Flavonoids in Cancer Metastasis

. 2020 Jun 08 ; 12 (6) : . [epub] 20200608

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32521759

Grantová podpora
NPRP 11S-1214-170101 Qatar National Research Fund
VEGA 1/0136/19 Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
ITMS: 26220120053 European Regional Development Fund

Metastasis represents a serious complication in the treatment of cancer. Flavonoids are plant secondary metabolites exerting various health beneficiary effects. The effects of flavonoids against cancer are associated not only with early stages of the cancer process, but also with cancer progression and spread into distant sites. Flavonoids showed potent anti-cancer effects against various cancer models in vitro and in vivo, mediated via regulation of key signaling pathways involved in the migration and invasion of cancer cells and metastatic progression, including key regulators of epithelial-mesenchymal transition or regulatory molecules such as MMPs, uPA/uPAR, TGF-β and other contributors of the complex process of metastatic spread. Moreover, flavonoids modulated also the expression of genes associated with the progression of cancer and improved inflammatory status, a part of the complex process involved in the development of metastasis. Flavonoids also documented clear potential to improve the anti-cancer effectiveness of conventional chemotherapeutic agents. Most importantly, flavonoids represent environmentally-friendly and cost-effective substances; moreover, a wide spectrum of different flavonoids demonstrated safety and minimal side effects during long-termed administration. In addition, the bioavailability of flavonoids can be improved by their conjugation with metal ions or structural modifications by radiation. In conclusion, anti-cancer effects of flavonoids, targeting all phases of carcinogenesis including metastatic progression, should be implemented into clinical cancer research in order to strengthen their potential use in the future targeted prevention and therapy of cancer in high-risk individuals or patients with aggressive cancer disease with metastatic potential.

Zobrazit více v PubMed

Fares J., Fares M.Y., Khachfe H.H., Salhab H.A., Fares Y. Molecular principles of metastasis: A hallmark of cancer revisited. Signal Transduct. Target Ther. 2020;5:1–17. doi: 10.1038/s41392-020-0134-x. PubMed DOI PMC

Ayob A.Z., Ramasamy T.S. Cancer stem cells as key drivers of tumour progression. J. Biomed. Sci. 2018;25 doi: 10.1186/s12929-018-0426-4. PubMed DOI PMC

Fidler I.J., Kripke M.L. The challenge of targeting metastasis. Cancer Metastasis Rev. 2015;34:635–641. doi: 10.1007/s10555-015-9586-9. PubMed DOI PMC

Panche A.N., Diwan A.D., Chandra S.R. Flavonoids: An overview. J. Nutr. Sci. 2016;5 doi: 10.1017/jns.2016.41. PubMed DOI PMC

Al-Ishaq R.K., Abotaleb M., Kubatka P., Kajo K., Büsselberg D. Flavonoids and Their Anti-Diabetic Effects: Cellular Mechanisms and Effects to Improve Blood Sugar Levels. Biomolecules. 2019;9 doi: 10.3390/biom9090430. PubMed DOI PMC

Abotaleb M., Samuel S.M., Varghese E., Varghese S., Kubatka P., Liskova A., Büsselberg D. Flavonoids in Cancer and Apoptosis. Cancers (Basel) 2018;11 doi: 10.3390/cancers11010028. PubMed DOI PMC

Lee H.H., Bellat V., Law B. Chemotherapy induces adaptive drug resistance and metastatic potentials via phenotypic CXCR4-expressing cell state transition in ovarian cancer. PLoS ONE. 2017;12:e0171044. doi: 10.1371/journal.pone.0171044. PubMed DOI PMC

Riganti C., Contino M. New Strategies to Overcome Resistance to Chemotherapy and Immune System in Cancer. Int. J. Mol. Sci. 2019;20 doi: 10.3390/ijms20194783. PubMed DOI PMC

Lohiya V., Aragon-Ching J.B., Sonpavde G. Role of Chemotherapy and Mechanisms of Resistance to Chemotherapy in Metastatic Castration-Resistant Prostate Cancer. Clin. Med. Insights Oncol. 2016;10:57–66. doi: 10.4137/CMO.S34535. PubMed DOI PMC

Li X., Zhang Z.-S., Zhang X.-H., Yang S.-N., Liu D., Diao C.-R., Wang H., Zheng F.-P. Cyanidin inhibits EMT induced by oxaliplatin via targeting the PDK1-PI3K/Akt signaling pathway. Food Funct. 2019;10:592–601. doi: 10.1039/C8FO01611A. PubMed DOI

Li J., Zhang J., Wang Y., Liang X., Wusiman Z., Yin Y., Shen Q. Synergistic inhibition of migration and invasion of breast cancer cells by dual docetaxel/quercetin-loaded nanoparticles via Akt/MMP-9 pathway. Int. J. Pharm. 2017;523:300–309. doi: 10.1016/j.ijpharm.2017.03.040. PubMed DOI

Nwabo Kamdje A.H., Takam Kamga P., Tagne Simo R., Vecchio L., Seke Etet P.F., Muller J.M., Bassi G., Lukong E., Kumar Goel R., Mbo Amvene J., et al. Developmental pathways associated with cancer metastasis: Notch, Wnt, and Hedgehog. Cancer Biol. Med. 2017;14:109–120. doi: 10.20892/j.issn.2095-3941.2016.0032. PubMed DOI PMC

Pachmayr E., Treese C., Stein U. Underlying Mechanisms for Distant Metastasis - Molecular Biology. VIS. 2017;33:11–20. doi: 10.1159/000454696. PubMed DOI PMC

Chitty J.L., Filipe E.C., Lucas M.C., Herrmann D., Cox T.R., Timpson P. Recent advances in understanding the complexities of metastasis. F1000Res. 2018;7 doi: 10.12688/f1000research.15064.2. PubMed DOI PMC

Roche J. The Epithelial-to-Mesenchymal Transition in Cancer. Cancers (Basel) 2018;10 doi: 10.3390/cancers10020052. PubMed DOI PMC

Garg M. Epithelial-mesenchymal transition - activating transcription factors - multifunctional regulators in cancer. World J. Stem Cells. 2013;5:188–195. doi: 10.4252/wjsc.v5.i4.188. PubMed DOI PMC

van Zijl F., Krupitza G., Mikulits W. Initial steps of metastasis: Cell invasion and endothelial transmigration. Mutat. Res. 2011;728:23–34. doi: 10.1016/j.mrrev.2011.05.002. PubMed DOI PMC

Li H., Chen C. Quercetin Has Antimetastatic Effects on Gastric Cancer Cells via the Interruption of uPA/uPAR Function by Modulating NF-κb, PKC-δ, ERK1/2, and AMPKα. Integr. Cancer Ther. 2017;17:511–523. doi: 10.1177/1534735417696702. PubMed DOI PMC

Kitamura T., Qian B.-Z., Pollard J.W. Immune cell promotion of metastasis. Nat. Rev. Immunol. 2015;15:73–86. doi: 10.1038/nri3789. PubMed DOI PMC

Wang Z., Dabrosin C., Yin X., Fuster M.M., Arreola A., Rathmell W.K., Generali D., Nagaraju G.P., El-Rayes B., Ribatti D., et al. Broad targeting of angiogenesis for cancer prevention and therapy. Semin. Cancer Biol. 2015;35:S224–S243. doi: 10.1016/j.semcancer.2015.01.001. PubMed DOI PMC

Jin X., Mu P. Targeting Breast Cancer Metastasis. Breast Cancer (Auckl) 2015;9:23–34. doi: 10.4137/BCBCR.S25460. PubMed DOI PMC

Gong Y., Chippada-Venkata U.D., Oh W.K. Roles of Matrix Metalloproteinases and Their Natural Inhibitors in Prostate Cancer Progression. Cancers (Basel) 2014;6:1298–1327. doi: 10.3390/cancers6031298. PubMed DOI PMC

Chen J.-K., Peng S.-F., Lai K.C., Liu H.-C., Huang Y.-P., Lin C.-C., Huang A.-C., Chueh F.-S., Chung J.-G. Fistein Suppresses Human Osteosarcoma U-2 OS Cell Migration and Invasion via Affecting FAK, uPA and NF-ĸB Signaling Pathway In Vitro. In Vivo. 2019;33:801–810. doi: 10.21873/invivo.11542. PubMed DOI PMC

Malcherczyk D., Heyse T.J., El-Zayat B.F., Kunzke V., Moll R., Fuchs-Winkelmann S., Paletta J.R.J. Expression of MMP-9 decreases metastatic potential of Chondrosarcoma: An immunohistochemical study. BMC Musculoskelet. Disord. 2018;19 doi: 10.1186/s12891-017-1920-7. PubMed DOI PMC

Liu J., Lin P.C., Zhou B.P. Inflammation Fuels Tumor Progress and Metastasis. Curr. Pharm. Des. 2015;21:3032–3040. doi: 10.2174/1381612821666150514105741. PubMed DOI PMC

Blomberg O.S., Spagnuolo L., de Visser K.E. Immune regulation of metastasis: Mechanistic insights and therapeutic opportunities. Dis. Model. Mech. 2018;11 doi: 10.1242/dmm.036236. PubMed DOI PMC

Irani S. Emerging insights into the biology of metastasis: A review article. Iran J. Basic Med. Sci. 2019;22:833–847. doi: 10.22038/ijbms.2019.32786.7839. PubMed DOI PMC

Hamilton G., Rath B. Mesenchymal-Epithelial Transition and Circulating Tumor Cells in Small Cell Lung Cancer. Adv. Exp. Med. Biol. 2017;994:229–245. doi: 10.1007/978-3-319-55947-6_12. PubMed DOI

Afify S.M., Hassan G., Osman A., Calle A.S., Nawara H.M., Zahra M.H., EL-Ghlban S., Mansour H., Alam M.J., Abu Quora H.A., et al. Metastasis of Cancer Stem Cells Developed in the Microenvironment of Hepatocellular Carcinoma. Bioengineering (Basel) 2019;6 doi: 10.3390/bioengineering6030073. PubMed DOI PMC

Steeg P.S. Targeting metastasis. Nat. Rev. Cancer. 2016;16:201–218. doi: 10.1038/nrc.2016.25. PubMed DOI PMC

Ganapathy V., Moghe P.V., Roth C.M. Targeting tumor metastases: Drug delivery mechanisms and technologies. J. Control. Release. 2015;219:215–223. doi: 10.1016/j.jconrel.2015.09.042. PubMed DOI PMC

Ham S.L., Nasrollahi S., Shah K.N., Soltisz A., Paruchuri S., Yun Y.H., Luker G.D., Bishayee A., Tavana H. Phytochemicals potently inhibit migration of metastatic breast cancer cells. Integr. Biol. (Camb.) 2015;7:792–800. doi: 10.1039/C5IB00121H. PubMed DOI PMC

Kapinova A., Kubatka P., Liskova A., Baranenko D., Kruzliak P., Matta M., Büsselberg D., Malicherova B., Zulli A., Kwon T.K., et al. Controlling metastatic cancer: The role of phytochemicals in cell signaling. J. Cancer Res. Clin. Oncol. 2019;145:1087–1109. doi: 10.1007/s00432-019-02892-5. PubMed DOI

Kumar S., Pandey A.K. Chemistry and Biological Activities of Flavonoids: An Overview. Sci. World J. 2013;2013 doi: 10.1155/2013/162750. PubMed DOI PMC

Rodríguez-García C., Sánchez-Quesada C., Gaforio J.J. Dietary Flavonoids as Cancer Chemopreventive Agents: An Updated Review of Human Studies. Antioxidants (Basel) 2019;8 doi: 10.3390/antiox8050137. PubMed DOI PMC

Kozłowska A., Szostak-Wegierek D. Flavonoids--food sources and health benefits. Rocz. Panstw. Zakl. Hig. 2014;65:79–85. PubMed

Birt D.F., Jeffery E. Flavonoids. Adv. Nutr. 2013;4:576–577. doi: 10.3945/an.113.004465. PubMed DOI PMC

Yin X.-L., Lv Y., Wang S., Zhang Y.-Q. Morusin suppresses A549 cell migration and induces cell apoptosis by downregulating the expression of COX-2 and VEGF genes. Oncol. Rep. 2018;40:504–510. doi: 10.3892/or.2018.6431. PubMed DOI

Wang Z.-L., Wang S., Kuang Y., Hu Z.-M., Qiao X., Ye M. A comprehensive review on phytochemistry, pharmacology, and flavonoid biosynthesis of Scutellaria baicalensis. Pharm. Biol. 2018;56:465–484. doi: 10.1080/13880209.2018.1492620. PubMed DOI PMC

Kim G.D. Myricetin Inhibits Angiogenesis by Inducing Apoptosis and Suppressing PI3K/Akt/mTOR Signaling in Endothelial Cells. J. Cancer Prev. 2017;22:219–227. doi: 10.15430/JCP.2017.22.4.219. PubMed DOI PMC

Zhao T.-T., Xu Y.-Q., Hu H.-M., Gong H.-B., Zhu H.-L. Isoliquiritigenin (ISL) and its Formulations: Potential Antitumor Agents. Curr. Med. Chem. 2019;26:6786–6796. doi: 10.2174/0929867325666181112091700. PubMed DOI

Ramalingam M., Kim H., Lee Y., Lee Y.-I. Phytochemical and Pharmacological Role of Liquiritigenin and Isoliquiritigenin From Radix Glycyrrhizae in Human Health and Disease Models. Front. Aging Neurosci. 2018;10 doi: 10.3389/fnagi.2018.00348. PubMed DOI PMC

Jiang C.-H., Sun T.-L., Xiang D.-X., Wei S.-S., Li W.-Q. Anticancer Activity and Mechanism of Xanthohumol: A Prenylated Flavonoid From Hops (Humulus lupulus L.) Front. Pharmacol. 2018;9 doi: 10.3389/fphar.2018.00530. PubMed DOI PMC

Jaramillo Flores M.E. Cocoa Flavanols: Natural Agents with Attenuating Effects on Metabolic Syndrome Risk Factors. Nutrients. 2019;11 doi: 10.3390/nu11040751. PubMed DOI PMC

Egert S., Rimbach G. Which Sources of Flavonoids: Complex Diets or Dietary Supplements?1. Adv. Nutr. 2011;2:8–14. doi: 10.3945/an.110.000026. PubMed DOI PMC

Hsiao Y.-H., Hsieh M.-J., Yang S.-F., Chen S.-P., Tsai W.-C., Chen P.-N. Phloretin suppresses metastasis by targeting protease and inhibits cancer stemness and angiogenesis in human cervical cancer cells. Phytomedicine. 2019;62:152964. doi: 10.1016/j.phymed.2019.152964. PubMed DOI

Lv W.-L., Liu Q., An J.-H., Song X.-Y. Scutellarin inhibits hypoxia-induced epithelial-mesenchymal transition in bladder cancer cells. J. Cell. Physiol. 2019;234:23169–23175. doi: 10.1002/jcp.28883. PubMed DOI

Wang M.-H., Li L.-Z., Sun J.-B., Wu F.-H., Liang J.-Y. A new antioxidant flavone glycoside from Scutellaria baicalensis Georgi. Nat. Prod. Res. 2014;28:1772–1776. doi: 10.1080/14786419.2014.931391. PubMed DOI

Celano R., Campone L., Pagano I., Carabetta S., Sanzo R.D., Rastrelli L., Piccinelli A.L., Russo M. Characterisation of nutraceutical compounds from different parts of particular species of Citrus sinensis ‘Ovale Calabrese’ by UHPLC-UV-ESI-HRMS. Nat. Prod. Res. 2019;33:244–251. doi: 10.1080/14786419.2018.1443102. PubMed DOI

Prasad P., Vasas A., Hohmann J., Bishayee A., Sinha D. Cirsiliol Suppressed Epithelial to Mesenchymal Transition in B16F10 Malignant Melanoma Cells through Alteration of the PI3K/Akt/NF-κB Signaling Pathway. Int. J. Mol. Sci. 2019;20 doi: 10.3390/ijms20030608. PubMed DOI PMC

Gervazoni L.F.O., Gonçalves-Ozório G., Almeida-Amaral E.E. 2’-Hydroxyflavanone activity in vitro and in vivo against wild-type and antimony-resistant Leishmania amazonensis. PLoS Negl. Trop. Dis. 2018;12 doi: 10.1371/journal.pntd.0006930. PubMed DOI PMC

Dhandapani M., Goldman A. Preclinical Cancer Models and Biomarkers for Drug Development: New Technologies and Emerging Tools. J. Mol. Biomark. Diagn. 2017;8 doi: 10.4172/2155-9929.1000356. PubMed DOI PMC

Chien M.-H., Lin Y.-W., Wen Y.-C., Yang Y.-C., Hsiao M., Chang J.-L., Huang H.-C., Lee W.-J. Targeting the SPOCK1-snail/slug axis-mediated epithelial-to-mesenchymal transition by apigenin contributes to repression of prostate cancer metastasis. J. Exp. Clin. Cancer Res. 2019;38:246. doi: 10.1186/s13046-019-1247-3. PubMed DOI PMC

Tong J., Shen Y., Zhang Z., Hu Y., Zhang X., Han L. Apigenin inhibits epithelial-mesenchymal transition of human colon cancer cells through NF-κB/Snail signaling pathway. Biosci. Rep. 2019;39 doi: 10.1042/BSR20190452. PubMed DOI PMC

Lee H.H., Jung J., Moon A., Kang H., Cho H. Antitumor and Anti-Invasive Effect of Apigenin on Human Breast Carcinoma through Suppression of IL-6 Expression. Int. J. Mol. Sci. 2019;20 doi: 10.3390/ijms20133143. PubMed DOI PMC

Zhao G., Han X., Cheng W., Ni J., Zhang Y., Lin J., Song Z. Apigenin inhibits proliferation and invasion, and induces apoptosis and cell cycle arrest in human melanoma cells. Oncol. Rep. 2017;37:2277–2285. doi: 10.3892/or.2017.5450. PubMed DOI

Cao H.-H., Chu J.-H., Kwan H.-Y., Su T., Yu H., Cheng C.-Y., Fu X.-Q., Guo H., Li T., Tse A.K.-W., et al. Inhibition of the STAT3 signaling pathway contributes to apigenin-mediated anti-metastatic effect in melanoma. Sci. Rep. 2016;6:21731. doi: 10.1038/srep21731. PubMed DOI PMC

Li Y.-W., Xu J., Zhu G.-Y., Huang Z.-J., Lu Y., Li X.-Q., Wang N., Zhang F.-X. Apigenin suppresses the stem cell-like properties of triple-negative breast cancer cells by inhibiting YAP/TAZ activity. Cell Death Discov. 2018;4:105. doi: 10.1038/s41420-018-0124-8. PubMed DOI PMC

Fan J.-J., Hsu W.-H., Lee K.-H., Chen K.-C., Lin C.-W., Lee Y.-L.A., Ko T.-P., Lee L.-T., Lee M.-T., Chang M.-S., et al. Dietary Flavonoids Luteolin and Quercetin Inhibit Migration and Invasion of Squamous Carcinoma through Reduction of Src/Stat3/S100A7 Signaling. Antioxidants (Basel) 2019;8 doi: 10.3390/antiox8110557. PubMed DOI PMC

Yao Y., Rao C., Zheng G., Wang S. Luteolin suppresses colorectal cancer cell metastasis via regulation of the miR-384/pleiotrophin axis. Oncol. Rep. 2019;42:131–141. doi: 10.3892/or.2019.7136. PubMed DOI PMC

Yao X., Jiang W., Yu D., Yan Z. Luteolin inhibits proliferation and induces apoptosis of human melanoma cells in vivo and in vitro by suppressing MMP-2 and MMP-9 through the PI3K/AKT pathway. Food Funct. 2019;10:703–712. doi: 10.1039/C8FO02013B. PubMed DOI

Go J.-H., Wei J.-D., Park J.-I., Ahn K.-S., Kim J.-H. Wogonin suppresses the LPS-enhanced invasiveness of MDA-MB-231 breast cancer cells by inhibiting the 5-LO/BLT2 cascade. Int. J. Mol. Med. 2018;42:1899–1908. doi: 10.3892/ijmm.2018.3776. PubMed DOI PMC

Hong M., Cheng H., Song L., Wang W., Wang Q., Xu D., Xing W. Wogonin Suppresses the Activity of Matrix Metalloproteinase-9 and Inhibits Migration and Invasion in Human Hepatocellular Carcinoma. Molecules. 2018;23 doi: 10.3390/molecules23020384. PubMed DOI PMC

Yao Y., Zhao K., Yu Z., Ren H., Zhao L., Li Z., Guo Q., Lu N. Wogonoside inhibits invasion and migration through suppressing TRAF2/4 expression in breast cancer. J. Exp. Clin. Cancer. Res. 2017;36 doi: 10.1186/s13046-017-0574-5. PubMed DOI PMC

Huynh D.L., Kwon T., Zhang J.J., Sharma N., Gera M., Ghosh M., Kim N., Kim Cho S., Lee D.S., Park Y.H., et al. Wogonin suppresses stem cell-like traits of CD133 positive osteosarcoma cell via inhibiting matrix metallopeptidase-9 expression. BMC Complementary Altern. Med. 2017;17:304. doi: 10.1186/s12906-017-1788-y. PubMed DOI PMC

Liu K., Gao H., Wang Q., Wang L., Zhang B., Han Z., Chen X., Han M., Gao M. Hispidulin suppresses cell growth and metastasis by targeting PIM1 through JAK2/STAT3 signaling in colorectal cancer. Cancer Sci. 2018;109:1369–1381. doi: 10.1111/cas.13575. PubMed DOI PMC

Han M., Gao H., Ju P., Gao M.-Q., Yuan Y.-P., Chen X.-H., Liu K.-L., Han Y.-T., Han Z.-W. Hispidulin inhibits hepatocellular carcinoma growth and metastasis through AMPK and ERK signaling mediated activation of PPARγ. Biomed. Pharmacother. 2018;103:272–283. doi: 10.1016/j.biopha.2018.04.014. PubMed DOI

Gan C., Li Y., Yu Y., Yu X., Liu H., Zhang Q., Yin W., Yu L., Ye T. Natural product pectolinarigenin exhibits potent anti-metastatic activity in colorectal carcinoma cells in vitro and in vivo. Bioorg. Med. Chem. 2019;27:115089. doi: 10.1016/j.bmc.2019.115089. PubMed DOI

Li Y., Gan C., Zhang Y., Yu Y., Fan C., Deng Y., Zhang Q., Yu X., Zhang Y., Wang L., et al. Inhibition of Stat3 Signaling Pathway by Natural Product Pectolinarigenin Attenuates Breast Cancer Metastasis. Front. Pharmacol. 2019;10 doi: 10.3389/fphar.2019.01195. PubMed DOI PMC

Ku W.-T., Tung J.-J., Lee T.J.-F., Lai K.-C. Long-Term Exposure to Oroxylin A Inhibits Metastasis by Suppressing CCL2 in Oral Squamous Cell Carcinoma Cells. Cancers (Basel) 2019;11 doi: 10.3390/cancers11030353. PubMed DOI PMC

Luo Y., Ren Z., Du B., Xing S., Huang S., Li Y., Lei Z., Li D., Chen H., Huang Y., et al. Structure Identification of ViceninII Extracted from Dendrobium officinale and the Reversal of TGF-β1-Induced Epithelial−Mesenchymal Transition in Lung Adenocarcinoma Cells through TGF-β/Smad and PI3K/Akt/mTOR Signaling Pathways. Molecules. 2019:24. doi: 10.3390/molecules24010144. PubMed DOI PMC

Kim J.K., Park S.U. Quercetin and its role in biological functions: An updated review. EXCLI J. 2018;17:856–863. doi: 10.17179/excli2018-1538. PubMed DOI PMC

Chang J.-H., Lai S.-L., Chen W.-S., Hung W.-Y., Chow J.-M., Hsiao M., Lee W.-J., Chien M.-H. Quercetin suppresses the metastatic ability of lung cancer through inhibiting Snail-dependent Akt activation and Snail-independent ADAM9 expression pathways. Biochim. Biophys. Acta Mol. Cell Res. 2017;1864:1746–1758. doi: 10.1016/j.bbamcr.2017.06.017. PubMed DOI

Feng J., Song D., Jiang S., Yang X., Ding T., Zhang H., Luo J., Liao J., Yin Q. Quercetin restrains TGF-β1-induced epithelial-mesenchymal transition by inhibiting Twist1 and regulating E-cadherin expression. Biochem. Biophys. Res. Commun. 2018;498:132–138. doi: 10.1016/j.bbrc.2018.02.044. PubMed DOI

Cao H.-H., Cheng C.-Y., Su T., Fu X.-Q., Guo H., Li T., Tse A.K.-W., Kwan H.-Y., Yu H., Yu Z.-L. Quercetin inhibits HGF/c-Met signaling and HGF-stimulated melanoma cell migration and invasion. Molecular Cancer. 2015;14:103. doi: 10.1186/s12943-015-0367-4. PubMed DOI PMC

Cao H.-H., Tse A.K.-W., Kwan H.-Y., Yu H., Cheng C.-Y., Su T., Fong W.-F., Yu Z.-L. Quercetin exerts anti-melanoma activities and inhibits STAT3 signaling. Biochem. Pharmacol. 2014;87:424–434. doi: 10.1016/j.bcp.2013.11.008. PubMed DOI

Erdogan S., Turkekul K., Dibirdik I., Doganlar O., Doganlar Z.B., Bilir A., Oktem G. Midkine downregulation increases the efficacy of quercetin on prostate cancer stem cell survival and migration through PI3K/AKT and MAPK/ERK pathway. Biomed. Pharmacother. 2018;107:793–805. doi: 10.1016/j.biopha.2018.08.061. PubMed DOI

Ci Y., Zhang Y., Liu Y., Lu S., Cao J., Li H., Zhang J., Huang Z., Zhu X., Gao J., et al. Myricetin suppresses breast cancer metastasis through down-regulating the activity of matrix metalloproteinase (MMP)-2/9. Phytother. Res. 2018;32:1373–1381. doi: 10.1002/ptr.6071. PubMed DOI

Tuponchai P., Kukongviriyapan V., Prawan A., Kongpetch S., Senggunprai L. Myricetin ameliorates cytokine-induced migration and invasion of cholangiocarcinoma cells via suppression of STAT3 pathway. J. Cancer Res. Ther. 2019;15:157–163. doi: 10.4103/jcrt.JCRT_287_17. PubMed DOI

Ye C., Zhang C., Huang H., Yang B., Xiao G., Kong D., Tian Q., Song Q., Song Y., Tan H., et al. The Natural Compound Myricetin Effectively Represses the Malignant Progression of Prostate Cancer by Inhibiting PIM1 and Disrupting the PIM1/CXCR4 Interaction. Cell Physiol. Biochem. 2018;48:1230–1244. doi: 10.1159/000492009. PubMed DOI

Hung T.-W., Chen P.-N., Wu H.-C., Wu S.-W., Tsai P.-Y., Hsieh Y.-S., Chang H.-R. Kaempferol Inhibits the Invasion and Migration of Renal Cancer Cells through the Downregulation of AKT and FAK Pathways. Int. J. Med. Sci. 2017;14:984–993. doi: 10.7150/ijms.20336. PubMed DOI PMC

Chien H.-W., Wang K., Chang Y.-Y., Hsieh Y.-H., Yu N.-Y., Yang S.-F., Lin H.-W. Kaempferol suppresses cell migration through the activation of the ERK signaling pathways in ARPE-19 cells. Environ. Toxicol. 2019;34:312–318. doi: 10.1002/tox.22686. PubMed DOI

Li J., Gong X., Jiang R., Lin D., Zhou T., Zhang A., Li H., Zhang X., Wan J., Kuang G., et al. Fisetin Inhibited Growth and Metastasis of Triple-Negative Breast Cancer by Reversing Epithelial-to-Mesenchymal Transition via PTEN/Akt/GSK3β Signal Pathway. Front. Pharmacol. 2018;9:772. doi: 10.3389/fphar.2018.00772. PubMed DOI PMC

Tabasum S., Singh R.P. Fisetin suppresses migration, invasion and stem-cell-like phenotype of human non-small cell lung carcinoma cells via attenuation of epithelial to mesenchymal transition. Chem. Biol. Interact. 2019;303:14–21. doi: 10.1016/j.cbi.2019.02.020. PubMed DOI

Khan M.I., Adhami V.M., Lall R.K., Sechi M., Joshi D.C., Haidar O.M., Syed D.N., Siddiqui I.A., Chiu S.-Y., Mukhtar H. YB-1 expression promotes epithelial-to-mesenchymal transition in prostate cancer that is inhibited by a small molecule fisetin. Oncotarget. 2014;5:2462–2474. doi: 10.18632/oncotarget.1790. PubMed DOI PMC

Pal H.C., Sharma S., Strickland L.R., Katiyar S.K., Ballestas M.E., Athar M., Elmets C.A., Afaq F. Fisetin inhibits human melanoma cell invasion through promotion of mesenchymal to epithelial transition and by targeting MAPK and NFκB signaling pathways. PLoS ONE. 2014;9:e86338. doi: 10.1371/journal.pone.0086338. PubMed DOI PMC

Lee K.-S., Nam G.S., Baek J., Kim S., Nam K.-S. Inhibition of TPA-induced metastatic potential by morin hydrate in MCF-7 human breast cancer cells via the Akt/GSK-3β/c-Fos signaling pathway. Int. J. Oncol. 2020;56:630–640. doi: 10.3892/ijo.2020.4954. PubMed DOI

Wu S., Huang J., Hui K., Yue Y., Gu Y., Ning Z., Wang X., He D., Wu K. 2’-Hydroxyflavanone inhibits epithelial-mesenchymal transition, and cell migration and invasion via suppression of the Wnt/β-catenin signaling pathway in prostate cancer. Oncol. Rep. 2018;40:2836–2843. doi: 10.3892/or.2018.6678. PubMed DOI

Meng F.-C., Lin J.-K. Liquiritigenin Inhibits Colorectal Cancer Proliferation, Invasion, and Epithelial-to-Mesenchymal Transition by Decreasing Expression of Runt-Related Transcription Factor 2. Oncol Res. 2019;27:139–146. doi: 10.3727/096504018X15185747911701. PubMed DOI PMC

Li W., Du Q., Li X., Zheng X., Lv F., Xi X., Huang G., Yang J., Liu S. Eriodictyol Inhibits Proliferation, Metastasis and Induces Apoptosis of Glioma Cells via PI3K/Akt/NF-κB Signaling Pathway. Front. Pharmacol. 2020;11:114. doi: 10.3389/fphar.2020.00114. PubMed DOI PMC

Chen Y.-Y., Chang Y.-M., Wang K.-Y., Chen P.-N., Hseu Y.-C., Chen K.-M., Yeh K.-T., Chen C.-J., Hsu L.-S. Naringenin inhibited migration and invasion of glioblastoma cells through multiple mechanisms. Environ. Toxicol. 2019;34:233–239. doi: 10.1002/tox.22677. PubMed DOI

Han K.-Y., Chen P.-N., Hong M.-C., Hseu Y.-C., Chen K.-M., Hsu L.-S., Chen W.-J. Naringenin Attenuated Prostate Cancer Invasion via Reversal of Epithelial-to-Mesenchymal Transition and Inhibited uPA Activity. Anticancer Res. 2018;38:6753–6758. doi: 10.21873/anticanres.13045. PubMed DOI

Sunil C., Xu B. An insight into the health-promoting effects of taxifolin (dihydroquercetin) Phytochemistry. 2019;166:112066. doi: 10.1016/j.phytochem.2019.112066. PubMed DOI

Li J., Hu L., Zhou T., Gong X., Jiang R., Li H., Kuang G., Wan J., Li H. Taxifolin inhibits breast cancer cells proliferation, migration and invasion by promoting mesenchymal to epithelial transition via β-catenin signaling. Life Sci. 2019;232:116617. doi: 10.1016/j.lfs.2019.116617. PubMed DOI

Wei R., Penso N.E.C., Hackman R.M., Wang Y., Mackenzie G.G. Epigallocatechin-3-Gallate (EGCG) Suppresses Pancreatic Cancer Cell Growth, Invasion, and Migration partly through the Inhibition of Akt Pathway and Epithelial-Mesenchymal Transition: Enhanced Efficacy when Combined with Gemcitabine. Nutrients. 2019;11 doi: 10.3390/nu11081856. PubMed DOI PMC

Farabegoli F., Govoni M., Spisni E., Papi A. EGFR inhibition by (-)-epigallocatechin-3-gallate and IIF treatments reduces breast cancer cell invasion. Biosci. Rep. 2017;37 doi: 10.1042/BSR20170168. PubMed DOI PMC

Shafiee G., Saidijam M., Tayebinia H., Khodadadi I. Beneficial effects of genistein in suppression of proliferation, inhibition of metastasis, and induction of apoptosis in PC3 prostate cancer cells. Arch. Physiol. Biochem. 2020:1–9. doi: 10.1080/13813455.2020.1717541. PubMed DOI

Chen X., Wu Y., Gu J., Liang P., Shen M., Xi J., Qin J. Anti-invasive effect and pharmacological mechanism of genistein against colorectal cancer. Biofactors. 2020 doi: 10.1002/biof.1627. PubMed DOI

Chan K.K.L., Siu M.K.Y., Jiang Y., Wang J., Leung T.H.Y., Ngan H.Y.S. Estrogen receptor modulators genistein, daidzein and ERB-041 inhibit cell migration, invasion, proliferation and sphere formation via modulation of FAK and PI3K/AKT signaling in ovarian cancer. Cancer Cell Int. 2018;18 doi: 10.1186/s12935-018-0559-2. PubMed DOI PMC

Zhang Q., Cheng G., Qiu H., Wang Y., Wang J., Xu H., Zhang T., Liu L., Tao Y., Ren Z. Expression of prostate stem cell antigen is downregulated during flavonoid-induced cytotoxicity in prostate cancer cells. Exp. Ther. Med. 2017;14:1795–1801. doi: 10.3892/etm.2017.4638. PubMed DOI PMC

Huang C.-C., Hung C.-H., Hung T.-W., Lin Y.-C., Wang C.-J., Kao S.-H. Dietary delphinidin inhibits human colorectal cancer metastasis associating with upregulation of miR-204-3p and suppression of the integrin/FAK axis. Sci. Rep. 2019;9:18954. doi: 10.1038/s41598-019-55505-z. PubMed DOI PMC

Kang H.-M., Park B.-S., Kang H.-K., Park H.-R., Yu S.-B., Kim I.-R. Delphinidin induces apoptosis and inhibits epithelial-to-mesenchymal transition via the ERK/p38 MAPK-signaling pathway in human osteosarcoma cell lines. Environ. Toxicol. 2018;33:640–649. doi: 10.1002/tox.22548. PubMed DOI PMC

Lim W.-C., Kim H., Ko H. Delphinidin inhibits epidermal growth factor-induced epithelial-to-mesenchymal transition in hepatocellular carcinoma cells. J. Cell Biochem. 2019;120:9887–9899. doi: 10.1002/jcb.28271. PubMed DOI

Chen C., Huang S., Chen C.-L., Su S.-B., Fang D.-D. Isoliquiritigenin Inhibits Ovarian Cancer Metastasis by Reversing Epithelial-to-Mesenchymal Transition. Molecules. 2019;24 doi: 10.3390/molecules24203725. PubMed DOI PMC

Zhang X.-R., Wang S.-Y., Sun W., Wei C. Isoliquiritigenin inhibits proliferation and metastasis of MKN28 gastric cancer cells by suppressing the PI3K/AKT/mTOR signaling pathway. Mol. Med. Rep. 2018;18:3429–3436. doi: 10.3892/mmr.2018.9318. PubMed DOI

Cassidy A., Minihane A.-M. The role of metabolism (and the microbiome) in defining the clinical efficacy of dietary flavonoids1. Am. J. Clin. Nutr. 2017;105:10–22. doi: 10.3945/ajcn.116.136051. PubMed DOI PMC

Prasain J.K., Barnes S. Metabolism and bioavailability of flavonoids in chemoprevention: Current analytical strategies and future prospectus. Mol. Pharm. 2007;4:846–864. doi: 10.1021/mp700116u. PubMed DOI

Thilakarathna S.H., Rupasinghe H.P.V. Flavonoid Bioavailability and Attempts for Bioavailability Enhancement. Nutrients. 2013;5:3367–3387. doi: 10.3390/nu5093367. PubMed DOI PMC

Murota K., Nakamura Y., Uehara M. Flavonoid metabolism: The interaction of metabolites and gut microbiota. Biosci. Biotechnol. Biochem. 2018;82:600–610. doi: 10.1080/09168451.2018.1444467. PubMed DOI

Kawabata K., Yoshioka Y., Terao J. Role of Intestinal Microbiota in the Bioavailability and Physiological Functions of Dietary Polyphenols. Molecules. 2019;24 doi: 10.3390/molecules24020370. PubMed DOI PMC

Galati G., O’Brien P.J. Potential toxicity of flavonoids and other dietary phenolics: Significance for their chemopreventive and anticancer properties. Free Radic. Biol. Med. 2004;37:287–303. doi: 10.1016/j.freeradbiomed.2004.04.034. PubMed DOI

Vogiatzoglou A., Mulligan A.A., Lentjes M.A.H., Luben R.N., Spencer J.P.E., Schroeter H., Khaw K.-T., Kuhnle G.G.C. Flavonoid Intake in European Adults (18 to 64 Years) PLoS ONE. 2015;10 doi: 10.1371/journal.pone.0128132. PubMed DOI PMC

Riva A., Ronchi M., Petrangolini G., Bosisio S., Allegrini P. Improved Oral Absorption of Quercetin from Quercetin Phytosome®, a New Delivery System Based on Food Grade Lecithin. Eur. J. Drug. Metab. Pharmacokinet. 2019;44:169–177. doi: 10.1007/s13318-018-0517-3. PubMed DOI PMC

Chen J., Bu X., Shen Q. Enhanced anti-cancer activity by co-delivery of docetaxel and perifosine with multifunctional nanoparticles via regulation of PI3K/Akt signalling pathway. Micro Nano Lett. 2015;10:253–257. doi: 10.1049/mnl.2014.0661. DOI

Spagnuolo C., Russo G.L., Orhan I.E., Habtemariam S., Daglia M., Sureda A., Nabavi S.F., Devi K.P., Loizzo M.R., Tundis R., et al. Genistein and Cancer: Current Status, Challenges, and Future Directions12. Adv. Nutr. 2015;6:408–419. doi: 10.3945/an.114.008052. PubMed DOI PMC

Pintova S., Dharmupari S., Moshier E., Zubizarreta N., Ang C., Holcombe R.F. Genistein combined with FOLFOX or FOLFOX-Bevacizumab for the treatment of metastatic colorectal cancer: Phase I/II pilot study. Cancer Chemother. Pharmacol. 2019;84:591–598. doi: 10.1007/s00280-019-03886-3. PubMed DOI

Lazzeroni M., Guerrieri-Gonzaga A., Gandini S., Johansson H., Serrano D., Cazzaniga M., Aristarco V., Macis D., Mora S., Caldarella P., et al. A Presurgical Study of Lecithin Formulation of Green Tea Extract in Women with Early Breast Cancer. Cancer Prev. Res. (Phila.) 2017;10:363–370. doi: 10.1158/1940-6207.CAPR-16-0298. PubMed DOI

Zhang H., Gordon R., Li W., Yang X., Pattanayak A., Fowler G., Zhang L., Catalona W.J., Ding Y., Xu L., et al. Genistein treatment duration effects biomarkers of cell motility in human prostate. PLoS ONE. 2019;14 doi: 10.1371/journal.pone.0214078. PubMed DOI PMC

Farsad-Naeimi A., Alizadeh M., Esfahani A., Darvish Aminabad E. Effect of fisetin supplementation on inflammatory factors and matrix metalloproteinase enzymes in colorectal cancer patients. Food Funct. 2018;9:2025–2031. doi: 10.1039/C7FO01898C. PubMed DOI

Dubois R.N. Role of Inflammation and Inflammatory Mediators in Colorectal Cancer. Trans. Am. Clin. Climatol. Assoc. 2014;125:358–373. PubMed PMC

Terzić J., Grivennikov S., Karin E., Karin M. Inflammation and colon cancer. Gastroenterology. 2010;138:2101–2114.e5. doi: 10.1053/j.gastro.2010.01.058. PubMed DOI

Chen W.T.-L., Yang T.-S., Chen H.-C., Chen H.-H., Chiang H.-C., Lin T.-C., Yeh C.-H., Ke T.-W., Chen J.-S., Hsiao K.-H., et al. Effectiveness of a novel herbal agent MB-6 as a potential adjunct to 5-fluoracil-based chemotherapy in colorectal cancer. Nutr. Res. 2014;34:585–594. doi: 10.1016/j.nutres.2014.06.010. PubMed DOI

Ma Z.F., Zhang H. Phytochemical Constituents, Health Benefits, and Industrial Applications of Grape Seeds: A Mini-Review. Antioxidants (Basel) 2017;6 doi: 10.3390/antiox6030071. PubMed DOI PMC

Morin M.-P., Bedran T.B.L., Fournier-Larente J., Haas B., Azelmat J., Grenier D. Green tea extract and its major constituent epigallocatechin-3-gallate inhibit growth and halitosis-related properties of Solobacterium moorei. BMC Complementary Altern. Med. 2015;15:48. doi: 10.1186/s12906-015-0557-z. PubMed DOI PMC

Cavaliere C., Cucci F., Foglia P., Guarino C., Samperi R., Laganà A. Flavonoid profile in soybeans by high-performance liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2007;21:2177–2187. doi: 10.1002/rcm.3049. PubMed DOI

Liu Y., Li L., An S., Zhang Y., Feng S., Zhao L., Teng L., Wang D. Antifatigue Effects of Antrodia cinnamomea Cultured Mycelium via Modulation of Oxidative Stress Signaling in a Mouse Model. Biomed. Res. Int. 2017;2017 doi: 10.1155/2017/9374026. PubMed DOI PMC

Papalia T., Sidari R., Panuccio M.R. Impact of Different Storage Methods on Bioactive Compounds in Arthrospira platensis Biomass. Molecules. 2019;24 doi: 10.3390/molecules24152810. PubMed DOI PMC

Polivka J., Kralickova M., Polivka J., Kaiser C., Kuhn W., Golubnitschaja O. Mystery of the brain metastatic disease in breast cancer patients: Improved patient stratification, disease prediction and targeted prevention on the horizon? EPMA J. 2017;8:119–127. doi: 10.1007/s13167-017-0087-5. PubMed DOI PMC

Golubnitschaja O., Baban B., Boniolo G., Wang W., Bubnov R., Kapalla M., Krapfenbauer K., Mozaffari M.S., Costigliola V. Medicine in the early twenty-first century: Paradigm and anticipation—EPMA position paper 2016. EPMA J. 2016;7:23. doi: 10.1186/s13167-016-0072-4. PubMed DOI PMC

Meadows G.G. Diet, nutrients, phytochemicals, and cancer metastasis suppressor genes. Cancer Metastasis Rev. 2012;31:441–454. doi: 10.1007/s10555-012-9369-5. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Aronia melanocarpa L. fruit peels show anti-cancer effects in preclinical models of breast carcinoma: The perspectives in the chemoprevention and therapy modulation

. 2024 ; 14 () : 1463656. [epub] 20241007

Salvia officinalis L. exerts oncostatic effects in rodent and in vitro models of breast carcinoma

. 2024 ; 15 () : 1216199. [epub] 20240223

Significance of flavonoids targeting PI3K/Akt/HIF-1α signaling pathway in therapy-resistant cancer cells - A potential contribution to the predictive, preventive, and personalized medicine

. 2024 Jan ; 55 () : 103-118. [epub] 20230304

Therapy-resistant breast cancer in focus: Clinically relevant mitigation by flavonoids targeting cancer stem cells

. 2023 ; 14 () : 1160068. [epub] 20230406

Diabetic retinopathy as the leading cause of blindness and early predictor of cascading complications-risks and mitigation

. 2023 Mar ; 14 (1) : 21-42. [epub] 20230213

Molecular Mechanisms of Flavonoids against Tumor Gamma-Herpesviruses and Their Correlated Cancers-A Focus on EBV and KSHV Life Cycles and Carcinogenesis

. 2022 Dec 23 ; 24 (1) : . [epub] 20221223

Antithrombotic and antiplatelet effects of plant-derived compounds: a great utility potential for primary, secondary, and tertiary care in the framework of 3P medicine

. 2022 Sep ; 13 (3) : 407-431. [epub] 20220815

Anti-breast cancer effects of phytochemicals: primary, secondary, and tertiary care

. 2022 Jun ; 13 (2) : 315-334. [epub] 20220414

The Role of ATRA, Natural Ligand of Retinoic Acid Receptors, on EMT-Related Proteins in Breast Cancer: Minireview

. 2021 Dec 12 ; 22 (24) : . [epub] 20211212

Targeting phytoprotection in the COVID-19-induced lung damage and associated systemic effects-the evidence-based 3PM proposition to mitigate individual risks

. 2021 Sep ; 12 (3) : 325-347. [epub] 20210803

Protective Effects of Flavonoids Against Mitochondriopathies and Associated Pathologies: Focus on the Predictive Approach and Personalized Prevention

. 2021 Aug 11 ; 22 (16) : . [epub] 20210811

Metabolic Anti-Cancer Effects of Melatonin: Clinically Relevant Prospects

. 2021 Jun 16 ; 13 (12) : . [epub] 20210616

Flavonoids against the SARS-CoV-2 induced inflammatory storm

. 2021 Jun ; 138 () : 111430. [epub] 20210225

Flavonoids as an effective sensitizer for anti-cancer therapy: insights into multi-faceted mechanisms and applicability towards individualized patient profiles

. 2021 Jun ; 12 (2) : 155-176. [epub] 20210517

Further Understanding of Urokinase Plasminogen Activator Overexpression in Urothelial Bladder Cancer Progression, Clinical Outcomes and Potential Therapeutic Targets

. 2021 ; 14 () : 315-324. [epub] 20210113

Flavonoids Targeting HIF-1: Implications on Cancer Metabolism

. 2021 Jan 03 ; 13 (1) : . [epub] 20210103

Rhus coriaria L. (Sumac) Demonstrates Oncostatic Activity in the Therapeutic and Preventive Model of Breast Carcinoma

. 2020 Dec 26 ; 22 (1) : . [epub] 20201226

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...