Anticancer Activities of Thymus vulgaris L. in Experimental Breast Carcinoma in Vivo and in Vitro
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
VEGA 1/0108/16, VEGA 1/0018/16
Ministerstvo školstva, vedy, výskumu a športu Slovenskej republiky
APVV-16-0021.
Agentúra na Podporu Výskumu a Vývoja
PubMed
30970626
PubMed Central
PMC6479806
DOI
10.3390/ijms20071749
PII: ijms20071749
Knihovny.cz E-zdroje
- Klíčová slova
- MCF-7 cells, MDA-MB-231 cells, Thymus vulgaris, angiogenesis, apoptosis, cancer stem cells, cell proliferation, epigenetics, mammary carcinogenesis, predictive and preventive medicine, rat,
- MeSH
- epigeneze genetická účinky léků MeSH
- fytoterapie MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- MFC-7 buňky MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádory prsu farmakoterapie MeSH
- oleje prchavé aplikace a dávkování farmakologie MeSH
- oleje rostlin aplikace a dávkování farmakologie MeSH
- proliferace buněk účinky léků MeSH
- regulace genové exprese u nádorů účinky léků MeSH
- Thymus (rostlina) chemie MeSH
- viabilita buněk MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- xenogenní modely - testy antitumorózní aktivity MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- oleje prchavé MeSH
- oleje rostlin MeSH
Naturally-occurring mixtures of phytochemicals present in plant foods are proposed to possess tumor-suppressive activities. In this work, we aimed to evaluate the antitumor effects of Thymus vulgaris L. in in vivo and in vitro mammary carcinoma models. Dried T. vulgaris (as haulm) was continuously administered at two concentrations of 0.1% and 1% in the diet in a chemically-induced rat mammary carcinomas model and a syngeneic 4T1 mouse model. After autopsy, histopathological and molecular analyses of rodent mammary carcinomas were performed. In addition, in vitro evaluations using MCF-7 and MDA-MB-231 cells were carried out. In mice, T. vulgaris at both doses reduced the volume of 4T1 tumors by 85% (0.1%) and 84% (1%) compared to the control, respectively. Moreover, treated tumors showed a substantial decrease in necrosis/tumor area ratio and mitotic activity index. In the rat model, T. vulgaris (1%) decreased the tumor frequency by 53% compared to the control. Analysis of the mechanisms of anticancer action included well-described and validated diagnostic and prognostic markers that are used in both clinical approach and preclinical research. In this regard, the analyses of treated rat carcinoma cells showed a CD44 and ALDH1A1 expression decrease and Bax expression increase. Malondialdehyde (MDA) levels and VEGFR-2 expression were decreased in rat carcinomas in both the T. vulgaris treated groups. Regarding the evaluations of epigenetic changes in rat tumors, we found a decrease in the lysine methylation status of H3K4me3 in both treated groups (H3K9m3, H4K20m3, and H4K16ac were not changed); up-regulations of miR22, miR34a, and miR210 expressions (only at higher doses); and significant reductions in the methylation status of four gene promoters-ATM serin/threonine kinase, also known as the NPAT gene (ATM); Ras-association domain family 1, isoform A (RASSF1); phosphatase and tensin homolog (PTEN); and tissue inhibitor of metalloproteinase-3 (TIMP3) (the paired-like homeodomain transcription factor (PITX2) promoter was not changed). In vitro study revealed the antiproliferative and proapoptotic effects of essential oils of T. vulgaris in MCF-7 and MDA-MB-231 cells (analyses of 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (MTS); 5-bromo-20-deoxyuridine (BrdU); cell cycle; annexin V/PI; caspase-3/7; Bcl-2; PARP; and mitochondrial membrane potential). T. vulgaris L. demonstrated significant chemopreventive and therapeutic activities against experimental breast carcinoma.
Biomedical Research Center Slovak Academy of Sciences 845 05 Bratislava Slovakia
Department of Immunology and School of Medicine Keimyung University Dalseo Gu Daegu 426 01 Korea
Department of Medical Biology Faculty of Medicine P J Safarik University Kosice 040 11 Slovakia
Department of Pharmacology Faculty of Medicine P J Šafarik University 040 11 Košice Slovakia
Institute for Health and Sport Victoria University Melbourne VIC 3011 Australia
St Elisabeth Oncology Institute Department of Pathology 812 50 Bratislava Slovakia
Weill Cornell Medicine in Qatar Qatar Foundation Education City Doha 24144 Qatar
Zobrazit více v PubMed
Li Y., Li S., Meng X., Gan R.Y., Zhang J.J., Li H.B. Dietary Natural Products for Prevention and Treatment of Breast Cancer. Nutrients. 2017;9:728. doi: 10.3390/nu9070728. PubMed DOI PMC
Takagi A., Kano M., Kaga C. Possibility of breast cancer prevention: Use of soy isoflavones and fermented soy beverage produced using probiotics. Int. J. Mol. Sci. 2015;16:10907–10920. doi: 10.3390/ijms160510907. PubMed DOI PMC
Shapira N. The potential contribution of dietary factors to breast cancer prevention. Eur. J. Cancer Prev. 2017;2:385–395. doi: 10.1097/CEJ.0000000000000406. PubMed DOI PMC
Giacosa A., Barale R., Bavaresco L., Gatenby P., Gerbi V., Janssens J., Johnston B., Kas K., La Vecchia C., Mainguet P., et al. Cancer prevention in Europe: The Mediterranean diet as a protective choice. Eur. J. Cancer Prev. 2013;22:90–95. PubMed
Ranaware A.M., Banik K., Deshpande V., Padmavathi G., Roy N.K., Sethi G., Fan L., Kumar A.P., Kunnumakkara A.B. Magnolol: A Neolignan from the Magnolia Family for the Prevention and Treatment of Cancer. Int. J. Mol. Sci. 2018;19:2362. doi: 10.3390/ijms19082362. PubMed DOI PMC
Kapinova A., Kubatka P., Golubnitschaja O., Kello M., Zubor P., Solar P., Pec M. Dietary phytochemicals in breast cancer research: Anticancer effects and potential utility for effective chemoprevention. Environ. Health Prev. Med. 2018;23:36. PubMed PMC
Kapinova A., Stefanicka P., Kubatka P., Zubor P., Uramova S., Kello M., Mojzis J., Blahutova D., Qaradakhi T., Zulli A., et al. Are plant-based functional foods better choice against cancer than single phytochemicals? A critical review of current breast cancer research. Biomed. Pharmacother. 2017;96:1465–1477. PubMed
Akhavan-Niaki H., Samadani A.A. DNA methylation and cancer development: Molecular mechanism. Cell Biochem. Biophys. 2013;2:501–513. doi: 10.1007/s12013-013-9555-2. PubMed DOI
Hon G.C., Hawkins R.D., Caballero O.L., Lo C., Lister R., Pelizzola M., Valsesia A., Ye Z., Kuan S., Edsall L.E., et al. Global DNA hypomethylation coupled to repressive chromatin domain formation and gene silencing in breast cancer. Genome Res. 2012;22:246–258. PubMed PMC
Ng J.M., Yu J. Promoter hypermethylation of tumour suppressor genes as potential biomarkers in colorectal cancer. Int. J. Mol. Sci. 2015;16:2472–2496. PubMed PMC
Sangaramoorthy M., Koo J., John E.M. Intake of bean fiber, beans, and grains and reduced risk of hormone receptor-negative breast cancer: The San Francisco Bay Area Breast Cancer Study. Cancer Med. 2018;7:2131–2144. doi: 10.1002/cam4.1423. PubMed DOI PMC
Dandamudi A., Tommie J., Nommsen-Rivers L., Couch S. Dietary Patterns and Breast Cancer Risk: A Systematic Review. Anticancer Res. 2018;38:3209–3222. doi: 10.21873/anticanres.12586. PubMed DOI
He J., Gu Y., Zhang S. Consumption of vegetables and fruits and breast cancersurvival: A systematic review and meta-analysis. Sci. Rep. 2017;7:599. doi: 10.1038/s41598-017-00635-5. PubMed DOI PMC
Fung T.T., Chiuve S.E., Willett W.C., Hankinson S.E., Hu F.B., Holmes M.D. Intake of specific fruits and vegetables in relation to risk of estrogen receptor-negative breast cancer among postmenopausal women. Breast Cancer Res. Treat. 2013;138:925–930. doi: 10.1007/s10549-013-2484-3. PubMed DOI PMC
Noroozisharaf A., Kaviani M. Effect of soil application of humic acid on nutrients uptake, essential oil and chemical compositions of garden thyme (Thymus vulgaris L.) under greenhouse conditions. Physiol. Mol. Biol. Plants. 2018;24:423–431. doi: 10.1007/s12298-018-0510-y. PubMed DOI PMC
Pérez López L.A., de la Torre Y.C., Cirio A.T., de Torres N.W., Flores Suárez A.E., Aranda R.S. Essential oils from Zanthoxylum fagara Wild Lime, Ruta chalepensis L. and Thymus vulgaris L.: Composition and activity against Aedes aegypti larvae. Pak. J. Pharm. Sci. 2015;28:1911–1915. PubMed
Vila R. Flavonoids and Further Polyphenols in the Genus Thymus. In: Stahl-Biskup E., Saez F., editors. Thyme: The Genus Thymus. CRC Press; London, UK: 2002. pp. 144–177.
Bentayeb K., Vera P., Rubio C., Nerín C. The additive properties of Oxygen Radical Absorbance Capacity (ORAC) assay: The case of essential oils. Food Chem. 2014;148:204–208. doi: 10.1016/j.foodchem.2013.10.037. PubMed DOI
Heidari Z., Salehzadeh A., Sadat Shandiz S.A., Tajdoost S. Anti-cancer and anti-oxidant properties of ethanolic leaf extract of Thymus vulgaris and its bio-functionalized silver nanoparticles. 3 Biotech. 2018;8:177. doi: 10.1007/s13205-018-1199-x. PubMed DOI PMC
Al-Menhali A., Al-Rumaihi A., Al-Mohammed H., Al-Mazrooey H., Al-Shamlan M., AlJassim M., Al-Korbi N., Eid A.H. Thymus vulgaris (thyme) inhibits proliferation, adhesion, migration, and invasion of human colorectal cancer cells. J. Med. Food. 2015;18:54–59. doi: 10.1089/jmf.2013.3121. PubMed DOI
Ayesh B.M., Abed A.A., Faris D.M. In vitro inhibition of human leukemia THP-1 cells by Origanum syriacum L. and Thymus vulgaris L. extracts. BMC Res. Notes. 2014;7:612. PubMed PMC
Sertel S., Eichhorn T., Plinkert P.K., Efferth T. Cytotoxicity of Thymus vulgaris essential oil towards human oral cavity squamous cell carcinoma. Anticancer Res. 2011;31:81–87. PubMed
Kubatka P., Kapinová A., Kružliak P., Kello M., Výbohová D., Kajo K., Novák M., Chripková M., Adamkov M., Péč M., et al. Antineoplastic effects of Chlorella pyrenoidosa in the breast cancer model. Nutrition. 2015;31:560–569. doi: 10.1016/j.nut.2014.08.010. PubMed DOI
Kubatka P., Kello M., Kajo K., Kruzliak P., Výbohová D., Šmejkal K., Maršík P., Zulli A., Gönciová G., Mojžiš J., et al. Young Barley Indicates Antitumor Effects in Experimental Breast Cancer In Vivo and In Vitro. Nutr. Cancer. 2016;68:611–621. doi: 10.1080/01635581.2016.1154577. PubMed DOI
Kubatka P., Kapinová A., Kello M., Kruzliak P., Kajo K., Výbohová D., Mahmood S., Murin R., Viera T., Mojžiš J., et al. Fruit peel polyphenols demonstrate substantial anti-tumour effects in the model of breast cancer. Eur. J. Nutr. 2016;55:955–965. doi: 10.1007/s00394-015-0910-5. PubMed DOI
Kubatka P., Kello M., Kajo K., Kruzliak P., Výbohová D., Mojžiš J., Adamkov M., Fialová S., Veizerová L., Zulli A., et al. Oregano demonstrates distinct tumour-suppressive effects in the breast carcinoma model. Eur. J. Nutr. 2017;56:1303–1316. doi: 10.1007/s00394-016-1181-5. PubMed DOI
Kubatka P., Uramova S., Kello M., Kajo K., Kruzliak P., Mojzis J., Vybohova D., Adamkov M., Jasek K., Lasabova Z., et al. Antineoplastic effects of clove buds (Syzygium aromaticum L.) in the model of breast carcinoma. J. Cell. Mol. Med. 2017;21:2837–2851. doi: 10.1111/jcmm.13197. PubMed DOI PMC
Shahidi F. Nutraceuticals and functional foods: Whole versus processed foods. Trends Food Sci. Technol. 2009;20:376–387. doi: 10.1016/j.tifs.2008.08.004. DOI
Solár P., Sačková V., Hrčková G., Demečková V., Kassayová M., Bojková B., Mudroňová D., Gancarčíková S., Jendželovský R., Fedoročko P. Antitumor effect of the combination of manumycin A and Immodin is associated with antiplatelet activity and increased granulocyte tumor infiltration in a 4T1 breast tumor model. Oncol. Rep. 2017;37:368–378. doi: 10.3892/or.2016.5265. PubMed DOI
Demečková V., Solár P., Hrčková G., Mudroňová D., Bojková B., Kassayová M., Gancarčiková S. Immodin and its immune system supportive role in paclitaxel therapy of 4T1 mouse breast cancer. Biomed. Pharmacother. 2017;89:245–256. doi: 10.1016/j.biopha.2017.02.034. PubMed DOI
Jamali T., Kavoosi G., Safavi M., Ardestani S.K. In-vitro evaluation of apoptotic effect of OEO and thymol in 2D and 3D cell cultures and the study of their interaction mode with DNA. Sci. Rep. 2018;25:15787. doi: 10.1038/s41598-018-34055-w. PubMed DOI PMC
Montani M., Pazmay G.V.B., Hysi A., Lupidi G., Pettinari R., Gambini V., Tilio M., Marchetti F., Pettinari C., Ferraro S., et al. The water soluble ruthenium(II) organometallic compound [Ru(p-cymene)(bis(3,5 dimethylpyrazol-1-yl)methane)Cl]Cl suppresses triple negative breast cancer growth by inhibiting tumor infiltration of regulatory T cells. Pharmacol. Res. 2016;107:282–290. doi: 10.1016/j.phrs.2016.03.032. PubMed DOI
Rahman F.U., Bhatti M.Z., Ali A., Duong H.Q., Zhang Y., Ji X., Lin Y., Wang H., Li Z.T., Zhang D.W. Dimetallic Ru(II) arene complexes appended on bis-salicylaldimine induce cancer cell death and suppress invasion via p53-dependent signaling. Eur. J. Med. Chem. 2018;157:1480–1490. doi: 10.1016/j.ejmech.2018.08.054. PubMed DOI
Jeyabalan J., Aqil F., Munagala R., Annamalai L., Vadhanam M.V., Gupta R.C. Chemopreventive and therapeutic activity of dietary blueberry against estrogen-mediated breast cancer. J. Agric. Food Chem. 2014;62:3963–3971. doi: 10.1021/jf403734j. PubMed DOI PMC
Ravoori S., Vadhanam M.V., Aqil F., Gupta R.C. Inhibition of estrogen-mediated mammary tumorigenesis by blueberry and black raspberry. J. Agric. Food Chem. 2012;60:5547–5555. doi: 10.1021/jf205325p. PubMed DOI
Singletary K., MacDonald C., Wallig M. Inhibition by rosemary and carnosol of 7,12-dimethylbenz[a]anthracene (DMBA)-induced rat mammary tumorigenesis and in vivo DMBA-DNA adduct formation. Cancer Lett. 1996;104:43–48. doi: 10.1016/0304-3835(96)04227-9. PubMed DOI
Bishayee A., Mandal A., Bhattacharyya P., Bhatia D. Pomegranate exerts chemoprevention of experimentally induced mammary tumorigenesis by suppression of cell proliferation and induction of apoptosis. Nutr. Cancer. 2016;68:120–130. doi: 10.1080/01635581.2016.1115094. PubMed DOI PMC
Salakou S., Kardamakis D., Tsamandas A.C., Zolota V., Apostolakis E., Tzelepi V., Papathanasopoulos P., Bonikos D.S., Papapetropoulos T., Petsas T., et al. Increased Bax/Bcl-2 ratio up-regulates caspase-3 and increases apoptosis in the thymus of patients with myasthenia gravis. In Vivo. 2007;21:123–132. PubMed
Pal M.K., Jaiswar S.P., Srivastav A.K., Goyal S., Dwivedi A., Verma A., Singh J., Pathak A.K., Sankhwar P.L., Ray R.S. Synergistic effect of piperine and paclitaxel on cell fate via cyt-c, Bax/Bcl-2-caspase-3 pathway in ovarian adenocarcinomas SKOV-3 cells. Eur. J. Pharmacol. 2016;791:751–762. doi: 10.1016/j.ejphar.2016.10.019. PubMed DOI
Zhang J., Park H.S., Kim J.A., Hong G.E., Nagappan A., Park K.I., Kim G.S. Flavonoids identified from korean Scutellaria baicalensis induce apoptosis by ROS generation and caspase activation on human fibrosarcoma cells. Am. J. Chin. Med. 2014;42:465–483. doi: 10.1142/S0192415X14500311. PubMed DOI
Redza-Dutordoir M., Averill-Bates D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta. 2016;1863:2977–2992. doi: 10.1016/j.bbamcr.2016.09.012. PubMed DOI
Hsu C.P., Shih Y.T., Lin B.R., Chiu C.F., Lin C.C. Inhibitory effect and mechanisms of an anthocyanins- and anthocyanidins-rich extract from purple-shoot tea on colorectal carcinoma cell proliferation. J. Agric. Food Chem. 2012;60:3686–3692. doi: 10.1021/jf204619n. PubMed DOI
Esposito T., Sansone F., Franceschelli S., Del Gaudio P., Picerno P., Aquino R.P., Mencherini T. Hazelnut (Corylus avellana L.) Shells Extract: Phenolic Composition, Antioxidant Effect and Cytotoxic Activity on Human Cancer Cell Lines. Int. J. Mol. Sci. 2017;18:392. PubMed PMC
Li J., Gong X., Jiang R., Lin D., Zhou T., Zhang A., Li H., Zhang X., Wan J., Kuang G., et al. Fisetin Inhibited Growth and Metastasis of Triple-Negative Breast Cancer by Reversing Epithelial-to-Mesenchymal Transition via PTEN/Akt/GSK3β Signal Pathway. Front. Pharmacol. 2018;9:772. doi: 10.3389/fphar.2018.00772. PubMed DOI PMC
Zhang H.W., Hu J.J., Fu R.Q., Liu X., Zhang Y.H., Li J., Liu L., Li Y.N., Deng Q., Luo Q.S., et al. Flavonoids inhibit cell proliferation and induce apoptosis and autophagy through downregulation of PI3Kγ mediated PI3K/AKT/mTOR/p70S6K/ULK signaling pathway in human breast cancer cells. Sci. Rep. 2018;8:11255. doi: 10.1038/s41598-018-29308-7. PubMed DOI PMC
Goldsmith C.D., Bond D.R., Jankowski H., Weidenhofer J., Stathopoulos C.E., Roach P.D., Scarlett C.J. The Olive Biophenols Oleuropein and Hydroxytyrosol Selectively Reduce Proliferation, Influence the Cell Cycle, and Induce Apoptosis in Pancreatic Cancer Cells. Int. J. Mol. Sci. 2018;19:1937. doi: 10.3390/ijms19071937. PubMed DOI PMC
Sp N., Kang D.Y., Kim D.H., Park J.H., Lee H.G., Kim H.J., Darvin P., Park Y.M., Yang Y.M. Nobiletin Inhibits CD36-Dependent Tumor Angiogenesis, Migration, Invasion, and Sphere Formation through the Cd36/Stat3/Nf-Κb Signaling Axis. Nutrients. 2018;10:772. doi: 10.3390/nu10060772. PubMed DOI PMC
Seifaddinipour M., Farghadani R., Namvar F., Mohamad J., Abdul Kadir H. Cytotoxic Effects and Anti-Angiogenesis Potential of Pistachio (Pistacia vera L.) Hulls against MCF-7 Human Breast Cancer Cells. Molecules. 2018;23:110. PubMed PMC
Wang H., Khor T.O., Shu L., Su Z.Y., Fuentes F., Lee J.H., Kong A.N. Plants vs. cancer: A review on natural phytochemicals in preventing and treating cancers and their druggability. Anticancer Agents Med. Chem. 2012;12:1281–1305. doi: 10.2174/187152012803833026. PubMed DOI PMC
Elisia I., Popovich D.G., Hu C., Kitts D.D. Evaluation of viability assays for anthocyanins in cultured cells. Phytochem. Anal. 2008;19:479–486. doi: 10.1002/pca.1069. PubMed DOI
Abhinand C.S., Raju R., Soumya S.J., Arya P.S., Sudhakaran P.R. VEGF-A/VEGFR2 signaling network in endothelial cells relevant to angiogenesis. J. Cell Commun. Signal. 2016;10:347–354. doi: 10.1007/s12079-016-0352-8. PubMed DOI PMC
Kadioglu O., Seo E.J., Efferth T. Targeting angiogenesis by phytochemicals. Med. Aromat. Plants. 2013;2:134.
Ye Z.W., Zhang J., Townsend D.M., Tew K.D. Oxidative stress, redox regulation and diseases of cellular differentiation. Biochim. Biophys. Acta. 2014;1850:1607–1621. doi: 10.1016/j.bbagen.2014.11.010. PubMed DOI PMC
Pan Y., Deng Z.Y., Zheng S.L., Chen X., Zhang B., Li H. Daily Dietary Antioxidant Interactions Are Due to Not Only the Quantity but Also the Ratios of Hydrophilic and Lipophilic Phytochemicals. J. Agric. Food Chem. 2018;66:9107–9120. doi: 10.1021/acs.jafc.8b03412. PubMed DOI
Liao W., Chen L., Ma X., Jiao R., Li X., Wang Y. Protective effects of kaempferol against reactive oxygen species-induced hemolysis and its antiproliferative activity on human cancer cells. Eur. J. Med. Chem. 2016;114:24–32. doi: 10.1016/j.ejmech.2016.02.045. PubMed DOI
Eghbaliferiz S., Iranshahi M. Prooxidant activity of polyphenols, flavonoids, anthocyanins and carotenoids: Updated review of mechanisms and catalyzing metals. Phytother. Res. 2016;30:1379–1391. doi: 10.1002/ptr.5643. PubMed DOI
Ko Y.S., Jin H., Lee J.S., Park S.W., Chang K.C., Kang K.M., Jeong B.K., Kim H.J. Radioresistant breast cancer cells exhibit increased resistance to chemotherapy and enhanced invasive properties due to cancer stem cells. Oncol. Rep. 2018;40:3752–3762. doi: 10.3892/or.2018.6714. PubMed DOI
Shima H., Yamada A., Ishikawa T., Endo I. Are breast cancer stem cells the key to resolving clinical issues in breast cancer therapy? Gland Surg. 2017;6:82–88. doi: 10.21037/gs.2016.08.03. PubMed DOI PMC
Li X., Zhou N., Wang J., Liu Z., Wang X., Zhang Q., Liu Q., Gao L., Wang R. Quercetin suppresses breast cancer stem cells (CD44+/CD24−) by inhibiting the PI3K/Akt/mTOR-signaling pathway. Life Sci. 2018;196:56–62. doi: 10.1016/j.lfs.2018.01.014. PubMed DOI
Wise R., Zolkiewska A. Metalloprotease-dependent activation of EGFR modulates CD44+/CD24− populations in triple negative breast cancer cells through the MEK/ERK pathway. Breast Cancer Res. Treat. 2017;166:421–433. PubMed PMC
Ryu D., Ryoo I.G., Kwak M.K. Overexpression of CD44 Standard Isoform Upregulates HIF-1α Signaling in Hypoxic Breast Cancer Cells. Biomol. Ther. 2018;26:487–493. doi: 10.4062/biomolther.2018.116. PubMed DOI PMC
Sankpal N.V., Fleming T.P., Gillanders W.E. EpCAM modulates NF-κB signaling and interleukin-8 expression in breast cancer. Mol. Cancer Res. 2013;11:418–426. doi: 10.1158/1541-7786.MCR-12-0518. PubMed DOI PMC
Kim J.Y., Cho Y., Oh E., Lee N., An H., Sung D., Cho T.M., Seo J.H. Disulfiram targets cancer stem-like properties and the HER2/Akt signaling pathway in HER2-positive breast cancer. Cancer Lett. 2016;379:39–48. doi: 10.1016/j.canlet.2016.05.026. PubMed DOI
Alam M., Ahmad R., Rajabi H., Kharbanda A., Kufe D. MUC1-C oncoprotein activates ERK→C/EBPβ signaling and induction of aldehyde dehydrogenase 1A1 in breast cancer cells. J. Biol. Chem. 2013;288:30892–30903. doi: 10.1074/jbc.M113.477158. PubMed DOI PMC
Zhao D., Mo Y., Li M.T., Zou S.W., Cheng Z.L., Sun Y.P., Xiong Y., Guan K.L., Lei Q.Y. NOTCH-induced aldehyde dehydrogenase 1A1 deacetylation promotes breast cancer stem cells. J. Clin. Investig. 2014;124:5453–5465. doi: 10.1172/JCI76611. PubMed DOI PMC
Rennó A.L., Alves-Júnior M.J., Rocha R.M., De Souza P.C., de Souza V.B., Jampietro J., Vassallo J., Hyslop S., Anhê G.F., de Moraes Schenka N.G., et al. Decreased expression of stem cell markers by simvastatin in 7,12-dimethylbenz(a)anthracene (DMBA)-induced breast cancer. Toxicol. Pathol. 2015;43:400–410. doi: 10.1177/0192623314544707. PubMed DOI
Levi E., Misra S., Du J., Patel B.B., Majumdar A.P. Combination of aging and dimethylhydrazine treatment causes an increase in cancer-stem cell population of rat colonic crypts. Biochem. Biophys. Res. Commun. 2009;385:430–433. doi: 10.1016/j.bbrc.2009.05.080. PubMed DOI PMC
Khan S., Shukla S., Sinha S., Meeran S.M. Epigenetic targets in cancer and aging: Dietary and therapeutic interventions. Expert Opin. Ther. Targets. 2016;20:689–703. doi: 10.1517/14728222.2016.1132702. PubMed DOI
Uramova S., Kubatka P., Dankova Z., Kapinova A., Zolakova B., Samec M., Zubor P., Zulli A., Valentova V., Kwon T.K., et al. Plant natural modulators in breast cancer prevention: Status quo and future perspectives reinforced by predictive, preventive and personalised medical approach. EPMA J. 2018;9:403–419. doi: 10.1007/s13167-018-0154-6. PubMed DOI PMC
Hardy T.M., Tollefsbol T.O. Epigenetic diet: Impact on the epigenome and cancer. Epigenomics. 2011;3:503–518. doi: 10.2217/epi.11.71. PubMed DOI PMC
Altonsy M.O., Habib T.N., Andrews S.C. Diallyl disulfide-induced apoptosis in a breast-cancer cell line (MCF-7) may be caused by inhibition of histone deacetylation. Nutr. Cancer. 2012;64:1251–1260. doi: 10.1080/01635581.2012.721156. PubMed DOI
Attoub S., Hassan A.H., Vanhoecke B., Iratni R., Takahashi T., Gaben A.M., Bracke M., Awad S., John A., Kamalboor H.A., et al. Inhibition of cell survival, invasion, tumor growth and histone deacetylase activity by the dietary flavonoid luteolin in human epithelioid cancer cells. Eur. J. Pharmacol. 2011;651:18–25. doi: 10.1016/j.ejphar.2010.10.063. PubMed DOI
Dagdemir A., Durif J., Ngollo M., Bignon Y.J., Bernard-Gallon D. Histone lysine trimethylation or acetylation can be modulated by phytoestrogen, estrogen or anti-HDAC in breast cancer cell lines. Epigenomics. 2013;5:51–63. doi: 10.2217/epi.12.74. PubMed DOI
Collins H.M., Abdelghany M.K., Messmer M., Yue B., Deeves S.E., Kindle K.B., Mantelingu K., Aslam A., Winkler G.S., Kundu T.K., et al. Differential effects of garcinol and curcumin on histone and p53 modifications in tumour cells. BMC Cancer. 2013;13:37. doi: 10.1186/1471-2407-13-37. PubMed DOI PMC
McAnena P., Brown J.A., Kerin M.J. Circulating Nucleosomes and Nucleosome Modifications as Biomarkers in Cancer. Cancers. 2017;9:5. doi: 10.3390/cancers9010005. PubMed DOI PMC
Chen X., Hu H., He L., Yu X., Liu X., Zhong R., Shu M. A novel subtype classification and risk of breast cancer by histone modification profiling. Breast Cancer Res. Treat. 2016;157:267–279. doi: 10.1007/s10549-016-3826-8. PubMed DOI
Rodríguez-Miguel C., Moral R., Escrich R., Vela E., Solanas M., Escrich E. The Role of Dietary Extra Virgin Olive Oil and Corn Oil on the Alteration of Epigenetic Patterns in the Rat DMBA-Induced Breast Cancer Model. PLoS ONE. 2015;10:e0138980. doi: 10.1371/journal.pone.0138980. PubMed DOI PMC
Messier T.L., Gordon J.A., Boyd J.R., Tye C.E., Browne G., Stein J.L., Lian J.B., Stein G.S. Histone H3 lysine 4 acetylation and methylation dynamics define breast cancer subtypes. Oncotarget. 2016;7:5094–5109. doi: 10.18632/oncotarget.6922. PubMed DOI PMC
Wang J., Li Y., Ding M., Zhang H., Xu X., Tang J. Molecular mechanisms and clinical applications of miR-22 in regulating malignant progression in human cancer (Review) Int. J. Oncol. 2016;50:345–355. doi: 10.3892/ijo.2016.3811. PubMed DOI PMC
Imani S., Zhang X., Hosseinifard H., Fu S., Fu J. The diagnostic role of microRNA-34a in breast cancer: A systematic review and meta-analysis. Oncotarget. 2017;8:23177–23187. doi: 10.18632/oncotarget.15520. PubMed DOI PMC
Venturutti L., Romero L.V., Urtreger A.J., Chervo M.F., Cordo Russo R.I., Mercogliano M.F., Inurrigarro G., Pereyra M.G., Proietti C.J., Izzo F., et al. Stat3regulatesErbB-2expression and co-opts ErbB-2 nuclear function to induce miR-21 expression, PDCD4 downregulation and breast cancer metastasis. Oncogene. 2016;35:2208–2222. doi: 10.1038/onc.2015.281. PubMed DOI
Jung D.E., Park S.B., Kim K., Kim C., Song S.Y. CG200745, an HDAC inhibitor, induces anti-tumour effects in cholangiocarcinoma cell lines via miRNAs targeting the Hippo pathway. Sci. Rep. 2017;7:10921. doi: 10.1038/s41598-017-11094-3. PubMed DOI PMC
Wang H., Bian S., Yang C.S. Green tea polyphenol EGCG suppresses lung cancer cell growth through upregulating miR-210 expression caused by stabilizing HIF-1α. Carcinogenesis. 2011;32:1881–1889. doi: 10.1093/carcin/bgr218. PubMed DOI PMC
Stefansson O.A., Esteller M. Epigenetic modifications in breast cancer and their role in personalized medicine. Am. J. Pathol. 2013;183:1052–1063. doi: 10.1016/j.ajpath.2013.04.033. PubMed DOI
Golubnitschaja O., Flammer J. Individualised patient profile: Clinical utility of Flammer syndrome phenotype and general lessons for predictive, preventive and personalised medicine. EPMA J. 2018;9:15–20. doi: 10.1007/s13167-018-0127-9. PubMed DOI PMC
Polivka J., Jr., Altun I., Golubnitschaja O. Pregnancy Associated Breast Cancer: The Risky Status Quo and New Concepts of Predictive Medicine. EPMA J. 2018;9:1–13. doi: 10.1007/s13167-018-0129-7. PubMed DOI PMC
Golubnitschaja O. Feeling cold and other underestimated symptoms in breast cancer: Anecdotes or individual profiles for advanced patient stratification? EPMA J. 2017;8:17–22. doi: 10.1007/s13167-017-0086-6. PubMed DOI PMC
Golubnitschaja O., Baban B., Boniolo G., Wang W., Bubnov R., Kapalla M., Krapfenbauer K., Mozaffari M., Costigliola V. Medicine in the early twenty-first century: Paradigm and anticipation—EPMA position paper 2016. EPMA J. 2016;7:23. doi: 10.1186/s13167-016-0072-4. PubMed DOI PMC
Golubnitschaja O., Debald M., Yeghiazaryan K., Kuhn W., Pešta M., Costigliola V., Grech G. Breast cancer epidemic in the early 21st century: Evaluation of risk factors, cumulative questionnaires and recommendations for preventive measures. Tumor Biol. 2016;37:12941–12957. doi: 10.1007/s13277-016-5168-x. PubMed DOI
Salvia officinalis L. exerts oncostatic effects in rodent and in vitro models of breast carcinoma
Anti-breast cancer effects of phytochemicals: primary, secondary, and tertiary care