Flavonoids in Cancer Metastasis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
NPRP 11S-1214-170101
Qatar National Research Fund
VEGA 1/0136/19
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
ITMS: 26220120053
European Regional Development Fund
PubMed
32521759
PubMed Central
PMC7352928
DOI
10.3390/cancers12061498
PII: cancers12061498
Knihovny.cz E-zdroje
- Klíčová slova
- cancer, flavonoids, metastasis, phytochemicals,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Metastasis represents a serious complication in the treatment of cancer. Flavonoids are plant secondary metabolites exerting various health beneficiary effects. The effects of flavonoids against cancer are associated not only with early stages of the cancer process, but also with cancer progression and spread into distant sites. Flavonoids showed potent anti-cancer effects against various cancer models in vitro and in vivo, mediated via regulation of key signaling pathways involved in the migration and invasion of cancer cells and metastatic progression, including key regulators of epithelial-mesenchymal transition or regulatory molecules such as MMPs, uPA/uPAR, TGF-β and other contributors of the complex process of metastatic spread. Moreover, flavonoids modulated also the expression of genes associated with the progression of cancer and improved inflammatory status, a part of the complex process involved in the development of metastasis. Flavonoids also documented clear potential to improve the anti-cancer effectiveness of conventional chemotherapeutic agents. Most importantly, flavonoids represent environmentally-friendly and cost-effective substances; moreover, a wide spectrum of different flavonoids demonstrated safety and minimal side effects during long-termed administration. In addition, the bioavailability of flavonoids can be improved by their conjugation with metal ions or structural modifications by radiation. In conclusion, anti-cancer effects of flavonoids, targeting all phases of carcinogenesis including metastatic progression, should be implemented into clinical cancer research in order to strengthen their potential use in the future targeted prevention and therapy of cancer in high-risk individuals or patients with aggressive cancer disease with metastatic potential.
Department of Immunology and School of Medicine Keimyung University Dalseo Gu Daegu 426 01 Korea
Department of Natural Drugs Faculty of Pharmacy Masaryk University 61242 Brno Czech Republic
Zobrazit více v PubMed
Fares J., Fares M.Y., Khachfe H.H., Salhab H.A., Fares Y. Molecular principles of metastasis: A hallmark of cancer revisited. Signal Transduct. Target Ther. 2020;5:1–17. doi: 10.1038/s41392-020-0134-x. PubMed DOI PMC
Ayob A.Z., Ramasamy T.S. Cancer stem cells as key drivers of tumour progression. J. Biomed. Sci. 2018;25 doi: 10.1186/s12929-018-0426-4. PubMed DOI PMC
Fidler I.J., Kripke M.L. The challenge of targeting metastasis. Cancer Metastasis Rev. 2015;34:635–641. doi: 10.1007/s10555-015-9586-9. PubMed DOI PMC
Panche A.N., Diwan A.D., Chandra S.R. Flavonoids: An overview. J. Nutr. Sci. 2016;5 doi: 10.1017/jns.2016.41. PubMed DOI PMC
Al-Ishaq R.K., Abotaleb M., Kubatka P., Kajo K., Büsselberg D. Flavonoids and Their Anti-Diabetic Effects: Cellular Mechanisms and Effects to Improve Blood Sugar Levels. Biomolecules. 2019;9 doi: 10.3390/biom9090430. PubMed DOI PMC
Abotaleb M., Samuel S.M., Varghese E., Varghese S., Kubatka P., Liskova A., Büsselberg D. Flavonoids in Cancer and Apoptosis. Cancers (Basel) 2018;11 doi: 10.3390/cancers11010028. PubMed DOI PMC
Lee H.H., Bellat V., Law B. Chemotherapy induces adaptive drug resistance and metastatic potentials via phenotypic CXCR4-expressing cell state transition in ovarian cancer. PLoS ONE. 2017;12:e0171044. doi: 10.1371/journal.pone.0171044. PubMed DOI PMC
Riganti C., Contino M. New Strategies to Overcome Resistance to Chemotherapy and Immune System in Cancer. Int. J. Mol. Sci. 2019;20 doi: 10.3390/ijms20194783. PubMed DOI PMC
Lohiya V., Aragon-Ching J.B., Sonpavde G. Role of Chemotherapy and Mechanisms of Resistance to Chemotherapy in Metastatic Castration-Resistant Prostate Cancer. Clin. Med. Insights Oncol. 2016;10:57–66. doi: 10.4137/CMO.S34535. PubMed DOI PMC
Li X., Zhang Z.-S., Zhang X.-H., Yang S.-N., Liu D., Diao C.-R., Wang H., Zheng F.-P. Cyanidin inhibits EMT induced by oxaliplatin via targeting the PDK1-PI3K/Akt signaling pathway. Food Funct. 2019;10:592–601. doi: 10.1039/C8FO01611A. PubMed DOI
Li J., Zhang J., Wang Y., Liang X., Wusiman Z., Yin Y., Shen Q. Synergistic inhibition of migration and invasion of breast cancer cells by dual docetaxel/quercetin-loaded nanoparticles via Akt/MMP-9 pathway. Int. J. Pharm. 2017;523:300–309. doi: 10.1016/j.ijpharm.2017.03.040. PubMed DOI
Nwabo Kamdje A.H., Takam Kamga P., Tagne Simo R., Vecchio L., Seke Etet P.F., Muller J.M., Bassi G., Lukong E., Kumar Goel R., Mbo Amvene J., et al. Developmental pathways associated with cancer metastasis: Notch, Wnt, and Hedgehog. Cancer Biol. Med. 2017;14:109–120. doi: 10.20892/j.issn.2095-3941.2016.0032. PubMed DOI PMC
Pachmayr E., Treese C., Stein U. Underlying Mechanisms for Distant Metastasis - Molecular Biology. VIS. 2017;33:11–20. doi: 10.1159/000454696. PubMed DOI PMC
Chitty J.L., Filipe E.C., Lucas M.C., Herrmann D., Cox T.R., Timpson P. Recent advances in understanding the complexities of metastasis. F1000Res. 2018;7 doi: 10.12688/f1000research.15064.2. PubMed DOI PMC
Roche J. The Epithelial-to-Mesenchymal Transition in Cancer. Cancers (Basel) 2018;10 doi: 10.3390/cancers10020052. PubMed DOI PMC
Garg M. Epithelial-mesenchymal transition - activating transcription factors - multifunctional regulators in cancer. World J. Stem Cells. 2013;5:188–195. doi: 10.4252/wjsc.v5.i4.188. PubMed DOI PMC
van Zijl F., Krupitza G., Mikulits W. Initial steps of metastasis: Cell invasion and endothelial transmigration. Mutat. Res. 2011;728:23–34. doi: 10.1016/j.mrrev.2011.05.002. PubMed DOI PMC
Li H., Chen C. Quercetin Has Antimetastatic Effects on Gastric Cancer Cells via the Interruption of uPA/uPAR Function by Modulating NF-κb, PKC-δ, ERK1/2, and AMPKα. Integr. Cancer Ther. 2017;17:511–523. doi: 10.1177/1534735417696702. PubMed DOI PMC
Kitamura T., Qian B.-Z., Pollard J.W. Immune cell promotion of metastasis. Nat. Rev. Immunol. 2015;15:73–86. doi: 10.1038/nri3789. PubMed DOI PMC
Wang Z., Dabrosin C., Yin X., Fuster M.M., Arreola A., Rathmell W.K., Generali D., Nagaraju G.P., El-Rayes B., Ribatti D., et al. Broad targeting of angiogenesis for cancer prevention and therapy. Semin. Cancer Biol. 2015;35:S224–S243. doi: 10.1016/j.semcancer.2015.01.001. PubMed DOI PMC
Jin X., Mu P. Targeting Breast Cancer Metastasis. Breast Cancer (Auckl) 2015;9:23–34. doi: 10.4137/BCBCR.S25460. PubMed DOI PMC
Gong Y., Chippada-Venkata U.D., Oh W.K. Roles of Matrix Metalloproteinases and Their Natural Inhibitors in Prostate Cancer Progression. Cancers (Basel) 2014;6:1298–1327. doi: 10.3390/cancers6031298. PubMed DOI PMC
Chen J.-K., Peng S.-F., Lai K.C., Liu H.-C., Huang Y.-P., Lin C.-C., Huang A.-C., Chueh F.-S., Chung J.-G. Fistein Suppresses Human Osteosarcoma U-2 OS Cell Migration and Invasion via Affecting FAK, uPA and NF-ĸB Signaling Pathway In Vitro. In Vivo. 2019;33:801–810. doi: 10.21873/invivo.11542. PubMed DOI PMC
Malcherczyk D., Heyse T.J., El-Zayat B.F., Kunzke V., Moll R., Fuchs-Winkelmann S., Paletta J.R.J. Expression of MMP-9 decreases metastatic potential of Chondrosarcoma: An immunohistochemical study. BMC Musculoskelet. Disord. 2018;19 doi: 10.1186/s12891-017-1920-7. PubMed DOI PMC
Liu J., Lin P.C., Zhou B.P. Inflammation Fuels Tumor Progress and Metastasis. Curr. Pharm. Des. 2015;21:3032–3040. doi: 10.2174/1381612821666150514105741. PubMed DOI PMC
Blomberg O.S., Spagnuolo L., de Visser K.E. Immune regulation of metastasis: Mechanistic insights and therapeutic opportunities. Dis. Model. Mech. 2018;11 doi: 10.1242/dmm.036236. PubMed DOI PMC
Irani S. Emerging insights into the biology of metastasis: A review article. Iran J. Basic Med. Sci. 2019;22:833–847. doi: 10.22038/ijbms.2019.32786.7839. PubMed DOI PMC
Hamilton G., Rath B. Mesenchymal-Epithelial Transition and Circulating Tumor Cells in Small Cell Lung Cancer. Adv. Exp. Med. Biol. 2017;994:229–245. doi: 10.1007/978-3-319-55947-6_12. PubMed DOI
Afify S.M., Hassan G., Osman A., Calle A.S., Nawara H.M., Zahra M.H., EL-Ghlban S., Mansour H., Alam M.J., Abu Quora H.A., et al. Metastasis of Cancer Stem Cells Developed in the Microenvironment of Hepatocellular Carcinoma. Bioengineering (Basel) 2019;6 doi: 10.3390/bioengineering6030073. PubMed DOI PMC
Steeg P.S. Targeting metastasis. Nat. Rev. Cancer. 2016;16:201–218. doi: 10.1038/nrc.2016.25. PubMed DOI PMC
Ganapathy V., Moghe P.V., Roth C.M. Targeting tumor metastases: Drug delivery mechanisms and technologies. J. Control. Release. 2015;219:215–223. doi: 10.1016/j.jconrel.2015.09.042. PubMed DOI PMC
Ham S.L., Nasrollahi S., Shah K.N., Soltisz A., Paruchuri S., Yun Y.H., Luker G.D., Bishayee A., Tavana H. Phytochemicals potently inhibit migration of metastatic breast cancer cells. Integr. Biol. (Camb.) 2015;7:792–800. doi: 10.1039/C5IB00121H. PubMed DOI PMC
Kapinova A., Kubatka P., Liskova A., Baranenko D., Kruzliak P., Matta M., Büsselberg D., Malicherova B., Zulli A., Kwon T.K., et al. Controlling metastatic cancer: The role of phytochemicals in cell signaling. J. Cancer Res. Clin. Oncol. 2019;145:1087–1109. doi: 10.1007/s00432-019-02892-5. PubMed DOI
Kumar S., Pandey A.K. Chemistry and Biological Activities of Flavonoids: An Overview. Sci. World J. 2013;2013 doi: 10.1155/2013/162750. PubMed DOI PMC
Rodríguez-García C., Sánchez-Quesada C., Gaforio J.J. Dietary Flavonoids as Cancer Chemopreventive Agents: An Updated Review of Human Studies. Antioxidants (Basel) 2019;8 doi: 10.3390/antiox8050137. PubMed DOI PMC
Kozłowska A., Szostak-Wegierek D. Flavonoids--food sources and health benefits. Rocz. Panstw. Zakl. Hig. 2014;65:79–85. PubMed
Birt D.F., Jeffery E. Flavonoids. Adv. Nutr. 2013;4:576–577. doi: 10.3945/an.113.004465. PubMed DOI PMC
Yin X.-L., Lv Y., Wang S., Zhang Y.-Q. Morusin suppresses A549 cell migration and induces cell apoptosis by downregulating the expression of COX-2 and VEGF genes. Oncol. Rep. 2018;40:504–510. doi: 10.3892/or.2018.6431. PubMed DOI
Wang Z.-L., Wang S., Kuang Y., Hu Z.-M., Qiao X., Ye M. A comprehensive review on phytochemistry, pharmacology, and flavonoid biosynthesis of Scutellaria baicalensis. Pharm. Biol. 2018;56:465–484. doi: 10.1080/13880209.2018.1492620. PubMed DOI PMC
Kim G.D. Myricetin Inhibits Angiogenesis by Inducing Apoptosis and Suppressing PI3K/Akt/mTOR Signaling in Endothelial Cells. J. Cancer Prev. 2017;22:219–227. doi: 10.15430/JCP.2017.22.4.219. PubMed DOI PMC
Zhao T.-T., Xu Y.-Q., Hu H.-M., Gong H.-B., Zhu H.-L. Isoliquiritigenin (ISL) and its Formulations: Potential Antitumor Agents. Curr. Med. Chem. 2019;26:6786–6796. doi: 10.2174/0929867325666181112091700. PubMed DOI
Ramalingam M., Kim H., Lee Y., Lee Y.-I. Phytochemical and Pharmacological Role of Liquiritigenin and Isoliquiritigenin From Radix Glycyrrhizae in Human Health and Disease Models. Front. Aging Neurosci. 2018;10 doi: 10.3389/fnagi.2018.00348. PubMed DOI PMC
Jiang C.-H., Sun T.-L., Xiang D.-X., Wei S.-S., Li W.-Q. Anticancer Activity and Mechanism of Xanthohumol: A Prenylated Flavonoid From Hops (Humulus lupulus L.) Front. Pharmacol. 2018;9 doi: 10.3389/fphar.2018.00530. PubMed DOI PMC
Jaramillo Flores M.E. Cocoa Flavanols: Natural Agents with Attenuating Effects on Metabolic Syndrome Risk Factors. Nutrients. 2019;11 doi: 10.3390/nu11040751. PubMed DOI PMC
Egert S., Rimbach G. Which Sources of Flavonoids: Complex Diets or Dietary Supplements?1. Adv. Nutr. 2011;2:8–14. doi: 10.3945/an.110.000026. PubMed DOI PMC
Hsiao Y.-H., Hsieh M.-J., Yang S.-F., Chen S.-P., Tsai W.-C., Chen P.-N. Phloretin suppresses metastasis by targeting protease and inhibits cancer stemness and angiogenesis in human cervical cancer cells. Phytomedicine. 2019;62:152964. doi: 10.1016/j.phymed.2019.152964. PubMed DOI
Lv W.-L., Liu Q., An J.-H., Song X.-Y. Scutellarin inhibits hypoxia-induced epithelial-mesenchymal transition in bladder cancer cells. J. Cell. Physiol. 2019;234:23169–23175. doi: 10.1002/jcp.28883. PubMed DOI
Wang M.-H., Li L.-Z., Sun J.-B., Wu F.-H., Liang J.-Y. A new antioxidant flavone glycoside from Scutellaria baicalensis Georgi. Nat. Prod. Res. 2014;28:1772–1776. doi: 10.1080/14786419.2014.931391. PubMed DOI
Celano R., Campone L., Pagano I., Carabetta S., Sanzo R.D., Rastrelli L., Piccinelli A.L., Russo M. Characterisation of nutraceutical compounds from different parts of particular species of Citrus sinensis ‘Ovale Calabrese’ by UHPLC-UV-ESI-HRMS. Nat. Prod. Res. 2019;33:244–251. doi: 10.1080/14786419.2018.1443102. PubMed DOI
Prasad P., Vasas A., Hohmann J., Bishayee A., Sinha D. Cirsiliol Suppressed Epithelial to Mesenchymal Transition in B16F10 Malignant Melanoma Cells through Alteration of the PI3K/Akt/NF-κB Signaling Pathway. Int. J. Mol. Sci. 2019;20 doi: 10.3390/ijms20030608. PubMed DOI PMC
Gervazoni L.F.O., Gonçalves-Ozório G., Almeida-Amaral E.E. 2’-Hydroxyflavanone activity in vitro and in vivo against wild-type and antimony-resistant Leishmania amazonensis. PLoS Negl. Trop. Dis. 2018;12 doi: 10.1371/journal.pntd.0006930. PubMed DOI PMC
Dhandapani M., Goldman A. Preclinical Cancer Models and Biomarkers for Drug Development: New Technologies and Emerging Tools. J. Mol. Biomark. Diagn. 2017;8 doi: 10.4172/2155-9929.1000356. PubMed DOI PMC
Chien M.-H., Lin Y.-W., Wen Y.-C., Yang Y.-C., Hsiao M., Chang J.-L., Huang H.-C., Lee W.-J. Targeting the SPOCK1-snail/slug axis-mediated epithelial-to-mesenchymal transition by apigenin contributes to repression of prostate cancer metastasis. J. Exp. Clin. Cancer Res. 2019;38:246. doi: 10.1186/s13046-019-1247-3. PubMed DOI PMC
Tong J., Shen Y., Zhang Z., Hu Y., Zhang X., Han L. Apigenin inhibits epithelial-mesenchymal transition of human colon cancer cells through NF-κB/Snail signaling pathway. Biosci. Rep. 2019;39 doi: 10.1042/BSR20190452. PubMed DOI PMC
Lee H.H., Jung J., Moon A., Kang H., Cho H. Antitumor and Anti-Invasive Effect of Apigenin on Human Breast Carcinoma through Suppression of IL-6 Expression. Int. J. Mol. Sci. 2019;20 doi: 10.3390/ijms20133143. PubMed DOI PMC
Zhao G., Han X., Cheng W., Ni J., Zhang Y., Lin J., Song Z. Apigenin inhibits proliferation and invasion, and induces apoptosis and cell cycle arrest in human melanoma cells. Oncol. Rep. 2017;37:2277–2285. doi: 10.3892/or.2017.5450. PubMed DOI
Cao H.-H., Chu J.-H., Kwan H.-Y., Su T., Yu H., Cheng C.-Y., Fu X.-Q., Guo H., Li T., Tse A.K.-W., et al. Inhibition of the STAT3 signaling pathway contributes to apigenin-mediated anti-metastatic effect in melanoma. Sci. Rep. 2016;6:21731. doi: 10.1038/srep21731. PubMed DOI PMC
Li Y.-W., Xu J., Zhu G.-Y., Huang Z.-J., Lu Y., Li X.-Q., Wang N., Zhang F.-X. Apigenin suppresses the stem cell-like properties of triple-negative breast cancer cells by inhibiting YAP/TAZ activity. Cell Death Discov. 2018;4:105. doi: 10.1038/s41420-018-0124-8. PubMed DOI PMC
Fan J.-J., Hsu W.-H., Lee K.-H., Chen K.-C., Lin C.-W., Lee Y.-L.A., Ko T.-P., Lee L.-T., Lee M.-T., Chang M.-S., et al. Dietary Flavonoids Luteolin and Quercetin Inhibit Migration and Invasion of Squamous Carcinoma through Reduction of Src/Stat3/S100A7 Signaling. Antioxidants (Basel) 2019;8 doi: 10.3390/antiox8110557. PubMed DOI PMC
Yao Y., Rao C., Zheng G., Wang S. Luteolin suppresses colorectal cancer cell metastasis via regulation of the miR-384/pleiotrophin axis. Oncol. Rep. 2019;42:131–141. doi: 10.3892/or.2019.7136. PubMed DOI PMC
Yao X., Jiang W., Yu D., Yan Z. Luteolin inhibits proliferation and induces apoptosis of human melanoma cells in vivo and in vitro by suppressing MMP-2 and MMP-9 through the PI3K/AKT pathway. Food Funct. 2019;10:703–712. doi: 10.1039/C8FO02013B. PubMed DOI
Go J.-H., Wei J.-D., Park J.-I., Ahn K.-S., Kim J.-H. Wogonin suppresses the LPS-enhanced invasiveness of MDA-MB-231 breast cancer cells by inhibiting the 5-LO/BLT2 cascade. Int. J. Mol. Med. 2018;42:1899–1908. doi: 10.3892/ijmm.2018.3776. PubMed DOI PMC
Hong M., Cheng H., Song L., Wang W., Wang Q., Xu D., Xing W. Wogonin Suppresses the Activity of Matrix Metalloproteinase-9 and Inhibits Migration and Invasion in Human Hepatocellular Carcinoma. Molecules. 2018;23 doi: 10.3390/molecules23020384. PubMed DOI PMC
Yao Y., Zhao K., Yu Z., Ren H., Zhao L., Li Z., Guo Q., Lu N. Wogonoside inhibits invasion and migration through suppressing TRAF2/4 expression in breast cancer. J. Exp. Clin. Cancer. Res. 2017;36 doi: 10.1186/s13046-017-0574-5. PubMed DOI PMC
Huynh D.L., Kwon T., Zhang J.J., Sharma N., Gera M., Ghosh M., Kim N., Kim Cho S., Lee D.S., Park Y.H., et al. Wogonin suppresses stem cell-like traits of CD133 positive osteosarcoma cell via inhibiting matrix metallopeptidase-9 expression. BMC Complementary Altern. Med. 2017;17:304. doi: 10.1186/s12906-017-1788-y. PubMed DOI PMC
Liu K., Gao H., Wang Q., Wang L., Zhang B., Han Z., Chen X., Han M., Gao M. Hispidulin suppresses cell growth and metastasis by targeting PIM1 through JAK2/STAT3 signaling in colorectal cancer. Cancer Sci. 2018;109:1369–1381. doi: 10.1111/cas.13575. PubMed DOI PMC
Han M., Gao H., Ju P., Gao M.-Q., Yuan Y.-P., Chen X.-H., Liu K.-L., Han Y.-T., Han Z.-W. Hispidulin inhibits hepatocellular carcinoma growth and metastasis through AMPK and ERK signaling mediated activation of PPARγ. Biomed. Pharmacother. 2018;103:272–283. doi: 10.1016/j.biopha.2018.04.014. PubMed DOI
Gan C., Li Y., Yu Y., Yu X., Liu H., Zhang Q., Yin W., Yu L., Ye T. Natural product pectolinarigenin exhibits potent anti-metastatic activity in colorectal carcinoma cells in vitro and in vivo. Bioorg. Med. Chem. 2019;27:115089. doi: 10.1016/j.bmc.2019.115089. PubMed DOI
Li Y., Gan C., Zhang Y., Yu Y., Fan C., Deng Y., Zhang Q., Yu X., Zhang Y., Wang L., et al. Inhibition of Stat3 Signaling Pathway by Natural Product Pectolinarigenin Attenuates Breast Cancer Metastasis. Front. Pharmacol. 2019;10 doi: 10.3389/fphar.2019.01195. PubMed DOI PMC
Ku W.-T., Tung J.-J., Lee T.J.-F., Lai K.-C. Long-Term Exposure to Oroxylin A Inhibits Metastasis by Suppressing CCL2 in Oral Squamous Cell Carcinoma Cells. Cancers (Basel) 2019;11 doi: 10.3390/cancers11030353. PubMed DOI PMC
Luo Y., Ren Z., Du B., Xing S., Huang S., Li Y., Lei Z., Li D., Chen H., Huang Y., et al. Structure Identification of ViceninII Extracted from Dendrobium officinale and the Reversal of TGF-β1-Induced Epithelial−Mesenchymal Transition in Lung Adenocarcinoma Cells through TGF-β/Smad and PI3K/Akt/mTOR Signaling Pathways. Molecules. 2019:24. doi: 10.3390/molecules24010144. PubMed DOI PMC
Kim J.K., Park S.U. Quercetin and its role in biological functions: An updated review. EXCLI J. 2018;17:856–863. doi: 10.17179/excli2018-1538. PubMed DOI PMC
Chang J.-H., Lai S.-L., Chen W.-S., Hung W.-Y., Chow J.-M., Hsiao M., Lee W.-J., Chien M.-H. Quercetin suppresses the metastatic ability of lung cancer through inhibiting Snail-dependent Akt activation and Snail-independent ADAM9 expression pathways. Biochim. Biophys. Acta Mol. Cell Res. 2017;1864:1746–1758. doi: 10.1016/j.bbamcr.2017.06.017. PubMed DOI
Feng J., Song D., Jiang S., Yang X., Ding T., Zhang H., Luo J., Liao J., Yin Q. Quercetin restrains TGF-β1-induced epithelial-mesenchymal transition by inhibiting Twist1 and regulating E-cadherin expression. Biochem. Biophys. Res. Commun. 2018;498:132–138. doi: 10.1016/j.bbrc.2018.02.044. PubMed DOI
Cao H.-H., Cheng C.-Y., Su T., Fu X.-Q., Guo H., Li T., Tse A.K.-W., Kwan H.-Y., Yu H., Yu Z.-L. Quercetin inhibits HGF/c-Met signaling and HGF-stimulated melanoma cell migration and invasion. Molecular Cancer. 2015;14:103. doi: 10.1186/s12943-015-0367-4. PubMed DOI PMC
Cao H.-H., Tse A.K.-W., Kwan H.-Y., Yu H., Cheng C.-Y., Su T., Fong W.-F., Yu Z.-L. Quercetin exerts anti-melanoma activities and inhibits STAT3 signaling. Biochem. Pharmacol. 2014;87:424–434. doi: 10.1016/j.bcp.2013.11.008. PubMed DOI
Erdogan S., Turkekul K., Dibirdik I., Doganlar O., Doganlar Z.B., Bilir A., Oktem G. Midkine downregulation increases the efficacy of quercetin on prostate cancer stem cell survival and migration through PI3K/AKT and MAPK/ERK pathway. Biomed. Pharmacother. 2018;107:793–805. doi: 10.1016/j.biopha.2018.08.061. PubMed DOI
Ci Y., Zhang Y., Liu Y., Lu S., Cao J., Li H., Zhang J., Huang Z., Zhu X., Gao J., et al. Myricetin suppresses breast cancer metastasis through down-regulating the activity of matrix metalloproteinase (MMP)-2/9. Phytother. Res. 2018;32:1373–1381. doi: 10.1002/ptr.6071. PubMed DOI
Tuponchai P., Kukongviriyapan V., Prawan A., Kongpetch S., Senggunprai L. Myricetin ameliorates cytokine-induced migration and invasion of cholangiocarcinoma cells via suppression of STAT3 pathway. J. Cancer Res. Ther. 2019;15:157–163. doi: 10.4103/jcrt.JCRT_287_17. PubMed DOI
Ye C., Zhang C., Huang H., Yang B., Xiao G., Kong D., Tian Q., Song Q., Song Y., Tan H., et al. The Natural Compound Myricetin Effectively Represses the Malignant Progression of Prostate Cancer by Inhibiting PIM1 and Disrupting the PIM1/CXCR4 Interaction. Cell Physiol. Biochem. 2018;48:1230–1244. doi: 10.1159/000492009. PubMed DOI
Hung T.-W., Chen P.-N., Wu H.-C., Wu S.-W., Tsai P.-Y., Hsieh Y.-S., Chang H.-R. Kaempferol Inhibits the Invasion and Migration of Renal Cancer Cells through the Downregulation of AKT and FAK Pathways. Int. J. Med. Sci. 2017;14:984–993. doi: 10.7150/ijms.20336. PubMed DOI PMC
Chien H.-W., Wang K., Chang Y.-Y., Hsieh Y.-H., Yu N.-Y., Yang S.-F., Lin H.-W. Kaempferol suppresses cell migration through the activation of the ERK signaling pathways in ARPE-19 cells. Environ. Toxicol. 2019;34:312–318. doi: 10.1002/tox.22686. PubMed DOI
Li J., Gong X., Jiang R., Lin D., Zhou T., Zhang A., Li H., Zhang X., Wan J., Kuang G., et al. Fisetin Inhibited Growth and Metastasis of Triple-Negative Breast Cancer by Reversing Epithelial-to-Mesenchymal Transition via PTEN/Akt/GSK3β Signal Pathway. Front. Pharmacol. 2018;9:772. doi: 10.3389/fphar.2018.00772. PubMed DOI PMC
Tabasum S., Singh R.P. Fisetin suppresses migration, invasion and stem-cell-like phenotype of human non-small cell lung carcinoma cells via attenuation of epithelial to mesenchymal transition. Chem. Biol. Interact. 2019;303:14–21. doi: 10.1016/j.cbi.2019.02.020. PubMed DOI
Khan M.I., Adhami V.M., Lall R.K., Sechi M., Joshi D.C., Haidar O.M., Syed D.N., Siddiqui I.A., Chiu S.-Y., Mukhtar H. YB-1 expression promotes epithelial-to-mesenchymal transition in prostate cancer that is inhibited by a small molecule fisetin. Oncotarget. 2014;5:2462–2474. doi: 10.18632/oncotarget.1790. PubMed DOI PMC
Pal H.C., Sharma S., Strickland L.R., Katiyar S.K., Ballestas M.E., Athar M., Elmets C.A., Afaq F. Fisetin inhibits human melanoma cell invasion through promotion of mesenchymal to epithelial transition and by targeting MAPK and NFκB signaling pathways. PLoS ONE. 2014;9:e86338. doi: 10.1371/journal.pone.0086338. PubMed DOI PMC
Lee K.-S., Nam G.S., Baek J., Kim S., Nam K.-S. Inhibition of TPA-induced metastatic potential by morin hydrate in MCF-7 human breast cancer cells via the Akt/GSK-3β/c-Fos signaling pathway. Int. J. Oncol. 2020;56:630–640. doi: 10.3892/ijo.2020.4954. PubMed DOI
Wu S., Huang J., Hui K., Yue Y., Gu Y., Ning Z., Wang X., He D., Wu K. 2’-Hydroxyflavanone inhibits epithelial-mesenchymal transition, and cell migration and invasion via suppression of the Wnt/β-catenin signaling pathway in prostate cancer. Oncol. Rep. 2018;40:2836–2843. doi: 10.3892/or.2018.6678. PubMed DOI
Meng F.-C., Lin J.-K. Liquiritigenin Inhibits Colorectal Cancer Proliferation, Invasion, and Epithelial-to-Mesenchymal Transition by Decreasing Expression of Runt-Related Transcription Factor 2. Oncol Res. 2019;27:139–146. doi: 10.3727/096504018X15185747911701. PubMed DOI PMC
Li W., Du Q., Li X., Zheng X., Lv F., Xi X., Huang G., Yang J., Liu S. Eriodictyol Inhibits Proliferation, Metastasis and Induces Apoptosis of Glioma Cells via PI3K/Akt/NF-κB Signaling Pathway. Front. Pharmacol. 2020;11:114. doi: 10.3389/fphar.2020.00114. PubMed DOI PMC
Chen Y.-Y., Chang Y.-M., Wang K.-Y., Chen P.-N., Hseu Y.-C., Chen K.-M., Yeh K.-T., Chen C.-J., Hsu L.-S. Naringenin inhibited migration and invasion of glioblastoma cells through multiple mechanisms. Environ. Toxicol. 2019;34:233–239. doi: 10.1002/tox.22677. PubMed DOI
Han K.-Y., Chen P.-N., Hong M.-C., Hseu Y.-C., Chen K.-M., Hsu L.-S., Chen W.-J. Naringenin Attenuated Prostate Cancer Invasion via Reversal of Epithelial-to-Mesenchymal Transition and Inhibited uPA Activity. Anticancer Res. 2018;38:6753–6758. doi: 10.21873/anticanres.13045. PubMed DOI
Sunil C., Xu B. An insight into the health-promoting effects of taxifolin (dihydroquercetin) Phytochemistry. 2019;166:112066. doi: 10.1016/j.phytochem.2019.112066. PubMed DOI
Li J., Hu L., Zhou T., Gong X., Jiang R., Li H., Kuang G., Wan J., Li H. Taxifolin inhibits breast cancer cells proliferation, migration and invasion by promoting mesenchymal to epithelial transition via β-catenin signaling. Life Sci. 2019;232:116617. doi: 10.1016/j.lfs.2019.116617. PubMed DOI
Wei R., Penso N.E.C., Hackman R.M., Wang Y., Mackenzie G.G. Epigallocatechin-3-Gallate (EGCG) Suppresses Pancreatic Cancer Cell Growth, Invasion, and Migration partly through the Inhibition of Akt Pathway and Epithelial-Mesenchymal Transition: Enhanced Efficacy when Combined with Gemcitabine. Nutrients. 2019;11 doi: 10.3390/nu11081856. PubMed DOI PMC
Farabegoli F., Govoni M., Spisni E., Papi A. EGFR inhibition by (-)-epigallocatechin-3-gallate and IIF treatments reduces breast cancer cell invasion. Biosci. Rep. 2017;37 doi: 10.1042/BSR20170168. PubMed DOI PMC
Shafiee G., Saidijam M., Tayebinia H., Khodadadi I. Beneficial effects of genistein in suppression of proliferation, inhibition of metastasis, and induction of apoptosis in PC3 prostate cancer cells. Arch. Physiol. Biochem. 2020:1–9. doi: 10.1080/13813455.2020.1717541. PubMed DOI
Chen X., Wu Y., Gu J., Liang P., Shen M., Xi J., Qin J. Anti-invasive effect and pharmacological mechanism of genistein against colorectal cancer. Biofactors. 2020 doi: 10.1002/biof.1627. PubMed DOI
Chan K.K.L., Siu M.K.Y., Jiang Y., Wang J., Leung T.H.Y., Ngan H.Y.S. Estrogen receptor modulators genistein, daidzein and ERB-041 inhibit cell migration, invasion, proliferation and sphere formation via modulation of FAK and PI3K/AKT signaling in ovarian cancer. Cancer Cell Int. 2018;18 doi: 10.1186/s12935-018-0559-2. PubMed DOI PMC
Zhang Q., Cheng G., Qiu H., Wang Y., Wang J., Xu H., Zhang T., Liu L., Tao Y., Ren Z. Expression of prostate stem cell antigen is downregulated during flavonoid-induced cytotoxicity in prostate cancer cells. Exp. Ther. Med. 2017;14:1795–1801. doi: 10.3892/etm.2017.4638. PubMed DOI PMC
Huang C.-C., Hung C.-H., Hung T.-W., Lin Y.-C., Wang C.-J., Kao S.-H. Dietary delphinidin inhibits human colorectal cancer metastasis associating with upregulation of miR-204-3p and suppression of the integrin/FAK axis. Sci. Rep. 2019;9:18954. doi: 10.1038/s41598-019-55505-z. PubMed DOI PMC
Kang H.-M., Park B.-S., Kang H.-K., Park H.-R., Yu S.-B., Kim I.-R. Delphinidin induces apoptosis and inhibits epithelial-to-mesenchymal transition via the ERK/p38 MAPK-signaling pathway in human osteosarcoma cell lines. Environ. Toxicol. 2018;33:640–649. doi: 10.1002/tox.22548. PubMed DOI PMC
Lim W.-C., Kim H., Ko H. Delphinidin inhibits epidermal growth factor-induced epithelial-to-mesenchymal transition in hepatocellular carcinoma cells. J. Cell Biochem. 2019;120:9887–9899. doi: 10.1002/jcb.28271. PubMed DOI
Chen C., Huang S., Chen C.-L., Su S.-B., Fang D.-D. Isoliquiritigenin Inhibits Ovarian Cancer Metastasis by Reversing Epithelial-to-Mesenchymal Transition. Molecules. 2019;24 doi: 10.3390/molecules24203725. PubMed DOI PMC
Zhang X.-R., Wang S.-Y., Sun W., Wei C. Isoliquiritigenin inhibits proliferation and metastasis of MKN28 gastric cancer cells by suppressing the PI3K/AKT/mTOR signaling pathway. Mol. Med. Rep. 2018;18:3429–3436. doi: 10.3892/mmr.2018.9318. PubMed DOI
Cassidy A., Minihane A.-M. The role of metabolism (and the microbiome) in defining the clinical efficacy of dietary flavonoids1. Am. J. Clin. Nutr. 2017;105:10–22. doi: 10.3945/ajcn.116.136051. PubMed DOI PMC
Prasain J.K., Barnes S. Metabolism and bioavailability of flavonoids in chemoprevention: Current analytical strategies and future prospectus. Mol. Pharm. 2007;4:846–864. doi: 10.1021/mp700116u. PubMed DOI
Thilakarathna S.H., Rupasinghe H.P.V. Flavonoid Bioavailability and Attempts for Bioavailability Enhancement. Nutrients. 2013;5:3367–3387. doi: 10.3390/nu5093367. PubMed DOI PMC
Murota K., Nakamura Y., Uehara M. Flavonoid metabolism: The interaction of metabolites and gut microbiota. Biosci. Biotechnol. Biochem. 2018;82:600–610. doi: 10.1080/09168451.2018.1444467. PubMed DOI
Kawabata K., Yoshioka Y., Terao J. Role of Intestinal Microbiota in the Bioavailability and Physiological Functions of Dietary Polyphenols. Molecules. 2019;24 doi: 10.3390/molecules24020370. PubMed DOI PMC
Galati G., O’Brien P.J. Potential toxicity of flavonoids and other dietary phenolics: Significance for their chemopreventive and anticancer properties. Free Radic. Biol. Med. 2004;37:287–303. doi: 10.1016/j.freeradbiomed.2004.04.034. PubMed DOI
Vogiatzoglou A., Mulligan A.A., Lentjes M.A.H., Luben R.N., Spencer J.P.E., Schroeter H., Khaw K.-T., Kuhnle G.G.C. Flavonoid Intake in European Adults (18 to 64 Years) PLoS ONE. 2015;10 doi: 10.1371/journal.pone.0128132. PubMed DOI PMC
Riva A., Ronchi M., Petrangolini G., Bosisio S., Allegrini P. Improved Oral Absorption of Quercetin from Quercetin Phytosome®, a New Delivery System Based on Food Grade Lecithin. Eur. J. Drug. Metab. Pharmacokinet. 2019;44:169–177. doi: 10.1007/s13318-018-0517-3. PubMed DOI PMC
Chen J., Bu X., Shen Q. Enhanced anti-cancer activity by co-delivery of docetaxel and perifosine with multifunctional nanoparticles via regulation of PI3K/Akt signalling pathway. Micro Nano Lett. 2015;10:253–257. doi: 10.1049/mnl.2014.0661. DOI
Spagnuolo C., Russo G.L., Orhan I.E., Habtemariam S., Daglia M., Sureda A., Nabavi S.F., Devi K.P., Loizzo M.R., Tundis R., et al. Genistein and Cancer: Current Status, Challenges, and Future Directions12. Adv. Nutr. 2015;6:408–419. doi: 10.3945/an.114.008052. PubMed DOI PMC
Pintova S., Dharmupari S., Moshier E., Zubizarreta N., Ang C., Holcombe R.F. Genistein combined with FOLFOX or FOLFOX-Bevacizumab for the treatment of metastatic colorectal cancer: Phase I/II pilot study. Cancer Chemother. Pharmacol. 2019;84:591–598. doi: 10.1007/s00280-019-03886-3. PubMed DOI
Lazzeroni M., Guerrieri-Gonzaga A., Gandini S., Johansson H., Serrano D., Cazzaniga M., Aristarco V., Macis D., Mora S., Caldarella P., et al. A Presurgical Study of Lecithin Formulation of Green Tea Extract in Women with Early Breast Cancer. Cancer Prev. Res. (Phila.) 2017;10:363–370. doi: 10.1158/1940-6207.CAPR-16-0298. PubMed DOI
Zhang H., Gordon R., Li W., Yang X., Pattanayak A., Fowler G., Zhang L., Catalona W.J., Ding Y., Xu L., et al. Genistein treatment duration effects biomarkers of cell motility in human prostate. PLoS ONE. 2019;14 doi: 10.1371/journal.pone.0214078. PubMed DOI PMC
Farsad-Naeimi A., Alizadeh M., Esfahani A., Darvish Aminabad E. Effect of fisetin supplementation on inflammatory factors and matrix metalloproteinase enzymes in colorectal cancer patients. Food Funct. 2018;9:2025–2031. doi: 10.1039/C7FO01898C. PubMed DOI
Dubois R.N. Role of Inflammation and Inflammatory Mediators in Colorectal Cancer. Trans. Am. Clin. Climatol. Assoc. 2014;125:358–373. PubMed PMC
Terzić J., Grivennikov S., Karin E., Karin M. Inflammation and colon cancer. Gastroenterology. 2010;138:2101–2114.e5. doi: 10.1053/j.gastro.2010.01.058. PubMed DOI
Chen W.T.-L., Yang T.-S., Chen H.-C., Chen H.-H., Chiang H.-C., Lin T.-C., Yeh C.-H., Ke T.-W., Chen J.-S., Hsiao K.-H., et al. Effectiveness of a novel herbal agent MB-6 as a potential adjunct to 5-fluoracil-based chemotherapy in colorectal cancer. Nutr. Res. 2014;34:585–594. doi: 10.1016/j.nutres.2014.06.010. PubMed DOI
Ma Z.F., Zhang H. Phytochemical Constituents, Health Benefits, and Industrial Applications of Grape Seeds: A Mini-Review. Antioxidants (Basel) 2017;6 doi: 10.3390/antiox6030071. PubMed DOI PMC
Morin M.-P., Bedran T.B.L., Fournier-Larente J., Haas B., Azelmat J., Grenier D. Green tea extract and its major constituent epigallocatechin-3-gallate inhibit growth and halitosis-related properties of Solobacterium moorei. BMC Complementary Altern. Med. 2015;15:48. doi: 10.1186/s12906-015-0557-z. PubMed DOI PMC
Cavaliere C., Cucci F., Foglia P., Guarino C., Samperi R., Laganà A. Flavonoid profile in soybeans by high-performance liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2007;21:2177–2187. doi: 10.1002/rcm.3049. PubMed DOI
Liu Y., Li L., An S., Zhang Y., Feng S., Zhao L., Teng L., Wang D. Antifatigue Effects of Antrodia cinnamomea Cultured Mycelium via Modulation of Oxidative Stress Signaling in a Mouse Model. Biomed. Res. Int. 2017;2017 doi: 10.1155/2017/9374026. PubMed DOI PMC
Papalia T., Sidari R., Panuccio M.R. Impact of Different Storage Methods on Bioactive Compounds in Arthrospira platensis Biomass. Molecules. 2019;24 doi: 10.3390/molecules24152810. PubMed DOI PMC
Polivka J., Kralickova M., Polivka J., Kaiser C., Kuhn W., Golubnitschaja O. Mystery of the brain metastatic disease in breast cancer patients: Improved patient stratification, disease prediction and targeted prevention on the horizon? EPMA J. 2017;8:119–127. doi: 10.1007/s13167-017-0087-5. PubMed DOI PMC
Golubnitschaja O., Baban B., Boniolo G., Wang W., Bubnov R., Kapalla M., Krapfenbauer K., Mozaffari M.S., Costigliola V. Medicine in the early twenty-first century: Paradigm and anticipation—EPMA position paper 2016. EPMA J. 2016;7:23. doi: 10.1186/s13167-016-0072-4. PubMed DOI PMC
Meadows G.G. Diet, nutrients, phytochemicals, and cancer metastasis suppressor genes. Cancer Metastasis Rev. 2012;31:441–454. doi: 10.1007/s10555-012-9369-5. PubMed DOI
Salvia officinalis L. exerts oncostatic effects in rodent and in vitro models of breast carcinoma
Anti-breast cancer effects of phytochemicals: primary, secondary, and tertiary care
Metabolic Anti-Cancer Effects of Melatonin: Clinically Relevant Prospects
Flavonoids against the SARS-CoV-2 induced inflammatory storm
Flavonoids Targeting HIF-1: Implications on Cancer Metabolism