DNA Methylation Status in Cancer Disease: Modulations by Plant-Derived Natural Compounds and Dietary Interventions
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
31323834
PubMed Central
PMC6680848
DOI
10.3390/biom9070289
PII: biom9070289
Knihovny.cz E-zdroje
- Klíčová slova
- DNA methylation patterns, cancer, epigenetic modulations, oncogenes, phytochemicals, plant-based foods, tumor suppressor genes,
- MeSH
- antitumorózní látky farmakologie MeSH
- epigeneze genetická genetika MeSH
- fytonutrienty farmakologie MeSH
- lidé MeSH
- metylace DNA účinky léků MeSH
- nádory genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- antitumorózní látky MeSH
- fytonutrienty MeSH
The modulation of the activity of DNA methyltransferases (DNMTs) represents a crucial epigenetic mechanism affecting gene expressions or DNA repair mechanisms in the cells. Aberrant modifications in the function of DNMTs are a fundamental event and part of the pathogenesis of human cancer. Phytochemicals, which are biosynthesized in plants in the form of secondary metabolites, represent an important source of biomolecules with pleiotropic effects and thus provide a wide range of possible clinical applications. It is well documented that phytochemicals demonstrate significant anticancer properties, and in this regard, rapid development within preclinical research is encouraging. Phytochemicals affect several epigenetic molecular mechanisms, including DNA methylation patterns such as the hypermethylation of tumor-suppressor genes and the global hypomethylation of oncogenes, that are specific cellular signs of cancer development and progression. This review will focus on the latest achievements in using plant-derived compounds and plant-based diets targeting epigenetic regulators and modulators of gene transcription in preclinical and clinical research in order to generate novel anticancer drugs as sensitizers for conventional therapy or compounds suitable for the chemoprevention clinical setting in at-risk individuals. In conclusion, indisputable anticancer activities of dietary phytochemicals linked with proper regulation of DNA methylation status have been described. However, precisely designed and well-controlled clinical studies are needed to confirm their beneficial epigenetic effects after long-term consumption in humans.
Department of Immunology School of Medicine Keimyung University Dalseo Gu Daegu 426 01 Korea
Lambda Life JSC 851 01 Bratislava Slovakia
Weill Cornell Medicine in Qatar Qatar Foundation Education City Doha 24144 Qatar
Zobrazit více v PubMed
Carlos-Reyes Á., López-González J.S., Meneses-Flores M., Gallardo-Rincón D., Ruíz-García E., Marchat L.A., La Vega H.A.-D., De La Cruz O.N.H., López-Camarillo C. Dietary Compounds as Epigenetic Modulating Agents in Cancer. Front. Genet. 2019;10:10. doi: 10.3389/fgene.2019.00079. PubMed DOI PMC
Perri F., Longo F., Giuliano M., Sabbatino F., Favia G., Ionna F., Addeo R., Scarpati G.D.V., Di Lorenzo G., Pisconti S., et al. Epigenetic control of gene expression: Potential implications for cancer treatment. Crit. Rev. Oncol. 2017;111:166–172. doi: 10.1016/j.critrevonc.2017.01.020. PubMed DOI
Uramova S., Kubatka P., Dankova Z., Kapinova A., Zolakova B., Samec M., Zubor P., Zulli A., Valentova V., Kwon T.K., et al. Plant natural modulators in breast cancer prevention: Status quo and future perspectives reinforced by predictive, preventive, and personalized medical approach. EPMA J. 2018;9:403–419. doi: 10.1007/s13167-018-0154-6. PubMed DOI PMC
Zeng Y., Chen T. DNA Methylation Reprogramming during Mammalian Development. Genes. 2019;10:257. doi: 10.3390/genes10040257. PubMed DOI PMC
Gujar H., Weisenberger D.J., Liang G. The Roles of Human DNA Methyltransferases and Their Isoforms in Shaping the Epigenome. Genes. 2019;10:172. doi: 10.3390/genes10020172. PubMed DOI PMC
Liu P., Shen J.K., Xu J., Trahan C.A., Hornicek F.J., Duan Z. Aberrant DNA methylations in chondrosarcoma. Epigenomics. 2016;8:1519–1525. doi: 10.2217/epi-2016-0071. PubMed DOI PMC
Si X., Liu Y., Lv J., Ding H., Zhang X.A., Shao L., Yang N., Cheng H., Sun L., Zhu D., et al. ERα propelled aberrant global DNA hypermethylation by activating the DNMT1 gene to enhance anticancer drug resistance in human breast cancer cells. Oncotarget. 2016;7:20966–20980. doi: 10.18632/oncotarget.8038. PubMed DOI PMC
Chen J., Xu Z.-Y., Wang F. Association between DNA methylation and multidrug resistance in human glioma SHG-44 cells. Mol. Med. Rep. 2015;11:43–52. doi: 10.3892/mmr.2014.2690. PubMed DOI PMC
Ng J.M.-K., Yu J. Promoter Hypermethylation of Tumour Suppressor Genes as Potential Biomarkers in Colorectal Cancer. Int. J. Mol. Sci. 2015;16:2472–2496. doi: 10.3390/ijms16022472. PubMed DOI PMC
Dong Y., Zhao H., Li H., Li X., Yang S. DNA methylation as an early diagnostic marker of cancer (Review) Biomed. Rep. 2014;2:326–330. doi: 10.3892/br.2014.237. PubMed DOI PMC
Van Tongelen A., Loriot A., De Smet C. Oncogenic roles of DNA hypomethylation through the activation of cancer-germline genes. Cancer Lett. 2017;396:130–137. doi: 10.1016/j.canlet.2017.03.029. PubMed DOI
Tang Q., Cheng J., Cao X., Surowy H., Burwinkel B. Blood-based DNA methylation as biomarker for breast cancer: A systematic review. Clin. Epigenetics. 2016;8:115. doi: 10.1186/s13148-016-0282-6. PubMed DOI PMC
Qi M., Xiong X., Zhang L. Promoter hypermethylation of RARβ2, DAPK, hMLH1, p14, and p15 is associated with progression of breast cancer. Medicine. 2018;97:e13666. doi: 10.1097/MD.0000000000013666. PubMed DOI PMC
Yokoi K., Yamashita K., Watanabe M. Analysis of DNA Methylation Status in Bodily Fluids for Early Detection of Cancer. Int. J. Mol. Sci. 2017;18:735. doi: 10.3390/ijms18040735. PubMed DOI PMC
Kelly A.D., Issa J.-P.J. The promise of epigenetic therapy: Reprogramming the cancer epigenome. Curr. Opin. Genet. Dev. 2017;42:68–77. doi: 10.1016/j.gde.2017.03.015. PubMed DOI
Samec M., Liskova A., Kubatka P., Uramova S., Zubor P., Samuel S.M., Zulli A., Pec M., Bielik T., Biringer K., et al. The role of dietary phytochemicals in the carcinogenesis via the modulation of miRNA expression. J. Cancer Res. Clin. Oncol. 2019;145:1665–1679. doi: 10.1007/s00432-019-02940-0. PubMed DOI
Pfeifer G.P. Defining Driver DNA Methylation Changes in Human Cancer. Int. J. Mol. Sci. 2018;19:1166. doi: 10.3390/ijms19041166. PubMed DOI PMC
Hao X., Luo H., Krawczyk M., Wei W., Wang W., Wang J., Flagg K., Hou J., Zhang H., Yi S., et al. DNA methylation markers for diagnosis and prognosis of common cancers. Proc. Natl. Acad. Sci. USA. 2017;114:7414–7419. doi: 10.1073/pnas.1703577114. PubMed DOI PMC
Witte T., Plass C., Gerhäuser C. Pan-cancer patterns of DNA methylation. Genome Med. 2014;6:2652. doi: 10.1186/s13073-014-0066-6. PubMed DOI PMC
Zhang C., Zhao H., Li J., Liu H., Wang F., Wei Y., Su J., Zhang D., Liu T., Zhang Y. The Identification of Specific Methylation Patterns across Different Cancers. PLoS ONE. 2015;10:e0120361. doi: 10.1371/journal.pone.0120361. PubMed DOI PMC
Holubeková V., Mendelová A., Grendár M., Meršaková S., Kapustová I., Jašek K., Vaňochová A., Danko J., Lasabová Z. Methylation pattern of CDH1 promoter and its association with CDH1 gene expression in cytological cervical specimens. Oncol. Lett. 2016;12:2613–2621. doi: 10.3892/ol.2016.5004. PubMed DOI PMC
Jašek K., Kasubova I., Holubekova V., Stanclova A., Plank L., Lasabová Z. Epigenetics: An alternative pathway in GISTs tumorigenesis. Neoplasma. 2018;65:477–493. doi: 10.4149/neo_2018_170726N504. PubMed DOI
Li Q., Guo J., Wang W., Wang D. Relationship between MGMT gene expression and treatment effectiveness and prognosis in glioma. Oncol. Lett. 2017;14:229–233. doi: 10.3892/ol.2017.6123. PubMed DOI PMC
Barchitta M., Quattrocchi A., Maugeri A., Vinciguerra M., Agodi A. LINE-1 Hypomethylation in Blood and Tissue Samples as an Epigenetic Marker for Cancer Risk: A Systematic Review and Meta-Analysis. PLoS ONE. 2014;9:e109478. doi: 10.1371/journal.pone.0109478. PubMed DOI PMC
Jia Y., Wang H., Wang Y., Wang T., Wang M., Ma M., Duan Y., Meng X., Liu L. Low expression of Bin1, along with high expression of IDO in tumor tissue and draining lymph nodes, are predictors of poor prognosis for esophageal squamous cell cancer patients. Int. J. Cancer. 2015;137:1095–1106. doi: 10.1002/ijc.29481. PubMed DOI
Wang X., Wang J., Jia Y., Wang Y., Han X., Duan Y., Lv W., Ma M., Liu L. Methylation decreases the Bin1 tumor suppressor in ESCC and restoration by decitabine inhibits the epithelial mesenchymal transition. Oncotarget. 2017;8:19661–19673. doi: 10.18632/oncotarget.14914. PubMed DOI PMC
Li Y., Melnikov A.A., Levenson V., Guerra E., Simeone P., Alberti S., Deng Y. A seven-gene CpG-island methylation panel predicts breast cancer progression. BMC Cancer. 2015;15:11. doi: 10.1186/s12885-015-1412-9. PubMed DOI PMC
Julsing J.R., Peters G.J. Methylation of DNA repair genes and the efficacy of DNA targeted anticancer treatment. Oncol. Discov. 2014;2:3. doi: 10.7243/2052-6199-2-3. DOI
Wojtczyk-Miaskowska A., Presler M., Michajlowski J., Matuszewski M., Schlichtholz B. Gene Expression, DNA Methylation and Prognostic Significance of DNA Repair Genes in Human Bladder Cancer. Cell. Physiol. Biochem. 2017;42:2404–2417. doi: 10.1159/000480182. PubMed DOI
Gao D., Herman J.G., Guo M. The clinical value of aberrant epigenetic changes of DNA damage repair genes in human cancer. Oncotarget. 2016;7:37331–37346. doi: 10.18632/oncotarget.7949. PubMed DOI PMC
Kašubová I., Kalman M., Jašek K., Burjanivová T., Malicherová B., Vaňochová A., Meršaková S., Lasabová Z., Plank L. Stratification of patients with colorectal cancer without the recorded family history. Oncol. Lett. 2019;17:3649–3656. doi: 10.3892/ol.2019.10018. PubMed DOI PMC
Li E., Zhang Y. DNA methylation in mammals. Cold Spring Harb. Perspect. Biol. 2014;6:a019133. doi: 10.1101/cshperspect.a019133. PubMed DOI PMC
Pan Y., Daito T., Sasaki Y., Chung Y.H., Xing X., Pondugula S., Swamidass S.J., Wang T., Kim A.H., Yano H. Inhibition of DNA Methyltransferases Blocks Mutant Huntingtin-Induced Neurotoxicity. Sci. Rep. 2016;6:31022. doi: 10.1038/srep31022. PubMed DOI PMC
Poh W.J., Wee C.P.P., Gao Z. DNA Methyltransferase Activity Assays: Advances and Challenges. Theranostics. 2016;6:369–391. doi: 10.7150/thno.13438. PubMed DOI PMC
Heiland D.H., Ferrarese R., Claus R., Dai F., Masilamani A.P., Kling E., Weyerbrock A., Kling T., Nelander S., Carro M.S. c-Jun-N-terminal phosphorylation regulates DNMT1 expression and genome wide methylation in gliomas. Oncotarget. 2017;8:6940–6954. doi: 10.18632/oncotarget.14330. PubMed DOI PMC
Fang Q.-L., Yin Y.-R., Xie C.-R., Zhang S., Zhao W.-X., Pan C., Wang X.-M., Yin Z.-Y. Mechanistic and biological significance of DNA methyltransferase 1 upregulated by growth factors in human hepatocellular carcinoma. Int. J. Oncol. 2015;46:782–790. doi: 10.3892/ijo.2014.2776. PubMed DOI
Tang Y.-A., Tsai Y.-T., Lin R.-K., Hsu H.-S., Chen C.-Y., Wang Y.-C. Deregulation of p53 and RB Transcriptional Control Leads to Overexpression of DNA Methyltransferases in Lung Cancer. J. Cancer Res. Pr. 2014;1:14–27. doi: 10.1016/S2311-3006(16)30020-9. DOI
Xie S., Qian C. The Growing Complexity of UHRF1-Mediated Maintenance DNA Methylation. Genes. 2018;9:600. doi: 10.3390/genes9120600. PubMed DOI PMC
Kadayifci F.Z., Zheng S., Pan Y.-X. Molecular Mechanisms Underlying the Link between Diet and DNA Methylation. Int. J. Mol. Sci. 2018;19:4055. doi: 10.3390/ijms19124055. PubMed DOI PMC
Zhao Y., Sun H., Wang H. Long noncoding RNAs in DNA methylation: New players stepping into the old game. Cell Biosci. 2016;6:89. doi: 10.1186/s13578-016-0109-3. PubMed DOI PMC
Jeltsch A., Jurkowska R.Z. Allosteric control of mammalian DNA methyltransferases—A new regulatory paradigm. Nucleic Acids Res. 2016;44:8556–8575. doi: 10.1093/nar/gkw723. PubMed DOI PMC
Yarychkivska O., Tavana O., Gu W., Bestor T.H. Independent functions of DNMT1 and USP7 at replication foci. Epigenetics Chromatin. 2018;11:9. doi: 10.1186/s13072-018-0179-z. PubMed DOI PMC
Wang C.-Y., Bai X.-Y., Wang C.-H. Traditional Chinese Medicine: A Treasured Natural Resource of Anticancer Drug Research and Development. Am. J. Chin. Med. 2014;42:543–559. doi: 10.1142/S0192415X14500359. PubMed DOI
Meybodi N.M., Mortazavian A.M., Monfared A.B., Sohrabvandi S. Phytochemicals in Cancer Prevention: A Review of the Evidence. Iran. J. Cancer Prev. 2017;10:e7219.
Shukla S., Meeran S.M., Katiyar S.K. Epigenetic regulation by selected dietary phytochemicals in cancer chemoprevention. Cancer Lett. 2014;355:9–17. doi: 10.1016/j.canlet.2014.09.017. PubMed DOI PMC
Herman J.G., Merlo A., Mao L., Lapidus R.G., Issa J.P., Davidson N.E., Sidransky D., Baylin S.B. Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res. 1995;55:4525–4530. PubMed
Jones P.A. DNA methylation errors and cancer. Cancer Res. 1996;56:2463–2467. PubMed
Laird P.W., Jaenisch R. DNA methylation and cancer. Hum. Mol. Genet. 1994;3:1487–1495. doi: 10.1093/hmg/3.suppl_1.1487. PubMed DOI
Kurdyukov S., Bullock M. DNA Methylation Analysis: Choosing the Right Method. Biology. 2016;5:3. doi: 10.3390/biology5010003. PubMed DOI PMC
Shankar S., Kumar D., Srivastava R.K. Epigenetic modifications by dietary phytochemicals: Implications for personalized nutrition. Pharmacol. Ther. 2013;138:1–17. doi: 10.1016/j.pharmthera.2012.11.002. PubMed DOI PMC
Day J.K., Desbordes C., Zhuang Y., Newton L.G., Nehra V., Forsee K.M., Besch-Williford C., Huang T.H.-M., Lubahn D.B., Bauer A.M., et al. Genistein Alters Methylation Patterns in Mice. J. Nutr. 2002;132:2419S–2423S. doi: 10.1093/jn/132.8.2419S. PubMed DOI
Qin W., Zhu W., Sauter E. Resveratrol induced DNA methylation in ER+ breast cancer. Cancer Res. 2005;65:647.
Fang M.Z., Wang Y., Ai N., Hou Z., Sun Y., Lu H., Welsh W., Yang C.S. Tea polyphenol (−)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res. 2003;63:7563–7570. PubMed
Zhang N. Role of methionine on epigenetic modification of DNA methylation and gene expression in animals. Anim. Nutr. 2018;4:11–16. doi: 10.1016/j.aninu.2017.08.009. PubMed DOI PMC
Mahmoud A.M., Ali M.M. Methyl Donor Micronutrients that Modify DNA Methylation and Cancer Outcome. Nutrients. 2019;11:608. doi: 10.3390/nu11030608. PubMed DOI PMC
Llanos A.A., Dumitrescu R.G., Brasky T.M., Liu Z., Mason J.B., Marian C., Makambi K.H., Spear S.L., Kallakury B.V.S., Freudenheim J.L., et al. Relationships among folate, alcohol consumption, gene variants in one-carbon metabolism and p16INK4a methylation and expression in healthy breast tissues. Carcinogenesis. 2015;36:60–67. doi: 10.1093/carcin/bgu219. PubMed DOI PMC
Farkas S.A., Befekadu R., Hahn-Strömberg V., Nilsson T.K. DNA methylation and expression of the folate transporter genes in colorectal cancer. Tumor Boil. 2015;36:5581–5590. doi: 10.1007/s13277-015-3228-2. PubMed DOI
Zhang N., Naifeng Z. Epigenetic modulation of DNA methylation by nutrition and its mechanisms in animals. Anim. Nutr. 2015;1:144–151. doi: 10.1016/j.aninu.2015.09.002. PubMed DOI PMC
Busch C., Burkard M., Leischner C., Lauer U.M., Frank J., Venturelli S. Epigenetic activities of flavonoids in the prevention and treatment of cancer. Clin. Epigenetics. 2015;7:100. doi: 10.1186/s13148-015-0095-z. PubMed DOI PMC
Morris J., Moseley V.R., Cabang A.B., Coleman K., Wei W., Garrett-Mayer E., Wargovich M.J. Reduction in promotor methylation utilizing EGCG (epigallocatechin-3-gallate) restores RXRα expression in human colon cancer cells. Oncotarget. 2016;7:35313–35326. doi: 10.18632/oncotarget.9204. PubMed DOI PMC
Sanaei M., Kavoosi F., Roustazadeh A., Golestan F. Effect of Genistein in Comparison with Trichostatin A on Reactivation of DNMTs Genes in Hepatocellular Carcinoma. J. Clin. Transl. Hepatol. 2018;6:141–146. doi: 10.14218/JCTH.2018.00002. PubMed DOI PMC
Romagnolo D.F., Donovan M.G., Papoutsis A.J., Doetschman T.C., Selmin O.I. Genistein Prevents BRCA1 CpG Methylation and Proliferation in Human Breast Cancer Cells with Activated Aromatic Hydrocarbon Receptor. Curr. Dev. Nutr. 2017;1:e000562. doi: 10.3945/cdn.117.000562. PubMed DOI PMC
Finer S., Saravanan P., Hitman G., Yajnik C. The role of the one-carbon cycle in the developmental origins of Type 2 diabetes and obesity. Diabet. Med. 2014;31:263–272. doi: 10.1111/dme.12390. PubMed DOI
Ducker G.S., Rabinowitz J.D. One-Carbon Metabolism in Health and Disease. Cell Metab. 2017;25:27–42. doi: 10.1016/j.cmet.2016.08.009. PubMed DOI PMC
Li J., Hao D., Wang L., Wang H., Wang Y., Zhao Z., Li P., Deng C., Di L.-J. Epigenetic targeting drugs potentiate chemotherapeutic effects in solid tumor therapy. Sci. Rep. 2017;7:4035. doi: 10.1038/s41598-017-04406-0. PubMed DOI PMC
Subramaniam D., Thombre R., Dhar A., Anant S. DNA Methyltransferases: A Novel Target for Prevention and Therapy. Front. Oncol. 2014;4:80. doi: 10.3389/fonc.2014.00080. PubMed DOI PMC
Gao Y., Tollefsbol T.O. Combinational Proanthocyanidins and Resveratrol Synergistically Inhibit Human Breast Cancer Cells and Impact Epigenetic–Mediating Machinery. Int. J. Mol. Sci. 2018;19:2204. doi: 10.3390/ijms19082204. PubMed DOI PMC
Naselli F., Belshaw N.J., Gentile C., Livrea M.A., CaraDonna F., Tutone M., Tesoriere L. Phytochemical Indicaxanthin Inhibits Colon Cancer Cell Growth and Affects the DNA Methylation Status by Influencing Epigenetically Modifying Enzyme Expression and Activity. J. Nutr. Nutr. 2015;8:114–127. doi: 10.1159/000439382. PubMed DOI
Jiang F., Li Y., Mu J., Hu C., Zhou M., Wang X., Si L., Ning S., Li Z. Glabridin inhibits cancer stem cell-like properties of human breast cancer cells: An epigenetic regulation of miR-148a/SMAd2 signaling. Mol. Carcinog. 2016;55:929–940. doi: 10.1002/mc.22333. PubMed DOI
Wong C.P., Hsu A., Buchanan A., Palomera-Sanchez Z., Beaver L.M., Houseman E.A., Williams D.E., Dashwood R.H., Ho E. Effects of Sulforaphane and 3,3′-Diindolylmethane on Genome-Wide Promoter Methylation in Normal Prostate Epithelial Cells and Prostate Cancer Cells. PLoS ONE. 2014;9:86787. doi: 10.1371/journal.pone.0086787. PubMed DOI PMC
Lewis K.A., Jordan H.R., Tollefsbol T.O. Effects of SAHA and EGCG on Growth Potentiation of Triple-Negative Breast Cancer Cells. Cancers. 2018;11:23. doi: 10.3390/cancers11010023. PubMed DOI PMC
Chen Y., Tang Q., Xiao Q., Yang L., Hann S.S. Targeting EP4 downstream c-Jun through ERK1/2-mediated reduction of DNMT1 reveals novel mechanism of solamargine-inhibited growth of lung cancer cells. J. Cell. Mol. Med. 2017;21:222–233. doi: 10.1111/jcmm.12958. PubMed DOI PMC
Szic K.S.V., Diddens J., Gerhäuser C., Declerck K., Crans R.A.J., Scherf D.B., Berghe W.V. Epigenetic silencing of triple negative breast cancer hallmarks by Withaferin A. Oncotarget. 2017;8:40434–40453. PubMed PMC
Moiseeva E.P., Almeida G.M., Jones G.D.D., Manson M.M. Extended treatment with physiologic concentrations of dietary phytochemicals results in altered gene expression, reduced growth, and apoptosis of cancer cells. Mol. Cancer Ther. 2007;6:3071–3079. doi: 10.1158/1535-7163.MCT-07-0117. PubMed DOI
Li Y., Meeran S.M., Patel S.N., Chen H., Hardy T.M., Tollefsbol T.O. Epigenetic reactivation of estrogen receptor-α (ERα) by genistein enhances hormonal therapy sensitivity in ERα-negative breast cancer. Mol. Cancer. 2013;12:9. doi: 10.1186/1476-4598-12-9. PubMed DOI PMC
Hewlings S.J., Kalman D.S. Curcumin: A Review of Its’ Effects on Human Health. Foods. 2017;6:92. doi: 10.3390/foods6100092. PubMed DOI PMC
Du L., Xie Z., Wu L.-C., Chiu M., Lin J., Chan K.K., Liu S., Liu Z. Reactivation of RASSF1A in Breast Cancer Cells by Curcumin. Nutr. Cancer. 2012;64:1228–1235. doi: 10.1080/01635581.2012.717682. PubMed DOI PMC
Jiang A., Wang X., Shan X., Li Y., Wang P., Jiang P., Feng Q. Curcumin Reactivates Silenced Tumor Suppressor Gene RARβ by Reducing DNA Methylation. Phytother. Res. 2015;29:1237–1245. doi: 10.1002/ptr.5373. PubMed DOI
Yu J., Peng Y., Wu L.-C., Xie Z., Deng Y., Hughes T., He S., Mo X., Chiu M., Wang Q.-E., et al. Curcumin Down-Regulates DNA Methyltransferase 1 and Plays an Anti-Leukemic Role in Acute Myeloid Leukemia. PLoS ONE. 2013;8:e55934. doi: 10.1371/journal.pone.0055934. PubMed DOI PMC
Khor T.O., Huang Y., Wu T.-Y., Shu L., Lee J.H., Kong A.-N.T. Pharmacodynamics of curcumin as DNA hypomethylation agent in restoring the expression of Nrf2 via promoter CpGs demethylation. Biochem. Pharmacol. 2011;82:1073–1078. doi: 10.1016/j.bcp.2011.07.065. PubMed DOI
Hu P., Ma L., Wang Y.-G., Ye F., Wang C., Zhou W.-H., Zhao X. Genistein, a dietary soy isoflavone, exerts antidepressant-like effects in mice: Involvement of serotonergic system. Neurochem. Int. 2017;108:426–435. doi: 10.1016/j.neuint.2017.06.002. PubMed DOI
Li H., Xu W., Huang Y., Huang X., Xu L., Lv Z. Genistein demethylates the promoter of CHD5 and inhibits neuroblastoma growth in vivo. Int. J. Mol. Med. 2012;30:1081–1086. doi: 10.3892/ijmm.2012.1118. PubMed DOI
Berman A.Y., Motechin R.A., Wiesenfeld M.Y., Holz M.K. The therapeutic potential of resveratrol: A review of clinical trials. NPJ Precis. Oncol. 2017;1:35. doi: 10.1038/s41698-017-0038-6. PubMed DOI PMC
Qin W., Zhang K., Clarke K., Weiland T., Sauter E.R. Methylation and miRNA Effects of Resveratrol on Mammary Tumors vs. Normal Tissue. Nutr. Cancer. 2014;66:270–277. doi: 10.1080/01635581.2014.868910. PubMed DOI
Yi X., Zuo J., Tan C., Xian S., Luo C., Chen S., Yu L., Luo Y. Kaempferol, A Flavonoid Compound from Gynura Medica Induced Apoptosis and Growth Inhibition in Mcf-7 Breast Cancer Cell. Afr. J. Tradit. Complement. Altern. Med. AJTCAM. 2016;13:210–215. doi: 10.21010/ajtcam.v13i4.27. PubMed DOI PMC
Qiu W., Lin J., Zhu Y., Zhang J., Zeng L., Su M., Tian Y. Kaempferol Modulates DNA Methylation and Downregulates DNMT3B in Bladder Cancer. Cell. Physiol. Biochem. 2017;41:1325–1335. doi: 10.1159/000464435. PubMed DOI
Wang N., Wang Z., Wang Y., Xie X., Shen J., Peng C., You J., Peng F., Tang H., Guan X., et al. Dietary compound isoliquiritigenin prevents mammary carcinogenesis by inhibiting breast cancer stem cells through WIF1 demethylation. Oncotarget. 2015;6:9854–9876. doi: 10.18632/oncotarget.3396. PubMed DOI PMC
Kubatka P., Uramova S., Kello M., Kajo K., Samec M., Jasek K., Zubor P. Anticancer Activities of Thymus vulgaris L. in Experimental Breast Carcinoma in Vivo and in Vitro. Int. J. Mol. Sci. 2019;20:1749. doi: 10.3390/ijms20071749. PubMed DOI PMC
Kubatka P., Uramova S., Kello M., Kajo K., Kruzliak P., Mojzis J., Vybohova D., Adamkov M., Jasek K., Lasabová Z., et al. Antineoplastic effects of clove buds (Syzygium aromaticum L.) in the model of breast carcinoma. J. Cell. Mol. Med. 2017;21:2837–2851. doi: 10.1111/jcmm.13197. PubMed DOI PMC
Kresty L.A., Mallery S.R., Stoner G.D. Black raspberries in cancer clinical trials: Past, present and future. J. Berry Res. 2016;6:251–261. doi: 10.3233/JBR-160125. PubMed DOI PMC
Wang L.-S., Kuo C.-T., Huang T.H.-M., Yearsley M., Oshima K., Stoner G.D., Yu J., Lechner J.F., Huang Y.-W. Black Raspberries Protectively Regulate Methylation of Wnt Pathway Genes in Precancerous Colon Tissue. Cancer Prev. Res. 2013;6:1317–1327. doi: 10.1158/1940-6207.CAPR-13-0077. PubMed DOI PMC
Huang Y.-W., Gu F., Dombkowski A., Wang L.-S., Stoner G.D. Black raspberries demethylate Sfrp4, a WNT pathway antagonist, in rat esophageal squamous cell papilloma. Mol. Carcinog. 2016;55:1867–1875. doi: 10.1002/mc.22435. PubMed DOI
Pan Y., Liu G., Zhou F., Su B., Li Y. DNA methylation profiles in cancer diagnosis and therapeutics. Clin. Exp. Med. 2018;18:1–14. doi: 10.1007/s10238-017-0467-0. PubMed DOI
Bayat S., Shekari Khaniani M., Choupani J., Alivand M.R., Mansoori Derakhshan S. HDACis (class I), cancer stem cell, and phytochemicals: Cancer therapy and prevention implications. Biomed Pharmacother. 2018;97:1445–1453. doi: 10.1016/j.biopha.2017.11.065. PubMed DOI
Majid S., Dar A.A., Shahryari V., Hirata H., Ahmad A., Saini S., Tanaka Y., Dahiya A.V., Dahiya R. Genistein reverses hypermethylation and induces active histone modifications in tumor suppressor gene B-Cell translocation gene 3 in prostate cancer. Cancer. 2010;116:66–76. doi: 10.1002/cncr.24662. PubMed DOI PMC
Qin W., Zhu W., Shi H., Hewett J.E., Ruhlen R.L., Macdonald R.S., Rottinghaus G.E., Chen Y.-C., Sauter E.R. Soy Isoflavones Have an Antiestrogenic Effect and Alter Mammary Promoter Hypermethylation in Healthy Premenopausal Women. Nutr. Cancer. 2009;61:238–244. doi: 10.1080/01635580802404196. PubMed DOI PMC
Zhu W., Qin W., Zhang K., Rottinghaus G.E., Chen Y.-C., Kliethermes B., Sauter E.R. Trans-Resveratrol Alters Mammary Promoter Hypermethylation in Women at Increased Risk for Breast Cancer. Nutr. Cancer. 2012;64:393–400. doi: 10.1080/01635581.2012.654926. PubMed DOI PMC
Liu J., Ward R.L. Folate and One-Carbon Metabolism and Its Impact on Aberrant DNA Methylation in Cancer. Adv. Genet. 2010;71:79–121. PubMed
Pentieva K., Lees-Murdock D.J., Walsh C.P., Irwin R.E., Cassidy T., McLaughlin M., Prasad G., McNulty H. The interplay between DNA methylation, folate and neurocognitive development. Epigenomics. 2016;8:863–879. PubMed
Lendoiro E., Russell W., Bestwick C., Bermano G., Duthie S. Folate and genomic stability: Differential effect of methylated and oxidised folate on DNA damage and ROS production in human colon fibroblasts. Proc. Nutr. Soc. 2018;77:77. doi: 10.1017/S0029665118000253. DOI
Coppedè F., Migheli F., Lopomo A., Failli A., Legitimo A., Consolini R., Fontanini G., Sensi E., Servadio A., Seccia M., et al. Gene promoter methylation in colorectal cancer and healthy adjacent mucosa specimens: Correlation with physiological and pathological characteristics, and with biomarkers of one-carbon metabolism. Epigenetics. 2014;9:621–633. doi: 10.4161/epi.27956. PubMed DOI PMC
Pirouzpanah S., Taleban F.-A., Mehdipour P., Atri M. Association of folate and other one-carbon related nutrients with hypermethylation status and expression of RARB, BRCA1, and RASSF1A genes in breast cancer patients. J. Mol. Med. 2015;93:917–934. doi: 10.1007/s00109-015-1268-0. PubMed DOI
Colacino J.A., Arthur A.E., Dolinoy D.C., Sartor M.A., Duffy S.A., Chepeha D.B., Bradford C.R., Walline H.M., McHugh J.B., D’Silva N.J., et al. Pretreatment dietary intake is associated with tumor suppressor DNA methylation in head and neck squamous cell carcinomas. Epigenetics. 2012;7:883–891. doi: 10.4161/epi.21038. PubMed DOI PMC
Kraunz K.S., Hsiung D., McClean M.D., Liu M., Osanyingbemi J., Nelson H.H., Kelsey K.T. Dietary folate is associated with p16(INK4A) methylation in head and neck squamous cell carcinoma. Int. J. Cancer. 2006;119:1553–1557. doi: 10.1002/ijc.22013. PubMed DOI
Tao M.-H., Mason J.B., Marian C., McCann S.E., Platek M.E., Millen A., Ambrosone C., Edge S.B., Krishnan S.S., Trevisan M., et al. Promoter Methylation of E-Cadherin, p16, and RAR-β2Genes in Breast Tumors and Dietary Intake of Nutrients Important in One-Carbon Metabolism. Nutr. Cancer. 2011;63:1143–1150. doi: 10.1080/01635581.2011.605982. PubMed DOI PMC
Delgado-Cruzata L., Zhang W., McDonald J.A., Tsai W.Y., Valdovinos C., Falci L., Wang Q., Crew K.D., Santella R.M., Hershman D.L., et al. Dietary Modifications, Weight Loss, and Changes in Metabolic Markers Affect Global DNA Methylation in Hispanic, African American, and Afro-Caribbean Breast Cancer Survivors12. J. Nutr. 2015;145:783–790. doi: 10.3945/jn.114.202853. PubMed DOI PMC
Piyathilake C.J., Johanning G.L., Macaluso M., Whiteside M., Oelschlager D.K., Heimburger D.C., Grizzle W.E. Localized Folate and Vitamin B-12 Deficiency in Squamous Cell Lung Cancer Is Associated with Global DNA Hypomethylation. Nutr. Cancer. 2000;37:99–107. doi: 10.1207/S15327914NC3701_13. PubMed DOI
O’Reilly S.L., McGlynn A.P., McNulty H., Reynolds J., Wasson G.R., Molloy A.M., Strain J., Weir D.G., Ward M., McKerr G., et al. Folic Acid Supplementation in Postpolypectomy Patients in a Randomized Controlled Trial Increases Tissue Folate Concentrations and Reduces Aberrant DNA Biomarkers in Colonic Tissues Adjacent to the Former Polyp Site. J. Nutr. 2016;146:933–939. doi: 10.3945/jn.115.222547. PubMed DOI
Castellano-Castillo D., Morcillo S., Crujeiras A.B., Sánchez-Alcoholado L., Clemente-Postigo M., Torres E., Tinahones F.J., Macias-Gonzalez M. Association between serum 25-hydroxyvitamin D and global DNA methylation in visceral adipose tissue from colorectal cancer patients. BMC Cancer. 2019;19:93. doi: 10.1186/s12885-018-5226-4. PubMed DOI PMC
Golubnitschaja O., Filep N., Yeghiazaryan K., Blom H.J., Hofmann-Apitius M., Kuhn W. Multi-omic approach decodes paradoxes of the triple-negative breast cancer: Lessons for predictive, preventive and personalised medicine. Amino Acids. 2018;50:383–395. doi: 10.1007/s00726-017-2524-0. PubMed DOI
Fröhlich H., Patjoshi S., Yeghiazaryan K., Kehrer C., Kuhn W., Golubnitschaja O. Premenopausal breast cancer: Potential clinical utility of a multi-omics based machine learning approach for patient stratification. EPMA J. 2018;9:175–186. doi: 10.1007/s13167-018-0131-0. PubMed DOI PMC
Lu M., Zhan X. The crucial role of multiomic approach in cancer research and clinically relevant outcomes. EPMA J. 2018;9:77–102. doi: 10.1007/s13167-018-0128-8. PubMed DOI PMC
Cheng T., Zhan X. Pattern recognition for predictive, preventive, and personalized medicine in cancer. EPMA J. 2017;8:51–60. doi: 10.1007/s13167-017-0083-9. PubMed DOI PMC
Janssens J.P., Schuster K., Voss A. Preventive, predictive, and personalized medicine for effective and affordable cancer care. EPMA J. 2018;9:113–123. doi: 10.1007/s13167-018-0130-1. PubMed DOI PMC
Salvia officinalis L. exerts oncostatic effects in rodent and in vitro models of breast carcinoma
Anti-breast cancer effects of phytochemicals: primary, secondary, and tertiary care
Metabolic Anti-Cancer Effects of Melatonin: Clinically Relevant Prospects