https://seer.cancer.gov/csr/1975_2016/results_merged/sect_04_breast.pdf.
Qin X.-J., Ling B.X. Proteomic studies in breast cancer. Oncol. Lett. 2012;3:735–743. PubMed PMC
Tyanova S., Albrechtsen R., Kronqvist P., Cox J., Mann M., Geiger T. Proteomic maps of breast cancer subtypes. Nat. Commun. 2016;7:10259. doi: 10.1038/ncomms10259. PubMed DOI PMC
Yanovich G., Agmon H., Harel M., Sonnenblick A., Peretz T., Geiger T. Clinical proteomics of breast cancer reveals a novel layer of breast cancer classification. Cancer Res. 2018;78:6001–6010. doi: 10.1158/0008-5472.CAN-18-1079. PubMed DOI PMC
Liang C.Y., Qiao G.A.P., Liu Y.Z., Tian L., Hui N., Li J., Ma Y.L., Li H., Zhao Q.Q., Cao W.Q., et al. Overview of all-trans retinoic acid (ATRA) and its analogues: Structures, activities, and mechanisms in acute promyelocytic leukaemia. Eur. J. Med. Chem. 2021;220:113451. doi: 10.1016/j.ejmech.2021.113451. PubMed DOI
Chlapek P., Slavikova V., Mazanek P., Sterba J., Veselska R. Why differentiation therapy sometimes fails: Molecular mechanisms of resistance to retinoids. Int. J. Mol. Sci. 2018;19:132. doi: 10.3390/ijms19010132. PubMed DOI PMC
Sasmita A.O., Wong Y.P. Organoids as reliable breast cancer study models: An update. Int. J. Oncol. Res. 2018;1:008.
Bouchal P., Schubert O.T., Faktor J., Capkova L., Imrichova H., Zoufalova K., Paralova V., Hrstka R., Liu Y., Ebhardt H.A., et al. Breast cancer classification based on proteotypes obtained by SWATH mass spectrometry. Cell Rep. 2019;28:832–843. doi: 10.1016/j.celrep.2019.06.046. PubMed DOI PMC
Fragomeni S.M., Sciallis A., Jerus J.S. Molecular subtypes and local-regional control of breast. Surg. Oncol. Clin. N. Am. 2018;27:95–120. doi: 10.1016/j.soc.2017.08.005. PubMed DOI PMC
Abotaleb M., Kubatka P., Caprnda M., Varghese E., Zolakova B., Zubor P., Opatrilova R., Kruzliak P., Stefanicka P., Busselberg D. Chemotherapeutic agents for the treatment of metastatic breast cancer: An update. Biomed. Pharmacother. 2018;101:458–477. doi: 10.1016/j.biopha.2018.02.108. PubMed DOI
Li Z.-H., Hu P.-H., Tu J.-H., Yu N.-S. Luminal B breast cancer: Patterns of recurrence and clinical outcome. Oncotarget. 2016;7:65024–65033. doi: 10.18632/oncotarget.11344. PubMed DOI PMC
Pan Y., Yuan Y., Liu G., Wei Y. P53 and Ki-67 as prognostic markers in triple-negative breast cancer patients. PLoS ONE. 2017;12:e0172324. doi: 10.1371/journal.pone.0172324. PubMed DOI PMC
Yin L., Duan J.-J., Bian X.-W., Yu S.-C. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020;22:61. doi: 10.1186/s13058-020-01296-5. PubMed DOI PMC
Wang J., Xu B. Targeted therapeutic options and future perspectives for HER2-positive breast cancer. Sig. Transduct. Target Ther. 2019;4:34. doi: 10.1038/s41392-019-0069-2. PubMed DOI PMC
Liskova A., Koklesova L., Samec M., Smejkal K., Samuel S.M., Varghese E., Abotaleb M., Biringer K., Kudela E., Danko J., et al. Flavonoids in cancer metastasis. Cancer. 2020;12:1498. doi: 10.3390/cancers12061498. PubMed DOI PMC
Kalluri R., Weinberg R.A. The basics of epithelial-mesenchymal transition. J. Clin. Investig. 2009;119:1420–1428. doi: 10.1172/JCI39104. PubMed DOI PMC
Swa H.L.F., Shaik A.A., Lim L.H.K., Gunaratne J. Mass spectrometry based quantitative proteomics and integrative network analysis accentuates modulating roles of annexin-1 in mammary tumorigenesis. Proteomics. 2015;15:408–418. doi: 10.1002/pmic.201400175. PubMed DOI
Niu W., Luo Y., Zhou Y., Li M., Wu C., Duan Y., Wang H., Fan S., Li Z., Xiong W., et al. BRD7 suppresses invasion and metastasis in breast cancer by negatively regulating YB1-induced EMT. J. Exp. Clin. Cancer Res. 2020;39:30. doi: 10.1186/s13046-019-1493-4. PubMed DOI PMC
Chen C.-L., Wang Y., Pan Q.-Z., Tang Y., Wang Q.-J., Pan K., Huang L.-X., He J., Zhao J.-J., Jiang S.-S., et al. Bromodomain-containing protein 7 (BRD7) as a potential tumor suppressor in hepatocellular carcinoma. Oncotarget. 2016;7:16248–16261. doi: 10.18632/oncotarget.7637. PubMed DOI PMC
Prieto-García E., Díaz-García C.V., García-Ruiz I., Agulló-Ortuño M.T. Epithelial-to-mesenchymal transition in tumour progression. Med. Oncol. 2017;34:122. doi: 10.1007/s12032-017-0980-8. PubMed DOI
Morandi A., Taddei M.L., Chiarugi P., Giannoni E. Targeting the metabolic reprogramming that controls epithelial-to-mesenchymal transition in aggressive tumours. Front. Oncol. 2017;7:40. doi: 10.3389/fonc.2017.00040. PubMed DOI PMC
Wang Y., Qin J., Liu Q., Hong X., Li T., Zhu Y., He L., Zheng B., Li M. SNF2H promotes hepatocellular carcinoma proliferation by activating the Wnt/β-catenin signaling pathway. Oncol. Lett. 2016;12:1329–1336. doi: 10.3892/ol.2016.4681. PubMed DOI PMC
Strouhalova D., Macejova D., Lastovickova M., Brtko J., Bobalova J. CD44 and vimentin, markers involved with epithelial-mesenchymal transition: A proteomic analysis of sequential proteins extraction of triple-negative breast cancer cells after treatment with all-trans retinoic acid. Gen. Physiol. Biophys. 2020;39:399–405. doi: 10.4149/gpb_2020026. PubMed DOI
Xu H., Tian Y., Yuan X., Wu H., Liu Q., Pestell R.G., Wu K. The role of CD44 in epithelial–mesenchymal transition and cancer development. OncoTargets Ther. 2015;8:3783–3792. PubMed PMC
Badaoui M., Mimsy-Julienne C., Saby C., Van Gulick L., Peretti M., Jeannesson P., Morjani H., Ouadid-Ahidouch H. Collagen type 1 promotes survival of human breast cancer cells by overexpressing Kv10.1 potassium and Orai1 calcium channels through DDR1-dependent pathway. Oncotarget. 2018;9:24653–24671. doi: 10.18632/oncotarget.19065. PubMed DOI PMC
Neagu M., Constantin C., Bostan M., Caruntu C., Ignat S.R., Dinescu S., Costache M. Proteomic technology “lens” for epithelial-mesenchymal transition process identification in oncology. Anal. Cell. Pathol. 2019 doi: 10.1155/2019/3565970. PubMed DOI PMC
Wang Z.N., Xu H.M. Relationship between collagen IV expression and biological behavior of gastric cancer. World J. Gastroenterol. 2000;6:438–439. doi: 10.3748/wjg.v6.i3.438. PubMed DOI PMC
Jung H., Kim B., Moon B.I., Oh E.-S. Cytokeratin 18 is necessary for initiation of TGF-b1-induced epithelial–mesenchymal transition in breast epithelial cells. Mol. Cell Biochem. 2016;423:21–28. doi: 10.1007/s11010-016-2818-7. PubMed DOI
Donato R., Cannon B.R., Sorci G., Riuzzi F., Hsu K., Weber D.J., Geczy C.L. Functions of S100 proteins. Curr. Mol. Med. 2013;13:24–57. doi: 10.2174/156652413804486214. PubMed DOI PMC
Zhou G., Yang L., Gray A., Srivastava A.K., Li C., Zhang G., Cui T. The role of desmosomes in carcinogenesis. OncoTargets Ther. 2017;10:4059–4063. doi: 10.2147/OTT.S136367. PubMed DOI PMC
Orre L.M., Panizza E., Kaminskyy V.O., Vernet E., Graeslund T., Zhivotovsky B., Lehtioe J. S100A4 interacts with p53 in the nucleus and promotes p53 degradation. Oncogene. 2018;32:5531–5540. doi: 10.1038/onc.2013.213. PubMed DOI
Liu F., Gu L.-N., Shan B.-E., Geng C.-Z., Sang M.-X. Biomarkers for EMT and MET in breast cancer: An update. Oncol. Lett. 2016;12:4869–4876. doi: 10.3892/ol.2016.5369. PubMed DOI PMC
Roussellea P., Scoazecb J.Y. Laminin 332 in cancer: When the extracellular matrix turns signals from cell anchorage to cell. Semin. Cancer Biol. 2020;62:149–165. doi: 10.1016/j.semcancer.2019.09.026. PubMed DOI
Rachow S., Zorn-Kruppa M., Ohnemus U., Kirschner N., Vidal-y-Sy S., von den Driesch P., Bornchen C., Eberle J., Mildner M., Vettorazzi E., et al. Occludin is involved in adhesion, apoptosis, differentiation and Ca2+ homeostasis of human keratinocytes: Implications for tumorigenesis. PLoS ONE. 2013;8:e55116. PubMed PMC
Kang E., Seo J., Yoon H., Cho S. The post-translational regulation of epithelial–mesenchymal transition-inducing transcription factors in cancer metastasis. Int. J. Mol. Sci. 2021;22:3591. doi: 10.3390/ijms22073591. PubMed DOI PMC
Ibrahim S.A., Gadalla R., El-Ghonaimy E.A., Samir O., Mohamed H.T., Hassan H., Greve B., El-Shinawi M., Mohamed M.M., Götte M. Syndecan-1 is a novel molecular marker for triple negative inflammatory breast cancer and modulates the cancer stem cell phenotype via the IL-6/STAT3, Notch and EGFR signaling pathways. Mol. Cancer. 2017;16:57. doi: 10.1186/s12943-017-0621-z. PubMed DOI PMC
Tailor D., Resendez A., Garcia-Marques F.J., Pandrala M., Going C.C., Bermudez A., Kumar V., Rafat M., Nambiar D.K., Honkala A., et al. Y box binding protein 1 inhibition as a targeted therapy for ovarian cancer. Cell Chem. Biol. 2021;28:1206–1220.e6. doi: 10.1016/j.chembiol.2021.02.014. PubMed DOI
Soen B., Vandamme N., Berx G., Schwaller J., Van Vlierberghe P., Goossens S. ZEB proteins in leukemia: Friends, foes, or friendly foes? Hemasphere. 2018;2:e43. doi: 10.1097/HS9.0000000000000043. PubMed DOI PMC
Dekky B., Ruff M., Bonnier D., Legagneux V., Théret N. Proteomic screening identifies the zonula occludens protein ZO-1 as a new partner for ADAM12 in invadopodia-like structures. Oncotarget. 2018;9:21366–21382. doi: 10.18632/oncotarget.25106. PubMed DOI PMC
Zeisberg M., Hanai J.-I., Sugimoto H., Mammoto T., Charytan D., Strutz F., Kalluri R. BMP-7 counteracts TGFbeta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat. Med. 2003;9:964–968. doi: 10.1038/nm888. PubMed DOI
Okada H., Danoff T.M., Kalluri R., Neilson E.G. Early role of Fsp1 in epithelial-mesenchymal transformation. Am. J. Physiol. 1997;273:F563–F574. doi: 10.1152/ajprenal.1997.273.4.F563. PubMed DOI
Yang J., Weinberg R.A. Epithelial mesenchymal transition: At the crossroads of development and tumor metastasis. Dev. Cell. 2008;14:818–829. doi: 10.1016/j.devcel.2008.05.009. PubMed DOI
Roche J. The epithelial-to-mesenchymal transition in cancer. Cancers. 2018;10:52. doi: 10.3390/cancers10020052. PubMed DOI PMC
Hamilton G., Rath B. Mesenchymal-epithelial transition and circulating tumor cells in small cell lung cancer. Adv. Exp. Med. Biol. 2017;994:229–245. PubMed
Loh C.-Y., Chai J.Y., Tang T.F., Wong W.F., Sethi G., Shanmugam M.K., Chong P.P., Looi C.Y. The E-cadherin and N-cadherin switch in epithelial-to-mesenchymal transition: Signaling, therapeutic implications, and challenges. Cells. 2019;8:1118. doi: 10.3390/cells8101118. PubMed DOI PMC
Lamouille S., Xu J., Derynck R. Molecular mechanisms of epithelial–mesenchymal transition. Nat. Rev. Mol. Cell Biol. 2014;15:178–196. doi: 10.1038/nrm3758. PubMed DOI PMC
Zanetti A., Affatato R., Centritto F., Fratelli M., Kurosaki M., Barzago M.M., Bolis M., Terao M., Garattini E., Paroni G. All-trans-retinoic acid modulates the plasticity and inhibits the motility of breast cancer cells role of Notch1 and Transforming Growth Factor (Tgf) J. Biol. Chem. 2015;290:17690–17709. doi: 10.1074/jbc.M115.638510. PubMed DOI PMC
Doi A., Ishikawa K., Shibata N., Ito E., Fujimoto J., Yamamoto M., Shiga H., Mochizuki H., Kawamura Y., Goshima N., et al. Enhanced expression of retinoic acid receptor alpha (RARA) induces epithelial-to-mesenchymal transition and disruption of mammary acinar structures. Mol. Oncol. 2015;9:355–364. doi: 10.1016/j.molonc.2014.09.005. PubMed DOI PMC
Fisher K.R., Durrans A., Lee S., Sheng J., Li F., Wong S.T.C., Choi H., El Rayes T., Ryu S., Troeger J., et al. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature. 2015;527:472–476. doi: 10.1038/nature15748. PubMed DOI PMC
Zheng X., Carstens J.L., Kim J., Scheible M., Kaye J., Sugimoto H., Wu C.-C., LeBleu V.S., Kalluri R. Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature. 2015;527:525–530. doi: 10.1038/nature16064. PubMed DOI PMC
Garattini E., Gianni M., Terao M. Retinoids as differentiating agents in oncology: A network of interactions with intracellular pathways as the basis for rational therapeutic combinations. Curr. Pharm. Des. 2007;13:1375–1400. doi: 10.2174/138161207780618786. PubMed DOI
Berbis P. Retinoids: Mechanisms of action. Ann. Dermatol. Venereol. 2010;137:S97–S103. doi: 10.1016/S0151-9638(10)70036-3. PubMed DOI
Brtko J., Dvorak Z. Natural and synthetic retinoid X receptor ligands and their role in selected nuclear receptor action. Biochimie. 2020;179:157–168. doi: 10.1016/j.biochi.2020.09.027. PubMed DOI
Lotan R. Retinoids and apoptosis: Implication for cancer chemoprevention and therapy. J. Natl. Cancer Inst. 1995;87:1655–1657. doi: 10.1093/jnci/87.22.1655. PubMed DOI
Sun S.Y., Lotan R. Retinoids and their receptors in cancer development and chemoprevention. Crit. Rev. Oncol. Hematol. 2002;41:41–55. doi: 10.1016/S1040-8428(01)00144-5. PubMed DOI
Brtko J., Dvorak Z. Role of retinoids, rexinoids and thyroid hormone in the expression of cytochrome P450 enzymes. Curr. Drug Metab. 2011;12:71–88. doi: 10.2174/138920011795016881. PubMed DOI
Brtko J., Dvorak Z. Triorganotin compounds—ligands for “rexinoid“ inducible transcription factors: Biological effects. Toxicol. Lett. 2015;234:50–58. doi: 10.1016/j.toxlet.2015.02.009. PubMed DOI
le Maire A., Alvarez S., Shankaranarayanan P., R de Lera A., Bourguet W., Gronemeyer H. Retinoid receptors and therapeutic applications of RAR/RXR modulators. Curr. Top. Med. Chem. 2012;12:505–527. doi: 10.2174/156802612799436687. PubMed DOI
Hunsu V.O., Facey C.O.B., Fields J.Z., Boman B.M. Retinoids as chemo-preventive and molecular-targeted anticancer therapies. Int. J. Mol. Sci. 2021;22:7731. doi: 10.3390/ijms22147731. PubMed DOI PMC
Nguyen P.H., Giraud J., Staedel C., Chambonnier L., Dubus P., Chevret E., Bœuf H., Gauthereau X., Rousseau B., Fevre M., et al. All-trans retinoic acid targets gastric cancer stem cells and inhibits patient-derived gastric carcinoma tumor growth. Oncogene. 2016;35:5619–5628. doi: 10.1038/onc.2016.87. PubMed DOI
Dobrotkova V., Chlapek P., Mazanek P., Sterba J., Veselska R. Traffic lights for retinoids in oncology: Molecular markers of retinoid resistance and sensitivity and their use in the management of cancer differentiation therapy. BMC Cancer. 2018;18:1059. doi: 10.1186/s12885-018-4966-5. PubMed DOI PMC
Wille J.J., Park J.Y., Shealy Y.F. Cancer chemopreventive retinoids: Validation and analysis of in vivo and in vitro bioassay results. J. Cancer Ther. 2016;7:1008–1033. doi: 10.4236/jct.2016.713098. DOI
Shilkaitis A., Green A., Christov K. Retinoids induce cellular senescence in breast cancer cells by RAR-β dependent and independent pathways: Potential clinical implications. Int. J. Oncol. 2015;47:35–42. doi: 10.3892/ijo.2015.3013. PubMed DOI PMC
Brtko J. Retinoids, rexinoids and their cognate nuclear receptors: Character and their role in chemoprevention of selected malignant diseases. Biomed. Pap. Med. 2007;151:187–194. doi: 10.5507/bp.2007.033. PubMed DOI
Cui J.J., Gong M.J., He Y., Li Q.L., He T.C., Bi Y. All-trans retinoic acid inhibits proliferation, migration, invasion and induces differentiation of hepa1-6 cells through reversing EMT in vitro. Int. J. Oncol. 2016;48:349–357. doi: 10.3892/ijo.2015.3235. PubMed DOI
Guan J., Zhang H., Wen Z., Gu Y.M., Cheng Y., Sun Y., Zhang T.T., Jia C.W., Lu Z.H., Chen J. Retinoic acid inhibits pancreatic cancer cell migration and EMT through the downregulation of IL-6 in cancer associated fibroblast cells. Cancer Lett. 2014;345:132–139. doi: 10.1016/j.canlet.2013.12.006. PubMed DOI
Fang S.Y., Hu C.Q., Xu L., Cui J.J., Tao L., Gong M.J., Wang Y., He Y., He T.C., Bi Y. All-trans-retinoic acid inhibits the malignant behaviors of hepatocarcinoma cells by regulating autophagy. Am. J. Transl. Res. 2020;12:6793–6810. PubMed PMC
Garattini E., Bolis M., Garattini S.K., Fratelli M., Centritto F., Paroni G., Gianni M., Zanetti A., Pagani A., Fisher J.N., et al. Retinoids and breast cancer: From basic studies to the clinic and back again. Cancer Treat. Rev. 2014;40:739–749. doi: 10.1016/j.ctrv.2014.01.001. PubMed DOI
Costantini L., Molinari R., Farinon B., Merendino N. Retinoic acids in the treatment of most lethal solid cancers. J. Clin. Med. 2020;9:360. doi: 10.3390/jcm9020360. PubMed DOI PMC
Uray I.P., Dmitrovsky E., Brown P.H. Retinoids and rexinoids in cancer prevention: From laboratory to clinic. Semin. Oncol. 2016;43:49–64. doi: 10.1053/j.seminoncol.2015.09.002. PubMed DOI PMC
Lacroix M., Leclercq G. Relevance of breast cancer cell lines as models for breast tumors: An update. Breast Cancer Res. Treat. 2004;83:249–289. doi: 10.1023/B:BREA.0000014042.54925.cc. PubMed DOI
Reinhardt A., Liu H.Y., Ma Y.X., Zhou Y.G., Zang C.B., Habbel J.P., Possinger K., Eucker J. Tumor cell-selective synergism of TRAIL- and ATRA-induced cytotoxicity in breast cancer cells. Anticancer Res. 2018;38:2669–2682. PubMed
Coyle K.M., Dean C.A., Thomas M.L., Giacomantonio C.A., Helyer L., Marcato P. DNA methylation predicts the response of triple-negative breast cancers to all-trans retinoic acid. Cancers. 2018;10:397. doi: 10.3390/cancers10110397. PubMed DOI PMC
Enikeev A.D., Komelkov A.V., Axelrod M.E., Galetsky S.A., Kuzmichev S.A., Tchevkina E.M. CRABP1 and CRABP2 protein levels correlate with each other but do not correlate with sensitivity of breast cancer cells to retinoic acid. Biochemistry. 2021;86:217–229. doi: 10.1134/S0006297921020103. PubMed DOI
Huang S., Chen Y., Liang Z.-M., Li N.-N., Liu Y., Zhu Y., Liao D., Zhou X.Z., Lu K.P., Yao Y., et al. Targeting pin1 by all-trans retinoic acid (ATRA) overcomes tamoxifen resistance in breast cancer via multifactorial mechanisms. Front. Cell Dev. Biol. 2019;7:322. doi: 10.3389/fcell.2019.00322. PubMed DOI PMC
Kamal A.H.M., Han B.S., Choi J.-S., Cho K., Kim S.Y., Kim W.K., Lee S.C., Bae K.-H. Proteomic analysis of the effect of retinoic acids on the human breast cancer cell line MCF-7. Mol. Biol. Rep. 2014;41:3499–3507. doi: 10.1007/s11033-014-3212-8. PubMed DOI
Flodrova D., Benkovska D., Macejova D., Bialesova L., Hunakova L., Brtko J., Bobalova J. Proteomic analysis of changes in the protein composition of MCF-7 human breast cancer cells induced by all-trans retinoic acid, 9-cis retinoic acid, and their combination. Toxicol. Lett. 2015;232:226–232. doi: 10.1016/j.toxlet.2014.09.030. PubMed DOI
Croker A.K., Allan A.L. Inhibition of aldehyde dehydrogenase (ALDH) activity reduces chemotherapy and radiation resistance of stem-like ALDHhiCD44+ human breast cancer cells. Breast Cancer Res. Treat. 2012;133:75–87. doi: 10.1007/s10549-011-1692-y. PubMed DOI
Flodrova D., Toporova L., Lastovickova M., Macejova D., Hunakova L., Brtko J., Bobalova J. Consequences of the natural retinoid/retinoid X receptor ligands action in human breast cancer MDA-MB-231 cell line: Focus on functional proteomics. Toxicol. Lett. 2017;281:26–34. doi: 10.1016/j.toxlet.2017.09.001. PubMed DOI
Ahrens T., Sleeman J.P., Schempp C.M., Howells N., Hofmann M., Ponta H., Herrlich P., Simon J.C. Soluble CD44 inhibits melanoma tumor growth by blocking cell surface CD44 binding to hyaluronic acid. Oncogene. 2001;20:3399–3408. doi: 10.1038/sj.onc.1204435. PubMed DOI
Li C.W., Heidt D.G., Dalerba P., Burant C.F., Zhang L.J., Asday V., Wicha M., Clarke M.F., Simeone D.M. Identification of pancreatic cancer stem cells. Cancer Res. 2007;67:1030–1037. doi: 10.1158/0008-5472.CAN-06-2030. PubMed DOI
Martincuks A., Li P.-C., Zhao Q., Zhang C., Li Y.-J., Yu H., Rodriguez-Rodriguez L. CD44 in ovarian cancer progression and therapy resistance—A critical role for STAT3. Front. Oncol. 2020;10:589601. doi: 10.3389/fonc.2020.589601. PubMed DOI PMC
Yaghobi Z., Movassaghpour A., Talebi M., Shadbad M.A., Hajiasgharzadeh K., Pourvahdani S., Baradaran B. The role of CD44 in cancer chemoresistance: A concise review. Eur. J. Pharmacol. 2021;903:174147. doi: 10.1016/j.ejphar.2021.174147. PubMed DOI
Xu H., Tian Y., Yuan X., Liu Y., Wu H., Liu Q., Wu G.S., Wu K. Enrichment of CD44 in basal-type breast cancer correlates with EMT, cancer stem cell gene profile, and prognosis. OncoTargets Ther. 2016;9:431–444. PubMed PMC
Chen C., Zhao S., Karnad A., Freeman J.W. The biology and role of CD44 in cancer progression: Therapeutic implications. J. Hematol. Oncol. 2018;11:64. doi: 10.1186/s13045-018-0605-5. PubMed DOI PMC
Eibl R.H., Pietsch T., Moll J., Skroch-Angel P., Heider K.-H., von Ammon K., Wiestler O.D., Ponta H., Kleihues P., Herrlich P. Expression of variant CD44 epitopes in human astrocytic brain tumors. J. Neurooncol. 1995;26:165–170. doi: 10.1007/BF01052619. PubMed DOI
Naor D., Nedvetzki S., Golan I., Melnik L., Faitelson Y. CD44 in cancer. Crit. Rev. Clin. Lab. Sci. 2002;39:527–579. doi: 10.1080/10408360290795574. PubMed DOI
Ni X., Hu G., Cai X. The success and the challenge of all-trans retinoic acid in the treatment of cancer. Crit. Rev. Food Sci. Nutr. 2019;59:S71–S80. doi: 10.1080/10408398.2018.1509201. PubMed DOI
Giuli M.V., Hanieh P.N., Giuliani E., Rinaldi F., Marianecci C., Screpanti I., Checquolo S., Carafa M. Current trends in ATRA delivery for cancer therapy. Pharmaceutics. 2020;12:707. doi: 10.3390/pharmaceutics12080707. PubMed DOI PMC
Giovannelli P., Di Donato M., Galasso G., Di Zazzo E., Medici N., Bilancio A., Migliaccio A., Castoria G. Breast cancer stem cells: The role of sex steroid receptors. World J. Stem Cells. 2019;11:594–603. doi: 10.4252/wjsc.v11.i9.594. PubMed DOI PMC
Li N., Zhu Y. Targeting liver cancer stem cells for the treatment of hepatocellular carcinoma. Ther. Adv. Gastroenterol. 2019;12:1756284818821560. doi: 10.1177/1756284818821560. PubMed DOI PMC
Koshiuka K., Elstner E., Williamson E., Said J.W., Tada Y., Koeffler H.P. Novel therapeutic approach: Organic arsenical (melarsoprol) alone or with all-trans-retinoic acid markedly inhibit growth of human breast and prostate cancer cells in vitro and in vivo. Br. J. Cancer. 2000;82:452–458. doi: 10.1054/bjoc.1999.0942. PubMed DOI PMC
Annuar S.N.S., Kamaludin F., Awang N., Chan K.M. Cellular basis of organotin(IV) derivatives as anticancer metallodrugs: A review. Front. Chem. 2021;9:657599. doi: 10.3389/fchem.2021.657599. PubMed DOI PMC
Hunakova L., Horvathova E., Majerova K., Bobal P., Otevrel J., Brtko J. Genotoxic effects of tributyltin and triphenyltin isothiocyanates, cognate RXR ligands: Comparison in human breast carcinoma MCF 7 and MDA-MB-231 cells. Int. J. Mol. Sci. 2019;20:1198. doi: 10.3390/ijms20051198. PubMed DOI PMC
Alama A., Tasso B., Novelli F., Sparatore F. Organometalic compounds in oncology: Implications of novel organotins as antitumour agents. Drug Discov. Today. 2009;14:500–508. doi: 10.1016/j.drudis.2009.02.002. PubMed DOI
Watanabe M., Kakuta H. Retinoid X receptor antagonists. Int. J. Mol. Sci. 2018;19:2354. doi: 10.3390/ijms19082354. PubMed DOI PMC
Fickova M., Macho L., Brtko J. A comparison of the effects of tributyltin chloride and triphenyltin chloride on cell proliferation, proapoptotic p53, Bax, and antiapoptotic Bcl-2 protein levels in human breast cancer MCF-7 cell line. Toxicol. In Vitro. 2015;29:727–731. doi: 10.1016/j.tiv.2015.02.007. PubMed DOI
Strouhalova D., Toporova L., Lastovickova M., Macejova D., Bobalova J., Brtko J. Novel insights into the combined effect of triorganotin compounds and all-trans retinoic acid on expression of selected proteins associated with tumor progression in breast cancer cell line MDA-MB-231: Proteomic approach. Gen. Physiol. Biophys. 2019;38:135–144. doi: 10.4149/gpb_2018042. PubMed DOI
Strouhalova D., Macejova D., Mosna B., Bobal P., Otevrel J., Lastovickova M., Brtko J., Bobalova J. Down-regulation of vimentin by triorganotin isothiocyanates-nuclear retinoid X receptor agonists: A proteomic approach. Toxicol. Lett. 2020;318:22–29. doi: 10.1016/j.toxlet.2019.10.004. PubMed DOI
Satelli A., Li S. Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell. Mol. Life Sci. 2011;68:3033–3046. doi: 10.1007/s00018-011-0735-1. PubMed DOI PMC
Jørgensen C.L.T., Forsare C., Bendahl P.-O., Falck A.-K., Fernö M., Lövgren K., Aaltonen K., Rydén L. Expression of epithelial-mesenchymal transition-related markers and phenotypes during breast cancer progression. Breast Cancer Res. Treat. 2020;181:369–381. doi: 10.1007/s10549-020-05627-0. PubMed DOI PMC
Strouhalova K., Přechová M., Gandalovičová A., Brábek J., Gregor M., Rosel D. Vimentin intermediate filaments as potential target for cancer treatment. Cancers. 2020;12:184. doi: 10.3390/cancers12010184. PubMed DOI PMC