DNA Methylation Status in Cancer Disease: Modulations by Plant-Derived Natural Compounds and Dietary Interventions

. 2019 Jul 18 ; 9 (7) : . [epub] 20190718

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid31323834

The modulation of the activity of DNA methyltransferases (DNMTs) represents a crucial epigenetic mechanism affecting gene expressions or DNA repair mechanisms in the cells. Aberrant modifications in the function of DNMTs are a fundamental event and part of the pathogenesis of human cancer. Phytochemicals, which are biosynthesized in plants in the form of secondary metabolites, represent an important source of biomolecules with pleiotropic effects and thus provide a wide range of possible clinical applications. It is well documented that phytochemicals demonstrate significant anticancer properties, and in this regard, rapid development within preclinical research is encouraging. Phytochemicals affect several epigenetic molecular mechanisms, including DNA methylation patterns such as the hypermethylation of tumor-suppressor genes and the global hypomethylation of oncogenes, that are specific cellular signs of cancer development and progression. This review will focus on the latest achievements in using plant-derived compounds and plant-based diets targeting epigenetic regulators and modulators of gene transcription in preclinical and clinical research in order to generate novel anticancer drugs as sensitizers for conventional therapy or compounds suitable for the chemoprevention clinical setting in at-risk individuals. In conclusion, indisputable anticancer activities of dietary phytochemicals linked with proper regulation of DNA methylation status have been described. However, precisely designed and well-controlled clinical studies are needed to confirm their beneficial epigenetic effects after long-term consumption in humans.

Zobrazit více v PubMed

Carlos-Reyes Á., López-González J.S., Meneses-Flores M., Gallardo-Rincón D., Ruíz-García E., Marchat L.A., La Vega H.A.-D., De La Cruz O.N.H., López-Camarillo C. Dietary Compounds as Epigenetic Modulating Agents in Cancer. Front. Genet. 2019;10:10. doi: 10.3389/fgene.2019.00079. PubMed DOI PMC

Perri F., Longo F., Giuliano M., Sabbatino F., Favia G., Ionna F., Addeo R., Scarpati G.D.V., Di Lorenzo G., Pisconti S., et al. Epigenetic control of gene expression: Potential implications for cancer treatment. Crit. Rev. Oncol. 2017;111:166–172. doi: 10.1016/j.critrevonc.2017.01.020. PubMed DOI

Uramova S., Kubatka P., Dankova Z., Kapinova A., Zolakova B., Samec M., Zubor P., Zulli A., Valentova V., Kwon T.K., et al. Plant natural modulators in breast cancer prevention: Status quo and future perspectives reinforced by predictive, preventive, and personalized medical approach. EPMA J. 2018;9:403–419. doi: 10.1007/s13167-018-0154-6. PubMed DOI PMC

Zeng Y., Chen T. DNA Methylation Reprogramming during Mammalian Development. Genes. 2019;10:257. doi: 10.3390/genes10040257. PubMed DOI PMC

Gujar H., Weisenberger D.J., Liang G. The Roles of Human DNA Methyltransferases and Their Isoforms in Shaping the Epigenome. Genes. 2019;10:172. doi: 10.3390/genes10020172. PubMed DOI PMC

Liu P., Shen J.K., Xu J., Trahan C.A., Hornicek F.J., Duan Z. Aberrant DNA methylations in chondrosarcoma. Epigenomics. 2016;8:1519–1525. doi: 10.2217/epi-2016-0071. PubMed DOI PMC

Si X., Liu Y., Lv J., Ding H., Zhang X.A., Shao L., Yang N., Cheng H., Sun L., Zhu D., et al. ERα propelled aberrant global DNA hypermethylation by activating the DNMT1 gene to enhance anticancer drug resistance in human breast cancer cells. Oncotarget. 2016;7:20966–20980. doi: 10.18632/oncotarget.8038. PubMed DOI PMC

Chen J., Xu Z.-Y., Wang F. Association between DNA methylation and multidrug resistance in human glioma SHG-44 cells. Mol. Med. Rep. 2015;11:43–52. doi: 10.3892/mmr.2014.2690. PubMed DOI PMC

Ng J.M.-K., Yu J. Promoter Hypermethylation of Tumour Suppressor Genes as Potential Biomarkers in Colorectal Cancer. Int. J. Mol. Sci. 2015;16:2472–2496. doi: 10.3390/ijms16022472. PubMed DOI PMC

Dong Y., Zhao H., Li H., Li X., Yang S. DNA methylation as an early diagnostic marker of cancer (Review) Biomed. Rep. 2014;2:326–330. doi: 10.3892/br.2014.237. PubMed DOI PMC

Van Tongelen A., Loriot A., De Smet C. Oncogenic roles of DNA hypomethylation through the activation of cancer-germline genes. Cancer Lett. 2017;396:130–137. doi: 10.1016/j.canlet.2017.03.029. PubMed DOI

Tang Q., Cheng J., Cao X., Surowy H., Burwinkel B. Blood-based DNA methylation as biomarker for breast cancer: A systematic review. Clin. Epigenetics. 2016;8:115. doi: 10.1186/s13148-016-0282-6. PubMed DOI PMC

Qi M., Xiong X., Zhang L. Promoter hypermethylation of RARβ2, DAPK, hMLH1, p14, and p15 is associated with progression of breast cancer. Medicine. 2018;97:e13666. doi: 10.1097/MD.0000000000013666. PubMed DOI PMC

Yokoi K., Yamashita K., Watanabe M. Analysis of DNA Methylation Status in Bodily Fluids for Early Detection of Cancer. Int. J. Mol. Sci. 2017;18:735. doi: 10.3390/ijms18040735. PubMed DOI PMC

Kelly A.D., Issa J.-P.J. The promise of epigenetic therapy: Reprogramming the cancer epigenome. Curr. Opin. Genet. Dev. 2017;42:68–77. doi: 10.1016/j.gde.2017.03.015. PubMed DOI

Samec M., Liskova A., Kubatka P., Uramova S., Zubor P., Samuel S.M., Zulli A., Pec M., Bielik T., Biringer K., et al. The role of dietary phytochemicals in the carcinogenesis via the modulation of miRNA expression. J. Cancer Res. Clin. Oncol. 2019;145:1665–1679. doi: 10.1007/s00432-019-02940-0. PubMed DOI

Pfeifer G.P. Defining Driver DNA Methylation Changes in Human Cancer. Int. J. Mol. Sci. 2018;19:1166. doi: 10.3390/ijms19041166. PubMed DOI PMC

Hao X., Luo H., Krawczyk M., Wei W., Wang W., Wang J., Flagg K., Hou J., Zhang H., Yi S., et al. DNA methylation markers for diagnosis and prognosis of common cancers. Proc. Natl. Acad. Sci. USA. 2017;114:7414–7419. doi: 10.1073/pnas.1703577114. PubMed DOI PMC

Witte T., Plass C., Gerhäuser C. Pan-cancer patterns of DNA methylation. Genome Med. 2014;6:2652. doi: 10.1186/s13073-014-0066-6. PubMed DOI PMC

Zhang C., Zhao H., Li J., Liu H., Wang F., Wei Y., Su J., Zhang D., Liu T., Zhang Y. The Identification of Specific Methylation Patterns across Different Cancers. PLoS ONE. 2015;10:e0120361. doi: 10.1371/journal.pone.0120361. PubMed DOI PMC

Holubeková V., Mendelová A., Grendár M., Meršaková S., Kapustová I., Jašek K., Vaňochová A., Danko J., Lasabová Z. Methylation pattern of CDH1 promoter and its association with CDH1 gene expression in cytological cervical specimens. Oncol. Lett. 2016;12:2613–2621. doi: 10.3892/ol.2016.5004. PubMed DOI PMC

Jašek K., Kasubova I., Holubekova V., Stanclova A., Plank L., Lasabová Z. Epigenetics: An alternative pathway in GISTs tumorigenesis. Neoplasma. 2018;65:477–493. doi: 10.4149/neo_2018_170726N504. PubMed DOI

Li Q., Guo J., Wang W., Wang D. Relationship between MGMT gene expression and treatment effectiveness and prognosis in glioma. Oncol. Lett. 2017;14:229–233. doi: 10.3892/ol.2017.6123. PubMed DOI PMC

Barchitta M., Quattrocchi A., Maugeri A., Vinciguerra M., Agodi A. LINE-1 Hypomethylation in Blood and Tissue Samples as an Epigenetic Marker for Cancer Risk: A Systematic Review and Meta-Analysis. PLoS ONE. 2014;9:e109478. doi: 10.1371/journal.pone.0109478. PubMed DOI PMC

Jia Y., Wang H., Wang Y., Wang T., Wang M., Ma M., Duan Y., Meng X., Liu L. Low expression of Bin1, along with high expression of IDO in tumor tissue and draining lymph nodes, are predictors of poor prognosis for esophageal squamous cell cancer patients. Int. J. Cancer. 2015;137:1095–1106. doi: 10.1002/ijc.29481. PubMed DOI

Wang X., Wang J., Jia Y., Wang Y., Han X., Duan Y., Lv W., Ma M., Liu L. Methylation decreases the Bin1 tumor suppressor in ESCC and restoration by decitabine inhibits the epithelial mesenchymal transition. Oncotarget. 2017;8:19661–19673. doi: 10.18632/oncotarget.14914. PubMed DOI PMC

Li Y., Melnikov A.A., Levenson V., Guerra E., Simeone P., Alberti S., Deng Y. A seven-gene CpG-island methylation panel predicts breast cancer progression. BMC Cancer. 2015;15:11. doi: 10.1186/s12885-015-1412-9. PubMed DOI PMC

Julsing J.R., Peters G.J. Methylation of DNA repair genes and the efficacy of DNA targeted anticancer treatment. Oncol. Discov. 2014;2:3. doi: 10.7243/2052-6199-2-3. DOI

Wojtczyk-Miaskowska A., Presler M., Michajlowski J., Matuszewski M., Schlichtholz B. Gene Expression, DNA Methylation and Prognostic Significance of DNA Repair Genes in Human Bladder Cancer. Cell. Physiol. Biochem. 2017;42:2404–2417. doi: 10.1159/000480182. PubMed DOI

Gao D., Herman J.G., Guo M. The clinical value of aberrant epigenetic changes of DNA damage repair genes in human cancer. Oncotarget. 2016;7:37331–37346. doi: 10.18632/oncotarget.7949. PubMed DOI PMC

Kašubová I., Kalman M., Jašek K., Burjanivová T., Malicherová B., Vaňochová A., Meršaková S., Lasabová Z., Plank L. Stratification of patients with colorectal cancer without the recorded family history. Oncol. Lett. 2019;17:3649–3656. doi: 10.3892/ol.2019.10018. PubMed DOI PMC

Li E., Zhang Y. DNA methylation in mammals. Cold Spring Harb. Perspect. Biol. 2014;6:a019133. doi: 10.1101/cshperspect.a019133. PubMed DOI PMC

Pan Y., Daito T., Sasaki Y., Chung Y.H., Xing X., Pondugula S., Swamidass S.J., Wang T., Kim A.H., Yano H. Inhibition of DNA Methyltransferases Blocks Mutant Huntingtin-Induced Neurotoxicity. Sci. Rep. 2016;6:31022. doi: 10.1038/srep31022. PubMed DOI PMC

Poh W.J., Wee C.P.P., Gao Z. DNA Methyltransferase Activity Assays: Advances and Challenges. Theranostics. 2016;6:369–391. doi: 10.7150/thno.13438. PubMed DOI PMC

Heiland D.H., Ferrarese R., Claus R., Dai F., Masilamani A.P., Kling E., Weyerbrock A., Kling T., Nelander S., Carro M.S. c-Jun-N-terminal phosphorylation regulates DNMT1 expression and genome wide methylation in gliomas. Oncotarget. 2017;8:6940–6954. doi: 10.18632/oncotarget.14330. PubMed DOI PMC

Fang Q.-L., Yin Y.-R., Xie C.-R., Zhang S., Zhao W.-X., Pan C., Wang X.-M., Yin Z.-Y. Mechanistic and biological significance of DNA methyltransferase 1 upregulated by growth factors in human hepatocellular carcinoma. Int. J. Oncol. 2015;46:782–790. doi: 10.3892/ijo.2014.2776. PubMed DOI

Tang Y.-A., Tsai Y.-T., Lin R.-K., Hsu H.-S., Chen C.-Y., Wang Y.-C. Deregulation of p53 and RB Transcriptional Control Leads to Overexpression of DNA Methyltransferases in Lung Cancer. J. Cancer Res. Pr. 2014;1:14–27. doi: 10.1016/S2311-3006(16)30020-9. DOI

Xie S., Qian C. The Growing Complexity of UHRF1-Mediated Maintenance DNA Methylation. Genes. 2018;9:600. doi: 10.3390/genes9120600. PubMed DOI PMC

Kadayifci F.Z., Zheng S., Pan Y.-X. Molecular Mechanisms Underlying the Link between Diet and DNA Methylation. Int. J. Mol. Sci. 2018;19:4055. doi: 10.3390/ijms19124055. PubMed DOI PMC

Zhao Y., Sun H., Wang H. Long noncoding RNAs in DNA methylation: New players stepping into the old game. Cell Biosci. 2016;6:89. doi: 10.1186/s13578-016-0109-3. PubMed DOI PMC

Jeltsch A., Jurkowska R.Z. Allosteric control of mammalian DNA methyltransferases—A new regulatory paradigm. Nucleic Acids Res. 2016;44:8556–8575. doi: 10.1093/nar/gkw723. PubMed DOI PMC

Yarychkivska O., Tavana O., Gu W., Bestor T.H. Independent functions of DNMT1 and USP7 at replication foci. Epigenetics Chromatin. 2018;11:9. doi: 10.1186/s13072-018-0179-z. PubMed DOI PMC

Wang C.-Y., Bai X.-Y., Wang C.-H. Traditional Chinese Medicine: A Treasured Natural Resource of Anticancer Drug Research and Development. Am. J. Chin. Med. 2014;42:543–559. doi: 10.1142/S0192415X14500359. PubMed DOI

Meybodi N.M., Mortazavian A.M., Monfared A.B., Sohrabvandi S. Phytochemicals in Cancer Prevention: A Review of the Evidence. Iran. J. Cancer Prev. 2017;10:e7219.

Shukla S., Meeran S.M., Katiyar S.K. Epigenetic regulation by selected dietary phytochemicals in cancer chemoprevention. Cancer Lett. 2014;355:9–17. doi: 10.1016/j.canlet.2014.09.017. PubMed DOI PMC

Herman J.G., Merlo A., Mao L., Lapidus R.G., Issa J.P., Davidson N.E., Sidransky D., Baylin S.B. Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res. 1995;55:4525–4530. PubMed

Jones P.A. DNA methylation errors and cancer. Cancer Res. 1996;56:2463–2467. PubMed

Laird P.W., Jaenisch R. DNA methylation and cancer. Hum. Mol. Genet. 1994;3:1487–1495. doi: 10.1093/hmg/3.suppl_1.1487. PubMed DOI

Kurdyukov S., Bullock M. DNA Methylation Analysis: Choosing the Right Method. Biology. 2016;5:3. doi: 10.3390/biology5010003. PubMed DOI PMC

Shankar S., Kumar D., Srivastava R.K. Epigenetic modifications by dietary phytochemicals: Implications for personalized nutrition. Pharmacol. Ther. 2013;138:1–17. doi: 10.1016/j.pharmthera.2012.11.002. PubMed DOI PMC

Day J.K., Desbordes C., Zhuang Y., Newton L.G., Nehra V., Forsee K.M., Besch-Williford C., Huang T.H.-M., Lubahn D.B., Bauer A.M., et al. Genistein Alters Methylation Patterns in Mice. J. Nutr. 2002;132:2419S–2423S. doi: 10.1093/jn/132.8.2419S. PubMed DOI

Qin W., Zhu W., Sauter E. Resveratrol induced DNA methylation in ER+ breast cancer. Cancer Res. 2005;65:647.

Fang M.Z., Wang Y., Ai N., Hou Z., Sun Y., Lu H., Welsh W., Yang C.S. Tea polyphenol (−)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res. 2003;63:7563–7570. PubMed

Zhang N. Role of methionine on epigenetic modification of DNA methylation and gene expression in animals. Anim. Nutr. 2018;4:11–16. doi: 10.1016/j.aninu.2017.08.009. PubMed DOI PMC

Mahmoud A.M., Ali M.M. Methyl Donor Micronutrients that Modify DNA Methylation and Cancer Outcome. Nutrients. 2019;11:608. doi: 10.3390/nu11030608. PubMed DOI PMC

Llanos A.A., Dumitrescu R.G., Brasky T.M., Liu Z., Mason J.B., Marian C., Makambi K.H., Spear S.L., Kallakury B.V.S., Freudenheim J.L., et al. Relationships among folate, alcohol consumption, gene variants in one-carbon metabolism and p16INK4a methylation and expression in healthy breast tissues. Carcinogenesis. 2015;36:60–67. doi: 10.1093/carcin/bgu219. PubMed DOI PMC

Farkas S.A., Befekadu R., Hahn-Strömberg V., Nilsson T.K. DNA methylation and expression of the folate transporter genes in colorectal cancer. Tumor Boil. 2015;36:5581–5590. doi: 10.1007/s13277-015-3228-2. PubMed DOI

Zhang N., Naifeng Z. Epigenetic modulation of DNA methylation by nutrition and its mechanisms in animals. Anim. Nutr. 2015;1:144–151. doi: 10.1016/j.aninu.2015.09.002. PubMed DOI PMC

Busch C., Burkard M., Leischner C., Lauer U.M., Frank J., Venturelli S. Epigenetic activities of flavonoids in the prevention and treatment of cancer. Clin. Epigenetics. 2015;7:100. doi: 10.1186/s13148-015-0095-z. PubMed DOI PMC

Morris J., Moseley V.R., Cabang A.B., Coleman K., Wei W., Garrett-Mayer E., Wargovich M.J. Reduction in promotor methylation utilizing EGCG (epigallocatechin-3-gallate) restores RXRα expression in human colon cancer cells. Oncotarget. 2016;7:35313–35326. doi: 10.18632/oncotarget.9204. PubMed DOI PMC

Sanaei M., Kavoosi F., Roustazadeh A., Golestan F. Effect of Genistein in Comparison with Trichostatin A on Reactivation of DNMTs Genes in Hepatocellular Carcinoma. J. Clin. Transl. Hepatol. 2018;6:141–146. doi: 10.14218/JCTH.2018.00002. PubMed DOI PMC

Romagnolo D.F., Donovan M.G., Papoutsis A.J., Doetschman T.C., Selmin O.I. Genistein Prevents BRCA1 CpG Methylation and Proliferation in Human Breast Cancer Cells with Activated Aromatic Hydrocarbon Receptor. Curr. Dev. Nutr. 2017;1:e000562. doi: 10.3945/cdn.117.000562. PubMed DOI PMC

Finer S., Saravanan P., Hitman G., Yajnik C. The role of the one-carbon cycle in the developmental origins of Type 2 diabetes and obesity. Diabet. Med. 2014;31:263–272. doi: 10.1111/dme.12390. PubMed DOI

Ducker G.S., Rabinowitz J.D. One-Carbon Metabolism in Health and Disease. Cell Metab. 2017;25:27–42. doi: 10.1016/j.cmet.2016.08.009. PubMed DOI PMC

Li J., Hao D., Wang L., Wang H., Wang Y., Zhao Z., Li P., Deng C., Di L.-J. Epigenetic targeting drugs potentiate chemotherapeutic effects in solid tumor therapy. Sci. Rep. 2017;7:4035. doi: 10.1038/s41598-017-04406-0. PubMed DOI PMC

Subramaniam D., Thombre R., Dhar A., Anant S. DNA Methyltransferases: A Novel Target for Prevention and Therapy. Front. Oncol. 2014;4:80. doi: 10.3389/fonc.2014.00080. PubMed DOI PMC

Gao Y., Tollefsbol T.O. Combinational Proanthocyanidins and Resveratrol Synergistically Inhibit Human Breast Cancer Cells and Impact Epigenetic–Mediating Machinery. Int. J. Mol. Sci. 2018;19:2204. doi: 10.3390/ijms19082204. PubMed DOI PMC

Naselli F., Belshaw N.J., Gentile C., Livrea M.A., CaraDonna F., Tutone M., Tesoriere L. Phytochemical Indicaxanthin Inhibits Colon Cancer Cell Growth and Affects the DNA Methylation Status by Influencing Epigenetically Modifying Enzyme Expression and Activity. J. Nutr. Nutr. 2015;8:114–127. doi: 10.1159/000439382. PubMed DOI

Jiang F., Li Y., Mu J., Hu C., Zhou M., Wang X., Si L., Ning S., Li Z. Glabridin inhibits cancer stem cell-like properties of human breast cancer cells: An epigenetic regulation of miR-148a/SMAd2 signaling. Mol. Carcinog. 2016;55:929–940. doi: 10.1002/mc.22333. PubMed DOI

Wong C.P., Hsu A., Buchanan A., Palomera-Sanchez Z., Beaver L.M., Houseman E.A., Williams D.E., Dashwood R.H., Ho E. Effects of Sulforaphane and 3,3′-Diindolylmethane on Genome-Wide Promoter Methylation in Normal Prostate Epithelial Cells and Prostate Cancer Cells. PLoS ONE. 2014;9:86787. doi: 10.1371/journal.pone.0086787. PubMed DOI PMC

Lewis K.A., Jordan H.R., Tollefsbol T.O. Effects of SAHA and EGCG on Growth Potentiation of Triple-Negative Breast Cancer Cells. Cancers. 2018;11:23. doi: 10.3390/cancers11010023. PubMed DOI PMC

Chen Y., Tang Q., Xiao Q., Yang L., Hann S.S. Targeting EP4 downstream c-Jun through ERK1/2-mediated reduction of DNMT1 reveals novel mechanism of solamargine-inhibited growth of lung cancer cells. J. Cell. Mol. Med. 2017;21:222–233. doi: 10.1111/jcmm.12958. PubMed DOI PMC

Szic K.S.V., Diddens J., Gerhäuser C., Declerck K., Crans R.A.J., Scherf D.B., Berghe W.V. Epigenetic silencing of triple negative breast cancer hallmarks by Withaferin A. Oncotarget. 2017;8:40434–40453. PubMed PMC

Moiseeva E.P., Almeida G.M., Jones G.D.D., Manson M.M. Extended treatment with physiologic concentrations of dietary phytochemicals results in altered gene expression, reduced growth, and apoptosis of cancer cells. Mol. Cancer Ther. 2007;6:3071–3079. doi: 10.1158/1535-7163.MCT-07-0117. PubMed DOI

Li Y., Meeran S.M., Patel S.N., Chen H., Hardy T.M., Tollefsbol T.O. Epigenetic reactivation of estrogen receptor-α (ERα) by genistein enhances hormonal therapy sensitivity in ERα-negative breast cancer. Mol. Cancer. 2013;12:9. doi: 10.1186/1476-4598-12-9. PubMed DOI PMC

Hewlings S.J., Kalman D.S. Curcumin: A Review of Its’ Effects on Human Health. Foods. 2017;6:92. doi: 10.3390/foods6100092. PubMed DOI PMC

Du L., Xie Z., Wu L.-C., Chiu M., Lin J., Chan K.K., Liu S., Liu Z. Reactivation of RASSF1A in Breast Cancer Cells by Curcumin. Nutr. Cancer. 2012;64:1228–1235. doi: 10.1080/01635581.2012.717682. PubMed DOI PMC

Jiang A., Wang X., Shan X., Li Y., Wang P., Jiang P., Feng Q. Curcumin Reactivates Silenced Tumor Suppressor Gene RARβ by Reducing DNA Methylation. Phytother. Res. 2015;29:1237–1245. doi: 10.1002/ptr.5373. PubMed DOI

Yu J., Peng Y., Wu L.-C., Xie Z., Deng Y., Hughes T., He S., Mo X., Chiu M., Wang Q.-E., et al. Curcumin Down-Regulates DNA Methyltransferase 1 and Plays an Anti-Leukemic Role in Acute Myeloid Leukemia. PLoS ONE. 2013;8:e55934. doi: 10.1371/journal.pone.0055934. PubMed DOI PMC

Khor T.O., Huang Y., Wu T.-Y., Shu L., Lee J.H., Kong A.-N.T. Pharmacodynamics of curcumin as DNA hypomethylation agent in restoring the expression of Nrf2 via promoter CpGs demethylation. Biochem. Pharmacol. 2011;82:1073–1078. doi: 10.1016/j.bcp.2011.07.065. PubMed DOI

Hu P., Ma L., Wang Y.-G., Ye F., Wang C., Zhou W.-H., Zhao X. Genistein, a dietary soy isoflavone, exerts antidepressant-like effects in mice: Involvement of serotonergic system. Neurochem. Int. 2017;108:426–435. doi: 10.1016/j.neuint.2017.06.002. PubMed DOI

Li H., Xu W., Huang Y., Huang X., Xu L., Lv Z. Genistein demethylates the promoter of CHD5 and inhibits neuroblastoma growth in vivo. Int. J. Mol. Med. 2012;30:1081–1086. doi: 10.3892/ijmm.2012.1118. PubMed DOI

Berman A.Y., Motechin R.A., Wiesenfeld M.Y., Holz M.K. The therapeutic potential of resveratrol: A review of clinical trials. NPJ Precis. Oncol. 2017;1:35. doi: 10.1038/s41698-017-0038-6. PubMed DOI PMC

Qin W., Zhang K., Clarke K., Weiland T., Sauter E.R. Methylation and miRNA Effects of Resveratrol on Mammary Tumors vs. Normal Tissue. Nutr. Cancer. 2014;66:270–277. doi: 10.1080/01635581.2014.868910. PubMed DOI

Yi X., Zuo J., Tan C., Xian S., Luo C., Chen S., Yu L., Luo Y. Kaempferol, A Flavonoid Compound from Gynura Medica Induced Apoptosis and Growth Inhibition in Mcf-7 Breast Cancer Cell. Afr. J. Tradit. Complement. Altern. Med. AJTCAM. 2016;13:210–215. doi: 10.21010/ajtcam.v13i4.27. PubMed DOI PMC

Qiu W., Lin J., Zhu Y., Zhang J., Zeng L., Su M., Tian Y. Kaempferol Modulates DNA Methylation and Downregulates DNMT3B in Bladder Cancer. Cell. Physiol. Biochem. 2017;41:1325–1335. doi: 10.1159/000464435. PubMed DOI

Wang N., Wang Z., Wang Y., Xie X., Shen J., Peng C., You J., Peng F., Tang H., Guan X., et al. Dietary compound isoliquiritigenin prevents mammary carcinogenesis by inhibiting breast cancer stem cells through WIF1 demethylation. Oncotarget. 2015;6:9854–9876. doi: 10.18632/oncotarget.3396. PubMed DOI PMC

Kubatka P., Uramova S., Kello M., Kajo K., Samec M., Jasek K., Zubor P. Anticancer Activities of Thymus vulgaris L. in Experimental Breast Carcinoma in Vivo and in Vitro. Int. J. Mol. Sci. 2019;20:1749. doi: 10.3390/ijms20071749. PubMed DOI PMC

Kubatka P., Uramova S., Kello M., Kajo K., Kruzliak P., Mojzis J., Vybohova D., Adamkov M., Jasek K., Lasabová Z., et al. Antineoplastic effects of clove buds (Syzygium aromaticum L.) in the model of breast carcinoma. J. Cell. Mol. Med. 2017;21:2837–2851. doi: 10.1111/jcmm.13197. PubMed DOI PMC

Kresty L.A., Mallery S.R., Stoner G.D. Black raspberries in cancer clinical trials: Past, present and future. J. Berry Res. 2016;6:251–261. doi: 10.3233/JBR-160125. PubMed DOI PMC

Wang L.-S., Kuo C.-T., Huang T.H.-M., Yearsley M., Oshima K., Stoner G.D., Yu J., Lechner J.F., Huang Y.-W. Black Raspberries Protectively Regulate Methylation of Wnt Pathway Genes in Precancerous Colon Tissue. Cancer Prev. Res. 2013;6:1317–1327. doi: 10.1158/1940-6207.CAPR-13-0077. PubMed DOI PMC

Huang Y.-W., Gu F., Dombkowski A., Wang L.-S., Stoner G.D. Black raspberries demethylate Sfrp4, a WNT pathway antagonist, in rat esophageal squamous cell papilloma. Mol. Carcinog. 2016;55:1867–1875. doi: 10.1002/mc.22435. PubMed DOI

Pan Y., Liu G., Zhou F., Su B., Li Y. DNA methylation profiles in cancer diagnosis and therapeutics. Clin. Exp. Med. 2018;18:1–14. doi: 10.1007/s10238-017-0467-0. PubMed DOI

Bayat S., Shekari Khaniani M., Choupani J., Alivand M.R., Mansoori Derakhshan S. HDACis (class I), cancer stem cell, and phytochemicals: Cancer therapy and prevention implications. Biomed Pharmacother. 2018;97:1445–1453. doi: 10.1016/j.biopha.2017.11.065. PubMed DOI

Majid S., Dar A.A., Shahryari V., Hirata H., Ahmad A., Saini S., Tanaka Y., Dahiya A.V., Dahiya R. Genistein reverses hypermethylation and induces active histone modifications in tumor suppressor gene B-Cell translocation gene 3 in prostate cancer. Cancer. 2010;116:66–76. doi: 10.1002/cncr.24662. PubMed DOI PMC

Qin W., Zhu W., Shi H., Hewett J.E., Ruhlen R.L., Macdonald R.S., Rottinghaus G.E., Chen Y.-C., Sauter E.R. Soy Isoflavones Have an Antiestrogenic Effect and Alter Mammary Promoter Hypermethylation in Healthy Premenopausal Women. Nutr. Cancer. 2009;61:238–244. doi: 10.1080/01635580802404196. PubMed DOI PMC

Zhu W., Qin W., Zhang K., Rottinghaus G.E., Chen Y.-C., Kliethermes B., Sauter E.R. Trans-Resveratrol Alters Mammary Promoter Hypermethylation in Women at Increased Risk for Breast Cancer. Nutr. Cancer. 2012;64:393–400. doi: 10.1080/01635581.2012.654926. PubMed DOI PMC

Liu J., Ward R.L. Folate and One-Carbon Metabolism and Its Impact on Aberrant DNA Methylation in Cancer. Adv. Genet. 2010;71:79–121. PubMed

Pentieva K., Lees-Murdock D.J., Walsh C.P., Irwin R.E., Cassidy T., McLaughlin M., Prasad G., McNulty H. The interplay between DNA methylation, folate and neurocognitive development. Epigenomics. 2016;8:863–879. PubMed

Lendoiro E., Russell W., Bestwick C., Bermano G., Duthie S. Folate and genomic stability: Differential effect of methylated and oxidised folate on DNA damage and ROS production in human colon fibroblasts. Proc. Nutr. Soc. 2018;77:77. doi: 10.1017/S0029665118000253. DOI

Coppedè F., Migheli F., Lopomo A., Failli A., Legitimo A., Consolini R., Fontanini G., Sensi E., Servadio A., Seccia M., et al. Gene promoter methylation in colorectal cancer and healthy adjacent mucosa specimens: Correlation with physiological and pathological characteristics, and with biomarkers of one-carbon metabolism. Epigenetics. 2014;9:621–633. doi: 10.4161/epi.27956. PubMed DOI PMC

Pirouzpanah S., Taleban F.-A., Mehdipour P., Atri M. Association of folate and other one-carbon related nutrients with hypermethylation status and expression of RARB, BRCA1, and RASSF1A genes in breast cancer patients. J. Mol. Med. 2015;93:917–934. doi: 10.1007/s00109-015-1268-0. PubMed DOI

Colacino J.A., Arthur A.E., Dolinoy D.C., Sartor M.A., Duffy S.A., Chepeha D.B., Bradford C.R., Walline H.M., McHugh J.B., D’Silva N.J., et al. Pretreatment dietary intake is associated with tumor suppressor DNA methylation in head and neck squamous cell carcinomas. Epigenetics. 2012;7:883–891. doi: 10.4161/epi.21038. PubMed DOI PMC

Kraunz K.S., Hsiung D., McClean M.D., Liu M., Osanyingbemi J., Nelson H.H., Kelsey K.T. Dietary folate is associated with p16(INK4A) methylation in head and neck squamous cell carcinoma. Int. J. Cancer. 2006;119:1553–1557. doi: 10.1002/ijc.22013. PubMed DOI

Tao M.-H., Mason J.B., Marian C., McCann S.E., Platek M.E., Millen A., Ambrosone C., Edge S.B., Krishnan S.S., Trevisan M., et al. Promoter Methylation of E-Cadherin, p16, and RAR-β2Genes in Breast Tumors and Dietary Intake of Nutrients Important in One-Carbon Metabolism. Nutr. Cancer. 2011;63:1143–1150. doi: 10.1080/01635581.2011.605982. PubMed DOI PMC

Delgado-Cruzata L., Zhang W., McDonald J.A., Tsai W.Y., Valdovinos C., Falci L., Wang Q., Crew K.D., Santella R.M., Hershman D.L., et al. Dietary Modifications, Weight Loss, and Changes in Metabolic Markers Affect Global DNA Methylation in Hispanic, African American, and Afro-Caribbean Breast Cancer Survivors12. J. Nutr. 2015;145:783–790. doi: 10.3945/jn.114.202853. PubMed DOI PMC

Piyathilake C.J., Johanning G.L., Macaluso M., Whiteside M., Oelschlager D.K., Heimburger D.C., Grizzle W.E. Localized Folate and Vitamin B-12 Deficiency in Squamous Cell Lung Cancer Is Associated with Global DNA Hypomethylation. Nutr. Cancer. 2000;37:99–107. doi: 10.1207/S15327914NC3701_13. PubMed DOI

O’Reilly S.L., McGlynn A.P., McNulty H., Reynolds J., Wasson G.R., Molloy A.M., Strain J., Weir D.G., Ward M., McKerr G., et al. Folic Acid Supplementation in Postpolypectomy Patients in a Randomized Controlled Trial Increases Tissue Folate Concentrations and Reduces Aberrant DNA Biomarkers in Colonic Tissues Adjacent to the Former Polyp Site. J. Nutr. 2016;146:933–939. doi: 10.3945/jn.115.222547. PubMed DOI

Castellano-Castillo D., Morcillo S., Crujeiras A.B., Sánchez-Alcoholado L., Clemente-Postigo M., Torres E., Tinahones F.J., Macias-Gonzalez M. Association between serum 25-hydroxyvitamin D and global DNA methylation in visceral adipose tissue from colorectal cancer patients. BMC Cancer. 2019;19:93. doi: 10.1186/s12885-018-5226-4. PubMed DOI PMC

Golubnitschaja O., Filep N., Yeghiazaryan K., Blom H.J., Hofmann-Apitius M., Kuhn W. Multi-omic approach decodes paradoxes of the triple-negative breast cancer: Lessons for predictive, preventive and personalised medicine. Amino Acids. 2018;50:383–395. doi: 10.1007/s00726-017-2524-0. PubMed DOI

Fröhlich H., Patjoshi S., Yeghiazaryan K., Kehrer C., Kuhn W., Golubnitschaja O. Premenopausal breast cancer: Potential clinical utility of a multi-omics based machine learning approach for patient stratification. EPMA J. 2018;9:175–186. doi: 10.1007/s13167-018-0131-0. PubMed DOI PMC

Lu M., Zhan X. The crucial role of multiomic approach in cancer research and clinically relevant outcomes. EPMA J. 2018;9:77–102. doi: 10.1007/s13167-018-0128-8. PubMed DOI PMC

Cheng T., Zhan X. Pattern recognition for predictive, preventive, and personalized medicine in cancer. EPMA J. 2017;8:51–60. doi: 10.1007/s13167-017-0083-9. PubMed DOI PMC

Janssens J.P., Schuster K., Voss A. Preventive, predictive, and personalized medicine for effective and affordable cancer care. EPMA J. 2018;9:113–123. doi: 10.1007/s13167-018-0130-1. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Aronia melanocarpa L. fruit peels show anti-cancer effects in preclinical models of breast carcinoma: The perspectives in the chemoprevention and therapy modulation

. 2024 ; 14 () : 1463656. [epub] 20241007

Salvia officinalis L. exerts oncostatic effects in rodent and in vitro models of breast carcinoma

. 2024 ; 15 () : 1216199. [epub] 20240223

Therapy-resistant breast cancer in focus: Clinically relevant mitigation by flavonoids targeting cancer stem cells

. 2023 ; 14 () : 1160068. [epub] 20230406

Anti-breast cancer effects of phytochemicals: primary, secondary, and tertiary care

. 2022 Jun ; 13 (2) : 315-334. [epub] 20220414

Metabolic Anti-Cancer Effects of Melatonin: Clinically Relevant Prospects

. 2021 Jun 16 ; 13 (12) : . [epub] 20210616

Rhus coriaria L. (Sumac) Demonstrates Oncostatic Activity in the Therapeutic and Preventive Model of Breast Carcinoma

. 2020 Dec 26 ; 22 (1) : . [epub] 20201226

Dietary phytochemicals as the potential protectors against carcinogenesis and their role in cancer chemoprevention

. 2020 May ; 20 (2) : 173-190. [epub] 20200203

Chemopreventive and Therapeutic Efficacy of Cinnamomum zeylanicum L. Bark in Experimental Breast Carcinoma: Mechanistic In Vivo and In Vitro Analyses

. 2020 Mar 19 ; 25 (6) : . [epub] 20200319

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...