Salvia officinalis L. exerts oncostatic effects in rodent and in vitro models of breast carcinoma
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38464730
PubMed Central
PMC10921418
DOI
10.3389/fphar.2024.1216199
PII: 1216199
Knihovny.cz E-zdroje
- Klíčová slova
- Salvia officinalis L., apoptosis, breast carcinoma, cancer stem cells, cell proliferation, epigenetics, human carcinoma cell lines, inflammatory cytokines,
- Publikační typ
- časopisecké články MeSH
Introduction: Based on extensive data from oncology research, the use of phytochemicals or plant-based nutraceuticals is considered an innovative tool for cancer management. This research aimed to analyze the oncostatic properties of Salvia officinalis L. [Lamiaceae; Salviae officinalis herba] using animal and in vitro models of breast carcinoma (BC). Methods: The effects of dietary administered S. officinalis in two concentrations (0.1%/SAL 0.1/and 1%/SAL 1/) were assessed in both syngeneic 4T1 mouse and chemically induced rat models of BC. The histopathological and molecular evaluations of rodent carcinoma specimens were performed after the autopsy. Besides, numerous in vitro analyses using two human cancer cell lines were performed. Results and Conclusion: The dominant metabolites found in S. officinalis propylene glycol extract (SPGE) were representatives of phenolics, specifically rosmarinic, protocatechuic, and salicylic acids. Furthermore, the occurrence of triterpenoids ursolic and oleanolic acid was proved in SPGE. In a mouse model, a non-significant tumor volume decrease after S. officinalis treatment was associated with a significant reduction in the mitotic activity index of 4T1 tumors by 37.5% (SAL 0.1) and 31.5% (SAL 1) vs. controls (set as a blank group with not applied salvia in the diet). In addition, salvia at higher doses significantly decreased necrosis/whole tumor area ratio by 46% when compared to control tumor samples. In a rat chemoprevention study, S. officinalis at a higher dose significantly lengthened the latency of tumors by 8.5 days and significantly improved the high/low-grade carcinomas ratio vs. controls in both doses. Analyses of the mechanisms of anticancer activities of S. officinalis included well-validated prognostic, predictive, and diagnostic biomarkers that are applied in both oncology practice and preclinical investigation. Our assessment in vivo revealed numerous significant changes after a comparison of treated vs. untreated cancer cells. In this regard, we found an overexpression in caspase-3, an increased Bax/Bcl-2 ratio, and a decrease in MDA, ALDH1, and EpCam expression. In addition, salvia reduced TGF-β serum levels in rats (decrease in IL-6 and TNF-α levels were with borderline significance). Evaluation of epigenetic modifications in rat cancer specimens in vivo revealed a decline in the lysine methylations of H3K4m3 and an increase in lysine acetylation in H4K16ac levels in treated groups. Salvia decreased the relative levels of oncogenic miR21 and tumor-suppressive miR145 (miR210, miR22, miR34a, and miR155 were not significantly altered). The methylation of ATM and PTEN promoters was decreased after S. officinalis treatment (PITX2, RASSF1, and TIMP3 promoters were not altered). Analyzing plasma metabolomics profile in tumor-bearing rats, we found reduced levels of ketoacids derived from BCAAs after salvia treatment. In vitro analyses revealed significant anti-cancer effects of SPGE extract in MCF-7 and MDA-MB-231 cell lines (cytotoxicity, caspase-3/-7, Bcl-2, Annexin V/PI, cell cycle, BrdU, and mitochondrial membrane potential). Our study demonstrates the significant chemopreventive and treatment effects of salvia haulm using animal or in vitro BC models.
Department of Natural Drugs Faculty of Pharmacy Masaryk University Brno Czechia
Department of Pathology St Elisabeth Oncology Institute Bratislava Slovakia
Department of Pharmacology Faculty of Medicine P J Šafárik University Košice Slovakia
Zobrazit více v PubMed
Abadi A. J., Mirzaei S., Mahabady M. K., Hashemi F., Zabolian A., Hashemi F., et al. (2022). Curcumin and its derivatives in cancer therapy: potentiating antitumor activity of cisplatin and reducing side effects. Phytother. Res. 36, 189–213. 10.1002/ptr.7305 PubMed DOI
Abotaleb M., Samuel S. M., Varghese E., Varghese S., Kubatka P., Liskova A., et al. (2018). Flavonoids in cancer and apoptosis. Cancers (Basel) 11, 28. 10.3390/cancers11010028 PubMed DOI PMC
Adams L. S., Phung S., Yee N., Seeram N. P., Li L., Chen S. (2010). Blueberry phytochemicals inhibit growth and metastatic potential of MDA-MB-231 breast cancer cells through modulation of the phosphatidylinositol 3-kinase pathway. Cancer Res. 70, 3594–3605. 10.1158/0008-5472.CAN-09-3565 PubMed DOI PMC
Ahmad N., Ammar A., Storr S. J., Green A. R., Rakha E., Ellis I. O., et al. (2018). IL-6 and IL-10 are associated with good prognosis in early stage invasive breast cancer patients. Cancer Immunol. Immunother. 67, 537–549. 10.1007/s00262-017-2106-8 PubMed DOI PMC
Baranovicova E., Grendar M., Kalenska D., Tomascova A., Cierny D., Lehotsky J. (2018). NMR metabolomic study of blood plasma in ischemic and ischemically preconditioned rats: an increased level of ketone bodies and decreased content of glycolytic products 24 h after global cerebral ischemia. J. Physiol. Biochem. 74, 417–429. 10.1007/s13105-018-0632-2 PubMed DOI
Bauer J., Kuehnl S., Rollinger J. M., Scherer O., Northoff H., Stuppner H., et al. (2012). Carnosol and carnosic acids from salvia officinalis inhibit microsomal prostaglandin E2 synthase-1. J. Pharmacol. Exp. Ther. 342, 169–176. 10.1124/jpet.112.193847 PubMed DOI PMC
Bishayee A., Mandal A., Bhattacharyya P., Bhatia D. (2016). Pomegranate exerts chemoprevention of experimentally induced mammary tumorigenesis by suppression of cell proliferation and induction of apoptosis. Nutr. Cancer 68, 120–130. 10.1080/01635581.2016.1115094 PubMed DOI PMC
Bonesi M., Loizzo M. R., Acquaviva R., Malfa G. A., Aiello F., Tundis R. (2017). Anti-inflammatory and antioxidant agents from salvia genus (lamiaceae): an assessment of the current state of knowledge. Antiinflamm. Antiallergy Agents Med. Chem. 16, 70–86. 10.2174/1871523016666170502121419 PubMed DOI
Brockmueller A., Sameri S., Liskova A., Zhai K., Varghese E., Samuel S. M., et al. (2021). Resveratrol’s anti-cancer effects through the modulation of tumor glucose metabolism. Cancers (Basel) 13, 188. 10.3390/cancers13020188 PubMed DOI PMC
Cai X., Cao C., Li J., Chen F., Zhang S., Liu B., et al. (2017). Inflammatory factor TNF-α promotes the growth of breast cancer via the positive feedback loop of TNFR1/NF-κB (and/or P38)/p-STAT3/HBXIP/TNFR1. Oncotarget 8, 58338–58352. 10.18632/oncotarget.16873 PubMed DOI PMC
Chatterjee B., Ghosh K., Kanade S. R. (2019). Resveratrol modulates epigenetic regulators of promoter histone methylation and acetylation that restores BRCA1, P53, p21CIP1 in human breast cancer cell lines. Biofactors 45, 818–829. 10.1002/biof.1544 PubMed DOI
Cordes T., Wallace M., Michelucci A., Divakaruni A. S., Sapcariu S. C., Sousa C., et al. (2016). Immunoresponsive gene 1 and itaconate inhibit succinate dehydrogenase to modulate intracellular succinate levels. J. Biol. Chem. 291, 14274–14284. 10.1074/jbc.M115.685792 PubMed DOI PMC
Deldar Abad Paskeh M., Asadi S., Zabolian A., Saleki H., Khoshbakht M. A., Sabet S., et al. (2021). Targeting cancer stem cells by dietary agents: an important therapeutic strategy against human malignancies. Int. J. Mol. Sci. 22, 11669. 10.3390/ijms222111669 PubMed DOI PMC
Demečková V., Solár P., Hrčková G., Mudroňová D., Bojková B., Kassayová M., et al. (2017). Immodin and its immune system supportive role in paclitaxel therapy of 4T1 mouse breast cancer. Biomed. Pharmacother. 89, 245–256. 10.1016/j.biopha.2017.02.034 PubMed DOI
Farvid M. S., Barnett J. B., Spence N. D. (2021). Fruit and vegetable consumption and incident breast cancer: a systematic review and meta-analysis of prospective studies. Br. J. Cancer 125, 284–298. 10.1038/s41416-021-01373-2 PubMed DOI PMC
Furtado J. C., Pirson L., Edelberg H., M Miranda L., Loira-Pastoriza C., Preat V., et al. (2017). Pentacyclic triterpene bioavailability: an overview of in vitro and in vivo studies. Molecules 22, 400. 10.3390/molecules22030400 PubMed DOI PMC
Ghorbani A., Esmaeilizadeh M. (2017). Pharmacological properties of salvia officinalis and its components. J. Tradit. Complement. Med. 7, 433–440. 10.1016/j.jtcme.2016.12.014 PubMed DOI PMC
Grasselly C., Denis M., Bourguignon A., Talhi N., Mathe D., Tourette A., et al. (2018). The antitumor activity of combinations of cytotoxic chemotherapy and immune checkpoint inhibitors is model-dependent. Front. Immunol. 9, 2100. 10.3389/fimmu.2018.02100 PubMed DOI PMC
Guan H., Luo W., Bao B., Cao Y., Cheng F., Yu S., et al. (2022). A comprehensive review of rosmarinic acid: from phytochemistry to Pharmacology and its new insight. Molecules 27, 3292. 10.3390/molecules27103292 PubMed DOI PMC
Günes M., Eryilmaz R., Aslan R., Taken K., Demir H., Demir C. (2020). Oxidant-antioxidant levels in patients with bladder tumours. Aging Male 23, 1176–1181. 10.1080/13685538.2020.1718636 PubMed DOI
Han B., Jiang P., Jiang L., Li X., Ye X. (2021). Three phytosterols from sweet potato inhibit MCF7-xenograft-tumor growth through modulating gut microbiota homeostasis and SCFAs secretion. Food Res. Int. 141, 110147. 10.1016/j.foodres.2021.110147 PubMed DOI
He W., Li Q., Li X. (2023). Acetyl-CoA regulates lipid metabolism and histone acetylation modification in cancer. Biochim. Biophys. Acta Rev. Cancer 1878, 188837. 10.1016/j.bbcan.2022.188837 PubMed DOI
Hitl M., Kladar N., Gavarić N., Božin B. (2021). Rosmarinic acid-human pharmacokinetics and health benefits. Planta Med. 87, 273–282. 10.1055/a-1301-8648 PubMed DOI
Hui S., Ghergurovich J. M., Morscher R. J., Jang C., Teng X., Lu W., et al. (2017). Glucose feeds the TCA cycle via circulating lactate. Nature 551, 115–118. 10.1038/nature24057 PubMed DOI PMC
Jasek K., Kubatka P., Samec M., Liskova A., Smejkal K., Vybohova D., et al. (2019). DNA methylation status in cancer disease: modulations by plant-derived natural compounds and dietary interventions. Biomolecules 9, 289. 10.3390/biom9070289 PubMed DOI PMC
Jayachandran P., Battaglin F., Strelez C., Lenz A., Algaze S., Soni S., et al. (2023). Breast cancer and neurotransmitters: emerging insights on mechanisms and therapeutic directions. Oncogene 42, 627–637. 10.1038/s41388-022-02584-4 PubMed DOI PMC
Jeyabalan J., Aqil F., Munagala R., Annamalai L., Vadhanam M. V., Gupta R. C. (2014). Chemopreventive and therapeutic activity of dietary blueberry against estrogen-mediated breast cancer. J. Agric. Food Chem. 62, 3963–3971. 10.1021/jf403734j PubMed DOI PMC
Jiang Y., Zhang L., Rupasinghe H. P. V. (2017). Antiproliferative effects of extracts from salvia officinalis L. And saliva miltiorrhiza bunge on hepatocellular carcinoma cells. Biomed. Pharmacother. 85, 57–67. 10.1016/j.biopha.2016.11.113 PubMed DOI
Jinhua W., Ying Z., Yuhua L. (2020). PXR-ABC drug transporters/CYP-mediated ursolic acid transport and metabolism in vitro and vivo. Arch. Pharm. Weinh. 353, e2000082. 10.1002/ardp.202000082 PubMed DOI
Kang Y. J., Lee C. H., Park S.-J., Lee H. S., Choi M.-K., Song I.-S. (2021). Involvement of organic anion transporters in the pharmacokinetics and drug interaction of rosmarinic acid. Pharmaceutics 13, 83. 10.3390/pharmaceutics13010083 PubMed DOI PMC
Kapinova A., Stefanicka P., Kubatka P., Zubor P., Uramova S., Kello M., et al. (2017). Are plant-based functional foods better choice against cancer than single phytochemicals? A critical review of current breast cancer research. Biomed. Pharmacother. 96, 1465–1477. 10.1016/j.biopha.2017.11.134 PubMed DOI
Khan M. A., Siddiqui S., Ahmad I., Singh R., Mishra D. P., Srivastava A. N., et al. (2021). Phytochemicals from ajwa dates pulp extract induce apoptosis in human triple-negative breast cancer by inhibiting AKT/mTOR pathway and modulating bcl-2 family proteins. Sci. Rep. 11, 10322. 10.1038/s41598-021-89420-z PubMed DOI PMC
Kim B.-G., Malek E., Choi S. H., Ignatz-Hoover J. J., Driscoll J. J. (2021). Novel therapies emerging in oncology to target the TGF-β pathway. J. Hematol. Oncol. 14, 55. 10.1186/s13045-021-01053-x PubMed DOI PMC
Kokolakis G., Sabat R., Krüger-Krasagakis S., Eberle J. (2021). Ambivalent effects of tumor necrosis factor alpha on apoptosis of malignant and normal human keratinocytes. Skin Pharmacol. Physiology 34, 94–102. 10.1159/000513725 PubMed DOI
Kolac U. K., Ustuner M. C., Tekin N., Ustuner D., Colak E., Entok E. (2017). The anti-inflammatory and antioxidant effects of salvia officinalis on lipopolysaccharide-induced inflammation in rats. J. Med. Food 20, 1193–1200. 10.1089/jmf.2017.0035 PubMed DOI
Kubatka P., Ahlersová E., Ahlers I., Bojková B., Kalická K., Adámeková E., et al. (2002). Variability of mammary carcinogenesis induction in female sprague-dawley and wistar:han rats: the effect of season and age. Physiol. Res. 51, 633–640. PubMed
Kubatka P., Kajo K., Zihlavnikova K., Adamicova K., Vybohova D., Pec M., et al. (2012). Immunohistochemical and histomorphological analysis of rat mammary tumors after simvastatin treatment. Neoplasma 59, 516–523. 10.4149/neo_2012_066 PubMed DOI
Kubatka P., Kello M., Kajo K., Kruzliak P., Výbohová D., Šmejkal K., et al. (2016a). Young barley indicates antitumor effects in experimental breast cancer in vivo and in vitro . Nutr. Cancer 68, 611–621. 10.1080/01635581.2016.1154577 PubMed DOI
Kubatka P., Kapinová A., Kello M., Kruzliak P., Kajo K., Výbohová D., et al. (2016b). Fruit peel polyphenols demonstrate substantial anti-tumour effects in the model of breast cancer. Eur. J. Nutr. 55, 955–965. 10.1007/s00394-015-0910-5 PubMed DOI
Kubatka P., Kapinová A., Kružliak P., Kello M., Výbohová D., Kajo K., et al. (2015). Antineoplastic effects of Chlorella pyrenoidosa in the breast cancer model. Nutrition 31, 560–569. 10.1016/j.nut.2014.08.010 PubMed DOI
Kubatka P., Kello M., Kajo K., Kruzliak P., Výbohová D., Mojžiš J., et al. (2017a). Oregano demonstrates distinct tumour-suppressive effects in the breast carcinoma model. Eur. J. Nutr. 56, 1303–1316. 10.1007/s00394-016-1181-5 PubMed DOI
Kubatka P., Uramova S., Kello M., Kajo K., Kruzliak P., Mojzis J., et al. (2017b). Antineoplastic effects of clove buds (Syzygium aromaticum L.) in the model of breast carcinoma. J. Cell. Mol. Med. 21, 2837–2851. 10.1111/jcmm.13197 PubMed DOI PMC
Kubatka P., Kello M., Kajo K., Samec M., Jasek K., Vybohova D., et al. (2020a). Chemopreventive and therapeutic efficacy of Cinnamomum zeylanicum L. Bark in experimental breast carcinoma: mechanistic in vivo and in vitro analyses. Molecules 25, 1399. 10.3390/molecules25061399 PubMed DOI PMC
Kubatka P., Kello M., Kajo K., Samec M., Liskova A., Jasek K., et al. (2020b). Rhus coriaria L. (Sumac) demonstrates oncostatic activity in the therapeutic and preventive model of breast carcinoma. Int. J. Mol. Sci. 22, 183. 10.3390/ijms22010183 PubMed DOI PMC
Kubatka P., Mazurakova A., Samec M., Koklesova L., Zhai K., Al-Ishaq R., et al. (2021). Flavonoids against non-physiologic inflammation attributed to cancer initiation, development, and progression—3PM pathways. EPMA J. 12, 559–587. 10.1007/s13167-021-00257-y PubMed DOI PMC
Kubatka P., Uramova S., Kello M., Kajo K., Samec M., Jasek K., et al. (2019). Anticancer activities of Thymus vulgaris L. In experimental breast carcinoma in vivo and in vitro . Int. J. Mol. Sci. 20, 1749. 10.3390/ijms20071749 PubMed DOI PMC
Liskova A., Koklesova L., Samec M., Smejkal K., Samuel S. M., Varghese E., et al. (2020b). Flavonoids in cancer metastasis. Cancers (Basel) 12, 1498. 10.3390/cancers12061498 PubMed DOI PMC
Liskova A., Koklesova L., Samec M., Varghese E., Abotaleb M., Samuel S. M., et al. (2020a). Implications of flavonoids as potential modulators of cancer neovascularity. J. Cancer Res. Clin. Oncol. 146, 3079–3096. 10.1007/s00432-020-03383-8 PubMed DOI PMC
Liskova A., Kubatka P., Samec M., Zubor P., Mlyncek M., Bielik T., et al. (2019). Dietary phytochemicals targeting cancer stem cells. Molecules 24, 899. 10.3390/molecules24050899 PubMed DOI PMC
Liskova A., Samec M., Koklesova L., Brockmueller A., Zhai K., Abdellatif B., et al. (2021). Flavonoids as an effective sensitizer for anti-cancer therapy: insights into multi-faceted mechanisms and applicability towards individualized patient profiles. EPMA J. 12, 155–176. 10.1007/s13167-021-00242-5 PubMed DOI PMC
Liu M.-H., Li Y.-F., Chen B.-H. (2021). Inhibition of melanoma cells A375 by carotenoid extract and nanoemulsion prepared from pomelo leaves. Plants (Basel) 10, 2129. 10.3390/plants10102129 PubMed DOI PMC
Mao Y., Hao J., Jin Z.-Q., Niu Y.-Y., Yang X., Liu D., et al. (2017). Network pharmacology-based and clinically relevant prediction of the active ingredients and potential targets of Chinese herbs in metastatic breast cancer patients. Oncotarget 8, 27007–27021. 10.18632/oncotarget.15351 PubMed DOI PMC
Molitorisova M., Sutovska M., Kazimierova I., Barborikova J., Joskova M., Novakova E., et al. (2021). The anti-asthmatic potential of flavonol kaempferol in an experimental model of allergic airway inflammation. Eur. J. Pharmacol. 891, 173698. 10.1016/j.ejphar.2020.173698 PubMed DOI
Nagana Gowda G. A., Gowda Y. N., Raftery D. (2015). Expanding the limits of human blood metabolite quantitation using NMR spectroscopy. Anal. Chem. 87, 706–715. 10.1021/ac503651e PubMed DOI PMC
Nandakumar V., Vaid M., Katiyar S. K. (2011). (-)-Epigallocatechin-3-Gallate reactivates silenced tumor suppressor genes, Cip1/P21 and p16INK4a, by reducing DNA methylation and increasing histones acetylation in human skin cancer cells. Carcinogenesis 32, 537–544. 10.1093/carcin/bgq285 PubMed DOI PMC
Naujokat C., McKee D. L. (2020). The “big five” phytochemicals targeting cancer stem cells: curcumin, EGCG, sulforaphane, resveratrol and genistein. Curr. Med. Chem. 28, 4321–4342. 10.2174/0929867327666200228110738 PubMed DOI
Nguyen P. L., Cho J. (2021). Pathophysiological roles of histamine receptors in cancer progression: implications and perspectives as potential molecular targets. Biomolecules 11, 1232. 10.3390/biom11081232 PubMed DOI PMC
Niland S., Eble J. A. (2019). Neuropilins in the context of tumor vasculature. Int. J. Mol. Sci. 20, 639. 10.3390/ijms20030639 PubMed DOI PMC
Parveen A., Subedi L., Kim H. W., Khan Z., Zahra Z., Farooqi M. Q., et al. (2019). Phytochemicals targeting VEGF and VEGF-related multifactors as anticancer therapy. J. Clin. Med. 8, 350. 10.3390/jcm8030350 PubMed DOI PMC
Pileczki V., Braicu C., Gherman C. D., Berindan-Neagoe I. (2012). TNF-Α gene knockout in triple negative breast cancer cell line induces apoptosis. Int. J. Mol. Sci. 14, 411–420. 10.3390/ijms14010411 PubMed DOI PMC
Poorolajal J., Heidarimoghis F., Karami M., Cheraghi Z., Gohari-Ensaf F., Shahbazi F., et al. (2021). Factors for the primary prevention of breast cancer: a meta-analysis of prospective cohort studies. J. Res. Health Sci. 21, e00520. 10.34172/jrhs.2021.57 PubMed DOI PMC
Pourzand A., Tajaddini A., Pirouzpanah S., Asghari-Jafarabadi M., Samadi N., Ostadrahimi A.-R., et al. (2016). Associations between dietary allium vegetables and risk of breast cancer: a hospital-based matched case-control study. J. Breast Cancer 19, 292–300. 10.4048/jbc.2016.19.3.292 PubMed DOI PMC
Pralea I.-E., Petrache A.-M., Tigu A. B., Gulei D., Moldovan R.-C., Ilieș M., et al. (2022). Phytochemicals as regulators of tumor glycolysis and hypoxia signaling pathways: evidence from in vitro studies. Pharm. (Basel) 15, 808. 10.3390/ph15070808 PubMed DOI PMC
Qin Q., Furong W., Baosheng L. (2014). Multiple functions of hypoxia-regulated miR-210 in cancer. J. Exp. Clin. Cancer Res. 33, 50. 10.1186/1756-9966-33-50 PubMed DOI PMC
Ravoori S., Vadhanam M. V., Aqil F., Gupta R. C. (2012). Inhibition of estrogen-mediated mammary tumorigenesis by blueberry and black raspberry. J. Agric. Food Chem. 60, 5547–5555. 10.1021/jf205325p PubMed DOI
Rennó A. L., Alves-Júnior M. J., Rocha R. M., De Souza P. C., de Souza V. B., Jampietro J., et al. (2015). Decreased expression of stem cell markers by simvastatin in 7,12-Dimethylbenz(a)Anthracene (DMBA)-Induced breast cancer. Toxicol. Pathol. 43, 400–410. 10.1177/0192623314544707 PubMed DOI
Romanowska J., Joshi A. (2019). From genotype to phenotype: through chromatin. Genes (Basel) 10, 76. 10.3390/genes10020076 PubMed DOI PMC
Royston K., Udayakumar N., Lewis K., Tollefsbol T. (2017). A novel combination of withaferin A and sulforaphane inhibits epigenetic machinery, cellular viability and induces apoptosis of breast cancer cells. IJMS 18, 1092. 10.3390/ijms18051092 PubMed DOI PMC
Russo J., Gusterson B. A., Rogers A. E., Russo I. H., Wellings S. R., van Zwieten M. J. (1990). Comparative study of human and rat mammary tumorigenesis. Lab. Invest 62, 244–278. PubMed
Salamatullah A. M., Subash-Babu P., Nassrallah A., Alshatwi A. A., Alkaltham M. S. (2021). Cyclotrisiloxan and β-sitosterol rich Cassia alata (L.) flower inhibit HT-115 human colon cancer cell growth via mitochondrial dependent apoptotic stimulation. Saudi J. Biol. Sci. 28, 6009–6016. 10.1016/j.sjbs.2021.06.065 PubMed DOI PMC
Samec M., Liskova A., Koklesova L., Mestanova V., Franekova M., Kassayova M., et al. (2019a). Fluctuations of histone chemical modifications in breast, prostate, and colorectal cancer: an implication of phytochemicals as defenders of chromatin equilibrium. Biomolecules 9, 829. 10.3390/biom9120829 PubMed DOI PMC
Samec M., Liskova A., Kubatka P., Uramova S., Zubor P., Samuel S. M., et al. (2019b). The role of dietary phytochemicals in the carcinogenesis via the modulation of miRNA expression. J. Cancer Res. Clin. Oncol. 145, 1665–1679. 10.1007/s00432-019-02940-0 PubMed DOI PMC
Samec M., Mazurakova A., Lucansky V., Koklesova L., Pecova R., Pec M., et al. (2023). Flavonoids attenuate cancer metabolism by modulating lipid metabolism, amino acids, ketone bodies and redox state mediated by Nrf2. Eur. J. Pharmacol. 949, 175655. 10.1016/j.ejphar.2023.175655 PubMed DOI
Sharma E., Attri D. C., Sati P., Dhyani P., Szopa A., Sharifi-Rad J., et al. (2022). Recent updates on anticancer mechanisms of polyphenols. Front. Cell Dev. Biol. 10, 1005910. 10.3389/fcell.2022.1005910 PubMed DOI PMC
Shehata M. G., Abu-Serie M. M., Abd El-Aziz N. M., El-Sohaimy S. A. (2021). Nutritional, phytochemical, and in vitro anticancer potential of sugar apple (annona squamosa) fruits. Sci. Rep. 11, 6224. 10.1038/s41598-021-85772-8 PubMed DOI PMC
Shima H., Yamada A., Ishikawa T., Endo I. (2017). Are breast cancer stem cells the key to resolving clinical issues in breast cancer therapy? Gland. Surg. 6, 82–88. 10.21037/gs.2016.08.03 PubMed DOI PMC
Shu C. H., Yang W. K., Shih Y. L., Kuo M. L., Huang T. S. (1997). Cell cycle G2/M arrest and activation of cyclin-dependent kinases associated with low-dose paclitaxel-induced sub-G1 apoptosis. Apoptosis 2, 463–470. 10.1023/a:1026422111457 PubMed DOI
Singletary K., MacDonald C., Wallig M. (1996). Inhibition by rosemary and carnosol of 7,12-Dimethylbenz[a]Anthracene (DMBA)-Induced rat mammary tumorigenesis and in vivo DMBA-DNA adduct formation. Cancer Lett. 104, 43–48. 10.1016/0304-3835(96)04227-9 PubMed DOI
Solár P., Sačková V., Hrčková G., Demečková V., Kassayová M., Bojková B., et al. (2017). Antitumor effect of the combination of manumycin A and immodin is associated with antiplatelet activity and increased granulocyte tumor infiltration in a 4T1 breast tumor model. Oncol. Rep. 37, 368–378. 10.3892/or.2016.5265 PubMed DOI
Szakiel A., Janiszowska W. (2002). The mechanism of oleanolic acid monoglycosides transport into vacuoles isolated from Calendula officinalis leaf protoplasts. Plant Physiology Biochem. 40, 203–209. 10.1016/S0981-9428(02)01370-0 PubMed DOI
Tesfaye S., Asres K., Lulekal E., Alebachew Y., Tewelde E., Kumarihamy M., et al. (2020). Ethiopian medicinal plants traditionally used for the treatment of cancer, Part 2: a review on cytotoxic, antiproliferative, and antitumor phytochemicals, and future perspective. Molecules 25, 4032. 10.3390/molecules25174032 PubMed DOI PMC
Thakur V. S., Deb G., Babcook M. A., Gupta S. (2014). Plant phytochemicals as epigenetic modulators: role in cancer chemoprevention. AAPS J. 16, 151–163. 10.1208/s12248-013-9548-5 PubMed DOI PMC
Tildesley N. T. J., Kennedy D. O., Perry E. K., Ballard C. G., Wesnes K. A., Scholey A. B. (2005). Positive modulation of mood and cognitive performance following administration of acute doses of salvia lavandulaefolia essential oil to healthy young volunteers. Physiol. Behav. 83, 699–709. 10.1016/j.physbeh.2004.09.010 PubMed DOI
Tundis R., Leporini M., Bonesi M., Rovito S., Passalacqua N. G. (2020). Salvia officinalis L. from Italy: a comparative chemical and biological study of its essential oil in the mediterranean context. Molecules 25, 5826. 10.3390/molecules25245826 PubMed DOI PMC
Uramova S., Kubatka P., Dankova Z., Kapinova A., Zolakova B., Samec M., et al. (2018). Plant natural modulators in breast cancer prevention: status quo and future perspectives reinforced by predictive, preventive, and personalized medical approach. EPMA J. 9, 403–419. 10.1007/s13167-018-0154-6 PubMed DOI PMC
Varghese E., Liskova A., Kubatka P., Mathews Samuel S., Büsselberg D. (2020). Anti-angiogenic effects of phytochemicals on miRNA regulating breast cancer progression. Biomolecules 10, 191. 10.3390/biom10020191 PubMed DOI PMC
Walch S. G., Tinzoh L. N., Zimmermann B. F., Stühlinger W., Lachenmeier D. W. (2011). Antioxidant capacity and polyphenolic composition as quality indicators for aqueous infusions of salvia officinalis L. (Sage tea). Front. Pharmacol. 2, 79. 10.3389/fphar.2011.00079 PubMed DOI PMC
Wang C., Youle R. J. (2009). The role of mitochondria in apoptosis. Annu. Rev. Genet. 43, 95–118. 10.1146/annurev-genet-102108-134850 PubMed DOI PMC
Wang H., Khor T. O., Shu L., Su Z., Fuentes F., Lee J.-H., et al. (2012). Plants vs. cancer: a review on natural phytochemicals in preventing and treating cancers and their druggability. Anticancer Agents Med. Chem. 12, 1281–1305. 10.2174/187152012803833026 PubMed DOI PMC
Wang H., Yang X. (2017). Association between serum cytokines and progression of breast cancer in Chinese population. Med. Baltim. 96, e8840. 10.1097/MD.0000000000008840 PubMed DOI PMC
Wang S., Yang T., Qiang W., Shen A., Zhao Z., Liu X. (2022). Benefits of dietary management in breast cancer patients: a systematic review and meta-analysis. Nutr. Cancer 74, 1580–1592. 10.1080/01635581.2021.1957129 PubMed DOI
Woottisin N., Sukprasert S., Kulsirirat T., Tharavanij T., Sathirakul K. (2022). Evaluation of the intestinal permeability of rosmarinic acid from thunbergia laurifolia leaf water extract in a caco-2 cell model. Molecules 27, 3884. 10.3390/molecules27123884 PubMed DOI PMC
Yanagimichi M., Nishino K., Sakamoto A., Kurodai R., Kojima K., Eto N., et al. (2021). Analyses of putative anti-cancer potential of three STAT3 signaling inhibitory compounds derived from salvia officinalis. Biochem. Biophys. Rep. 25, 100882. 10.1016/j.bbrep.2020.100882 PubMed DOI PMC
Yang L., Shi P., Zhao G., Xu J., Peng W., Zhang J., et al. (2020). Targeting cancer stem cell pathways for cancer therapy. Signal Transduct. Target. Ther. 5, 8–35. 10.1038/s41392-020-0110-5 PubMed DOI PMC
Zare Shahneh F., Valiyari S., Baradaran B., Abdolalizadeh J., Bandehagh A., Azadmehr A., et al. (2013). Inhibitory and cytotoxic activities of salvia officinalis L. Extract on human lymphoma and leukemia cells by induction of apoptosis. Adv. Pharm. Bull. 3, 51–55. 10.5681/apb.2013.009 PubMed DOI PMC
Zhang C., Sun C., Zhao Y., Wang Q., Guo J., Ye B., et al. (2022). Overview of MicroRNAs as diagnostic and prognostic biomarkers for high-incidence cancers in 2021. Int. J. Mol. Sci. 23, 11389. 10.3390/ijms231911389 PubMed DOI PMC
Zhang L., Han J. (2017). Branched-chain amino acid transaminase 1 (BCAT1) promotes the growth of breast cancer cells through improving mTOR-mediated mitochondrial biogenesis and function. Biochem. Biophys. Res. Commun. 486, 224–231. 10.1016/j.bbrc.2017.02.101 PubMed DOI
Zhao J., Xu L., Jin D., Xin Y., Tian L., Wang T., et al. (2022). Rosmarinic acid and related dietary supplements: potential applications in the prevention and treatment of cancer. Biomolecules 12, 1410. 10.3390/biom12101410 PubMed DOI PMC
Zografos E., Zagouri F., Kalapanida D., Zakopoulou R., Kyriazoglou A., Apostolidou K., et al. (2019). Prognostic role of microRNAs in breast cancer: a systematic review. Oncotarget 10, 7156–7178. 10.18632/oncotarget.27327 PubMed DOI PMC
Zwergel C., Valente S., Mai A. (2016). DNA methyltransferases inhibitors from natural sources. Curr. Top. Med. Chem. 16, 680–696. 10.2174/1568026615666150825141505 PubMed DOI