Significance of flavonoids targeting PI3K/Akt/HIF-1α signaling pathway in therapy-resistant cancer cells - A potential contribution to the predictive, preventive, and personalized medicine
Jazyk angličtina Země Egypt Médium print-electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
36871616
PubMed Central
PMC10770105
DOI
10.1016/j.jare.2023.02.015
PII: S2090-1232(23)00066-8
Knihovny.cz E-zdroje
- Klíčová slova
- Cancer, Flavonoids, Glycolysis, Health-to-disease transition, Primary secondary tertiary care, Resistance, WHO, predictive preventive personalized medicine (PPPM / 3PM),
- MeSH
- flavonoidy MeSH
- fosfatidylinositol-3-kinasy metabolismus MeSH
- glukosa metabolismus MeSH
- individualizovaná medicína MeSH
- lidé MeSH
- nádorové mikroprostředí MeSH
- nádory * farmakoterapie metabolismus MeSH
- protoonkogenní proteiny c-akt * metabolismus MeSH
- signální transdukce MeSH
- transkripční faktory MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- flavonoidy MeSH
- fosfatidylinositol-3-kinasy MeSH
- glukosa MeSH
- protoonkogenní proteiny c-akt * MeSH
- transkripční faktory MeSH
BACKGROUND: Cancer management faces multiple obstacles, including resistance to current therapeutic approaches. In the face of challenging microenvironments, cancer cells adapt metabolically to maintain their supply of energy and precursor molecules for biosynthesis and thus sustain rapid proliferation and tumor growth. Among the various metabolic adaptations observed in cancer cells, the altered glucose metabolism is the most widely studied. The aberrant glycolytic modification in cancer cells has been associated with rapid cell division, tumor growth, cancer progression, and drug resistance. The higher rates of glycolysis in cancer cells, as a hallmark of cancer progression, is modulated by the transcription factor hypoxia inducible factor 1 alpha (HIF-1α), a downstream target of the PI3K/Akt signaling, the most deregulated pathway in cancer. AIM OF REVIEW: We provide a detailed overview of current, primarily experimental, evidence on the potential effectiveness of flavonoids to combat aberrant glycolysis-induced resistance of cancer cells to conventional and targeted therapies. The manuscript focuses primarily on flavonoids reducing cancer resistance via affecting PI3K/Akt, HIF-1α (as the transcription factor critical for glucose metabolism of cancer cells that is regulated by PI3K/Akt pathway), and key glycolytic mediators downstream of PI3K/Akt/HIF-1α signaling (glucose transporters and key glycolytic enzymes). KEY SCIENTIFIC CONCEPTS OF REVIEW: The working hypothesis of the manuscript proposes HIF-1α - the transcription factor critical for glucose metabolism of cancer cells regulated by PI3K/Akt pathway as an attractive target for application of flavonoids to mitigate cancer resistance. Phytochemicals represent a source of promising substances for cancer management applicable to primary, secondary, and tertiary care. However, accurate patient stratification and individualized patient profiling represent crucial steps in the paradigm shift from reactive to predictive, preventive, and personalized medicine (PPPM / 3PM). The article is focused on targeting molecular patterns by natural substances and provides evidence-based recommendations for the 3PM relevant implementation.
Department of Natural Drugs Faculty of Pharmacy Masaryk University 61242 Brno Czech Republic
Museum of Literature in Moravia Klášter 1 66461 Rajhrad Czech Republic
Zobrazit více v PubMed
Liskova A., Koklesova L., Samec M., Smejkal K., Samuel S.M., Varghese E., et al. Flavonoids in Cancer Metastasis. Cancers (Basel) 2020;12 doi: 10.3390/cancers12061498. PubMed DOI PMC
Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71:209–249. doi: 10.3322/caac.21660. PubMed DOI
Mazurakova A., Koklesova L., Samec M., Kudela E., Kajo K., Skuciova V., et al. Anti-breast cancer effects of phytochemicals: primary, secondary, and tertiary care. EPMA J. 2022:315–334. doi: 10.1007/s13167-022-00277-2. PubMed DOI PMC
Bubnov R., Polivka J., Zubor P., Konieczka K., Golubnitschaja O. “Pre-Metastatic Niches” in Breast Cancer: are they created by or prior to the tumour onset? “flammer syndrome” relevance to address the question. EPMA J. 2017;8:141–157. doi: 10.1007/s13167-017-0092-8. PubMed DOI PMC
Debela, D.T, Muzazu, S.G, Heraro, K.D, Ndalama, M.T, Mesele, B.W, Haile, D.C, Kitui, S.K, Manyazewal, T. New Approaches and Procedures for Cancer Treatment: Current Perspectives. SAGE Open Med2021, 9, 20503121211034370, doi:10.1177/20503121211034366. PubMed PMC
Jordan V.C. Tamoxifen as the first successful targeted therapy in cancer: the gift that kept on giving. Breast Cancer Manage. 2014;3:321–326. doi: 10.2217/bmt.14.20. DOI
Liskova A., Samec M., Koklesova L., Brockmueller A., Zhai K., Abdellatif B., et al. Flavonoids as an effective sensitizer for anti-cancer therapy: insights into multi-faceted mechanisms and applicability towards individualized patient profiles. EPMA J. 2021:1–22. doi: 10.1007/s13167-021-00242-5. PubMed DOI PMC
Chen Y., Zhang J., Zhang M., Song Y., Zhang Y., Fan S., et al. Baicalein resensitizes tamoxifen-resistant breast cancer cells by reducing aerobic glycolysis and reversing mitochondrial dysfunction via inhibition of hypoxia-inducible factor-1α. Clin Transl Med. 2021;11:e577. PubMed PMC
Liang G., Tang A., Lin X., Li L., Zhang S., Huang Z., et al. Green Tea Catechins augment the antitumor activity of doxorubicin in an in vivo mouse model for chemoresistant liver cancer. Int J Oncol. 2010;37:111–123. PubMed
Zahra K., Dey Ashish T., Mishra S.P., Pandey U. Pyruvate Kinase M2 and Cancer: The Role of PKM2 in Promoting Tumorigenesis. Frontiers. Oncology. 2020:10. PubMed PMC
Samuel S.M., Kubatka P., Shakibaei M., Büsselberg D. The Juggernaut of Adaptive Metabolism in Cancers: Implications and Therapeutic Targets. Cancers. 2022;14:5202. doi: 10.3390/cancers14215202. PubMed DOI PMC
Varghese E., Samuel S.M., Líšková A., Samec M., Kubatka P., Büsselberg D. Targeting glucose metabolism to overcome resistance to anticancer chemotherapy in breast cancer. Cancers (Basel) 2020;12:E2252. doi: 10.3390/cancers12082252. PubMed DOI PMC
Samec M., Liskova A., Koklesova L., Mersakova S., Strnadel J., Kajo K., et al. Flavonoids Targeting HIF-1: implications on Cancer Metabolism. Cancers. 2021;13:130. doi: 10.3390/cancers13010130. PubMed DOI PMC
Wang H., Zhao L., Zhu L.-T., Wang Y., Pan D., Yao J., et al. Wogonin Reverses Hypoxia Resistance of Human Colon Cancer HCT116 Cells via Downregulation of HIF-1α and Glycolysis, by Inhibiting PI3K/Akt Signaling Pathway. Mol Carcinog. 2014;53(Suppl 1):E107–E108. doi: 10.1002/mc.22052. PubMed DOI
Shin E., Koo J.S. Glucose Metabolism and Glucose Transporters in Breast Cancer. Front Cell Dev Biol. 2021:9. PubMed PMC
Hayashi Y., Yokota A., Harada H., Huang G. Hypoxia/Pseudohypoxia-mediated Activation of Hypoxia-inducible Factor-1α in Cancer. Cancer Sci. 2019;110:1510–1517. doi: 10.1111/cas.13990. PubMed DOI PMC
Peng J., Cui Y., Xu S., Wu X., Huang Y., Zhou W., et al. Altered Glycolysis Results in Drug-Resistant in Clinical Tumor Therapy. Oncol Lett. 2021;21:369. doi: 10.3892/ol.2021.12630. PubMed DOI PMC
Marcucci F., Rumio C. Glycolysis-Induced Drug Resistance in Tumors-A Response to Danger Signals? Neoplasia. 2021;23:234–245. doi: 10.1016/j.neo.2020.12.009. PubMed DOI PMC
Koh S.Y., Moon J.Y., Unno T., Cho S.K. Baicalein Suppresses Stem Cell-Like Characteristics in Radio- and Chemoresistant MDA-MB-231 Human Breast Cancer Cells through Up-Regulation of IFIT2. Nutrients. 2019;11 doi: 10.3390/nu11030624. PubMed DOI PMC
Samec M., Liskova A., Koklesova L., Samuel S.M., Zhai K., Buhrmann C., et al. Flavonoids against the Warburg Phenotype—Concepts of Predictive, Preventive and Personalised Medicine to Cut the Gordian Knot of Cancer Cell Metabolism. EPMA J. 2020;11:377–398. doi: 10.1007/s13167-020-00217-y. PubMed DOI PMC
DeBerardinis R.J., Chandel N.S. Fundamentals of Cancer Metabolism Sci Adv. 2016;2:e1600200. PubMed PMC
Sutendra G., Michelakis E. Pyruvate Dehydrogenase Kinase as a Novel Therapeutic Target in Oncology. Frontiers. Oncology. 2013,:3. PubMed PMC
Woolbright B.L., Rajendran G., Harris R.A., Taylor J.A., III Metabolic Flexibility in Cancer: targeting the pyruvate dehydrogenase kinase: pyruvate dehydrogenase axis. Mol Cancer Ther. 2019;18:1673–1681. doi: 10.1158/1535-7163.MCT-19-0079. PubMed DOI
Atas E., Oberhuber M., Kenner L. The Implications of PDK1-4 on Tumor Energy Metabolism. Aggressiveness and Therapy Resistance Front Oncol. 2020;10 doi: 10.3389/fonc.2020.583217. PubMed DOI PMC
Courtnay R., Ngo D.C., Malik N., Ververis K., Tortorella S.M., Karagiannis T.C. Cancer Metabolism and the Warburg Effect: The Role of HIF-1 and PI3K. Mol Biol Rep. 2015;42:841–851. doi: 10.1007/s11033-015-3858-x. PubMed DOI
Woo Y.M., Shin Y., Lee E.J., Lee S., Jeong S.H., Kong H.K., et al. Inhibition of Aerobic Glycolysis Represses Akt/MTOR/HIF-1α Axis and Restores Tamoxifen Sensitivity in Antiestrogen-Resistant Breast Cancer Cells. PLoS One. 2015;10:e0132285. PubMed PMC
Lv Y., Zhao S., Han J., Zheng L., Yang Z., Zhao L. Hypoxia-Inducible Factor-1α induces multidrug resistance protein in colon cancer. Onco Targets Ther. 2015;8:1941–1948. doi: 10.2147/OTT.S82835. PubMed DOI PMC
Codony V.L., Tavassoli M. Hypoxia-Induced Therapy Resistance: available hypoxia-targeting strategies and current advances in head and neck cancer. Transl Oncol. 2021;14 doi: 10.1016/j.tranon.2021.101017. PubMed DOI PMC
Zhang Z., Yao L., Yang J., Wang Z., Du G. PI3K/Akt and HIF-1 Signaling Pathway in Hypoxia-Ischemia. Mol Med Rep. 2018;18:3547–3554. doi: 10.3892/mmr.2018.9375. PubMed DOI PMC
Chen F., Zhuang M., Zhong C., Peng J., Wang X., Li J., et al. Baicalein Reverses Hypoxia-Induced 5-FU Resistance in Gastric Cancer AGS Cells through Suppression of Glycolysis and the PTEN/Akt/HIF-1α Signaling Pathway. Oncol Rep. 2015;33:457–463. doi: 10.3892/or.2014.3550. PubMed DOI
Hoxhaj G., Manning B.D. The PI3K-AKT Network at the Interface of Oncogenic Signalling and Cancer Metabolism. Nat Rev Cancer. 2020;20:74–88. doi: 10.1038/s41568-019-0216-7. PubMed DOI PMC
He Y., Sun M.M., Zhang G.G., Yang J., Chen K.S., Xu W.W., et al. Targeting PI3K/Akt Signal Transduction for Cancer Therapy. Sig Transduct Target Ther. 2021;6:1–17. doi: 10.1038/s41392-021-00828-5. PubMed DOI PMC
Sarris E.G., Saif M.W., Syrigos K.N. The Biological Role of PI3K Pathway in Lung Cancer. Pharmaceuticals. 2012;5:1236–1264. doi: 10.3390/ph5111236. PubMed DOI PMC
LoRusso P.M. Inhibition of the PI3K/AKT/MTOR Pathway in Solid Tumors. J Clin Oncol. 2016;34:3803–3815. doi: 10.1200/JCO.2014.59.0018. PubMed DOI PMC
Kilic-Eren M., Boylu T., Tabor V. Targeting PI3K/Akt Represses Hypoxia Inducible Factor-1α Activation and Sensitizes Rhabdomyosarcoma and Ewing’s Sarcoma Cells for Apoptosis. Cancer Cell Int. 2013;13:36. doi: 10.1186/1475-2867-13-36. PubMed DOI PMC
Zhang Z., Yao L., Yang J., Wang Z., Du G. PI3K/Akt and HIF-1 Signaling Pathway in Hypoxia-ischemia (Review) Mol Med Rep. 2018;18:3547–3554. doi: 10.3892/mmr.2018.9375. PubMed DOI PMC
Jiang W., Ji M. Receptor Tyrosine Kinases in PI3K Signaling: the therapeutic targets in cancer. Semin Cancer Biol. 2019;59:3–22. doi: 10.1016/j.semcancer.2019.03.006. PubMed DOI
Stegeman H., Span P.N., Peeters W.J., Verheijen M.M., Grénman R., Meijer T.W., et al. Interaction between Hypoxia, AKT and HIF-1 Signaling in HNSCC and NSCLC: implications for future treatment strategies. Future Sci OA. 2016;2 doi: 10.4155/fso.15.84. PubMed DOI PMC
Jun J.C., Rathore A., Younas H., Gilkes D., Polotsky V.Y. Hypoxia-Inducible Factors and Cancer. Curr Sleep Med Rep. 2017;3:1–10. doi: 10.1007/s40675-017-0062-7. PubMed DOI PMC
Cerniglia G.J., Dey S., Gallagher-Colombo S.M., Daurio N.A., Tuttle S., Busch T.M., et al. The PI3K/Akt Pathway Regulates Oxygen Metabolism via Pyruvate Dehydrogenase (PDH)-E1α Phosphorylation. Mol Cancer Ther. 2015;14:1928–1938. doi: 10.1158/1535-7163.MCT-14-0888. PubMed DOI PMC
Xu Y.-Y., Wu T.-T., Zhou S.-H., Bao Y.-Y., Wang Q.-Y., Fan J., et al. Apigenin Suppresses GLUT-1 and p-AKT Expression to Enhance the Chemosensitivity to Cisplatin of Laryngeal Carcinoma Hep-2 Cells: An in Vitro Study. Int J Clin Exp Pathol. 2014;7:3938–3947. PubMed PMC
Jiang T., Zhou M.-L., Fan J. Inhibition of GLUT-1 Expression and the PI3K/Akt Pathway to Enhance the Chemosensitivity of Laryngeal Carcinoma Cells in Vitro. Onco Targets Ther. 2018;11:7865–7872. doi: 10.2147/OTT.S176818. PubMed DOI PMC
Hassan S., Peluso J., Chalhoub S., Idoux Gillet Y., Benkirane-Jessel N., Rochel N., et al. Quercetin Potentializes the Respective Cytotoxic Activity of Gemcitabine or Doxorubicin on 3D Culture of AsPC-1 or HepG2 Cells, through the Inhibition of HIF-1α and MDR1. PLoS One. 2020;15:e0240676. PubMed PMC
Bao Y.-Y., Zhou S.-H., Lu Z.-J., Fan J., Huang Y.-P. Inhibiting GLUT-1 Expression and PI3K/Akt signaling using apigenin improves the radiosensitivity of laryngeal carcinoma in vivo. Oncol Rep. 2015;34:1805–1814. doi: 10.3892/or.2015.4158. PubMed DOI
Zhao F., Ming J., Zhou Y., Fan L. Inhibition of Glut1 by WZB117 sensitizes radioresistant breast cancer cells to irradiation. Cancer Chemother Pharmacol. 2016;77:963–972. doi: 10.1007/s00280-016-3007-9. PubMed DOI
Suzuki S., Okada M., Takeda H., Kuramoto K., Sanomachi T., Togashi K., et al. Involvement of GLUT1-Mediated Glucose Transport and Metabolism in Gefitinib Resistance of Non-Small-Cell Lung Cancer Cells. Oncotarget. 2018;9:32667–32679. doi: 10.18632/oncotarget.25994. PubMed DOI PMC
Shima T., Taniguchi K., Tokumaru Y., Inomata Y., Arima J., Lee S.-W., et al. Glucose Transporter-1 inhibition overcomes imatinib resistance in gastrointestinal stromal tumor cells. Oncol Rep. 2022;47:7. doi: 10.3892/or.2021.8218. PubMed DOI PMC
Krasnov G.S., Dmitriev A.A., Lakunina V.A., Kirpiy A.A., Kudryavtseva A.V. Targeting VDAC-Bound Hexokinase II: a promising approach for concomitant anti-cancer therapy. Expert Opin Ther Targets. 2013;17:1221–1233. doi: 10.1517/14728222.2013.833607. PubMed DOI
Liu X., Miao W., Huang M., Li L., Dai X., Wang Y. Elevated Hexokinase II Expression Confers Acquired Resistance to 4-Hydroxytamoxifen in Breast Cancer Cells. Mol Cell Proteomics. 2019;18:2273–2284. doi: 10.1074/mcp.RA119.001576. PubMed DOI PMC
Fan K., Fan Z., Cheng H., Huang Q., Yang C., Jin K., et al. Hexokinase 2 Dimerization and Interaction with Voltage-Dependent Anion Channel Promoted Resistance to Cell Apoptosis Induced by Gemcitabine in Pancreatic Cancer. Cancer Med. 2019;8:5903–5915. doi: 10.1002/cam4.2463. PubMed DOI PMC
Tan V.P., Miyamoto S. HK2/Hexokinase-II Integrates Glycolysis and Autophagy to Confer Cellular Protection. Autophagy. 2015;11:963–964. doi: 10.1080/15548627.2015.1042195. PubMed DOI PMC
Su Q., Luo S., Tan Q., Deng J., Zhou S., Peng M., et al. The Role of Pyruvate Kinase M2 in Anticancer Therapeutic Treatments (Review) Oncol Lett. 2019;18:5663–5672. doi: 10.3892/ol.2019.10948. PubMed DOI PMC
Wang C., Jiang J., Ji J., Cai Q., Chen X., Yu Y., et al. PKM2 Promotes Cell Migration and Inhibits Autophagy by Mediating PI3K/AKT Activation and Contributes to the Malignant Development of Gastric Cancer. Sci Rep. 2017;7:2886. doi: 10.1038/s41598-017-03031-1. PubMed DOI PMC
Lin Y., Lv F., Liu F., Guo X., Fan Y., Gu F., et al. High Expression of Pyruvate Kinase M2 Is Associated with Chemosensitivity to Epirubicin and 5-Fluorouracil in Breast Cancer. J Cancer. 2015;6:1130–1139. doi: 10.7150/jca.12719. PubMed DOI PMC
Yasumizu Y., Hongo H., Kosaka T., Mikami S., Nishimoto K., Kikuchi E., et al. PKM2 under Hypoxic Environment Causes Resistance to MTOR Inhibitor in Human Castration Resistant Prostate Cancer. Oncotarget. 2018;9:27698–27707. doi: 10.18632/oncotarget.25498. PubMed DOI PMC
Qian Y., Bi L., Yang Y., Wang D. Effect of Pyruvate Kinase M2-regulating aerobic glycolysis on chemotherapy resistance of estrogen receptor-positive breast cancer. Anticancer Drugs. 2018;29:616–627. doi: 10.1097/CAD.0000000000000624. PubMed DOI
Cevatemre B., Ulukaya E., Dere E., Dilege S., Acilan C. Pyruvate dehydrogenase contributes to drug resistance of lung cancer cells through epithelial mesenchymal transition. Front Cell Dev Biol. 2022:9. PubMed PMC
Bamodu O.A., Chang H.-L., Ong J.-R., Lee W.-H., Yeh C.-T., Tsai J.-T. Elevated PDK1 Expression Drives PI3K/AKT/MTOR Signaling Promotes Radiation-Resistant and Dedifferentiated Phenotype of Hepatocellular Carcinoma. Cells. 2020;9:E746. doi: 10.3390/cells9030746. PubMed DOI PMC
Zhang M., Cong Q., Zhang X.-Y., Zhang M.-X., Lu Y.-Y., Xu C.-J. Pyruvate Dehydrogenase Kinase 1 Contributes to Cisplatin Resistance of Ovarian Cancer through EGFR Activation. J Cell Physiol. 2019;234:6361–6370. doi: 10.1002/jcp.27369. PubMed DOI
Cui X.-G., Han Z.-T., He S.-H., Wu X., Chen T.-R., Shao C.-H., et al. HIF1/2α Mediates Hypoxia-Induced LDHA Expression in Human Pancreatic Cancer Cells. Oncotarget. 2017;8:24840–24852. doi: 10.18632/oncotarget.15266. PubMed DOI PMC
Manerba M., Di Ianni L., Govoni M., Comparone A., Di Stefano G. The Activation of Lactate Dehydrogenase Induced by MTOR Drives Neoplastic Change in Breast Epithelial Cells. PLoS One. 2018;13:e0202588. PubMed PMC
Giovannetti E., Leon L.G., Gómez V.E., Zucali P.A., Minutolo F., Peters G.J. A Specific inhibitor of lactate dehydrogenase overcame the resistance toward gemcitabine in hypoxic mesothelioma cells, and modulated the expression of the human equilibrative transporter-1. Nucleosides Nucleotides Nucleic Acids. 2016;35:643–651. doi: 10.1080/15257770.2016.1149193. PubMed DOI
Li X., Zhao H., Zhou X., Song L. Inhibition of Lactate Dehydrogenase A by MicroRNA-34a Resensitizes Colon Cancer Cells to 5-Fluorouracil. Mol Med Rep. 2015;11:577–582. doi: 10.3892/mmr.2014.2726. PubMed DOI
Shang D., Wu J., Guo L., Xu Y., Liu L., Lu J. Metformin increases sensitivity of osteosarcoma stem cells to cisplatin by inhibiting expression of PKM2. Int J Oncol. 2017;50:1848–1856. doi: 10.3892/ijo.2017.3950. PubMed DOI
Pardee T.S., Luther S., Buyse M., Powell B.L., Cortes J. Devimistat in Combination with High Dose Cytarabine and Mitoxantrone Compared with High Dose Cytarabine and Mitoxantrone in Older Patients with Relapsed/Refractory Acute Myeloid Leukemia: ARMADA 2000 Phase III Study. Future Oncol. 2019;15:3197–3208. doi: 10.2217/fon-2019-0201. PubMed DOI
Zhou Z.-H., Liang S.-Y., Zhao T.-C., Chen X.-Z., Cao X.-K., Qi M., et al. Overcoming Chemotherapy Resistance Using PH-Sensitive Hollow MnO2 Nanoshells That Target the Hypoxic Tumor Microenvironment of Metastasized Oral Squamous Cell Carcinoma. J Nanobiotechnol. 2021;19:157. doi: 10.1186/s12951-021-00901-9. PubMed DOI PMC
Amawi H., Ashby C.R., Tiwari A.K. Cancer Chemoprevention through Dietary Flavonoids: What’s Limiting? Chin. J Cancer. 2017;36 doi: 10.1186/s40880-017-0217-4. PubMed DOI PMC
Ullah A., Munir S., Badshah S.L., Khan N., Ghani L., Poulson B.G., et al. Important flavonoids and their role as a therapeutic agent. Molecules. 2020;25:5243. doi: 10.3390/molecules25225243. PubMed DOI PMC
Liskova A., Samec M., Koklesova L., Samuel S.M., Zhai K., Al-Ishaq R.K., et al. Flavonoids against the SARS-CoV-2 Induced Inflammatory Storm. Biomed Pharmacother. 2021;138 doi: 10.1016/j.biopha.2021.111430. PubMed DOI PMC
Kubatka P., Mazurakova A., Samec M., Koklesova L., Zhai K., Al-Ishaq R., et al. Flavonoids against non-physiologic inflammation attributed to cancer initiation, development, and progression-3PM pathways. EPMA J. 2021;12:559–587. doi: 10.1007/s13167-021-00257-y. PubMed DOI PMC
Santos-Buelga C., Feliciano A.S. Flavonoids: from Structure to Health Issues. Molecules. 2017;22:477. doi: 10.3390/molecules22030477. PubMed DOI PMC
Safe S., Jayaraman A., Chapkin R.S., Howard M., Mohankumar K., Shrestha R. Flavonoids: structure-function and mechanisms of action and opportunities for drug development. Toxicol Res. 2021;37:147–162. doi: 10.1007/s43188-020-00080-z. PubMed DOI PMC
Abotaleb M., Samuel S.M., Varghese E., Varghese S., Kubatka P., Liskova A., et al. Flavonoids in Cancer and Apoptosis. Cancers (Basel) 2018;11 doi: 10.3390/cancers11010028. PubMed DOI PMC
Koklesova L., Liskova A., Samec M., Buhrmann C., Samuel S.M., Varghese E., et al. Carotenoids in cancer apoptosis-the road from bench to bedside and back. Cancers (Basel) 2020;12 doi: 10.3390/cancers12092425. PubMed DOI PMC
Kapinova A., Kubatka P., Liskova A., Baranenko D., Kruzliak P., Matta M., et al. Controlling Metastatic Cancer: the role of phytochemicals in cell signaling. J Cancer Res Clin Oncol. 2019;145:1087–1109. doi: 10.1007/s00432-019-02892-5. PubMed DOI PMC
Rauf, A, Imran, M, Khan, I.A, Ur-Rehman, M.-, Gilani, S.A, Mehmood, Z, Mubarak, M.S. Anticancer Potential of Quercetin: A Comprehensive Review. Phytother Res2018, 32, 2109–2130, doi:10.1002/ptr.6155. PubMed
Lu X., Yang F., Chen D., Zhao Q., Chen D., Ping H., et al. Quercetin Reverses Docetaxel Resistance in Prostate Cancer via Androgen Receptor and PI3K/Akt Signaling Pathways. Int J Biol Sci. 2020;16:1121–1134. doi: 10.7150/ijbs.41686. PubMed DOI PMC
Lan C.-Y., Chen S.-Y., Kuo C.-W., Lu C.-C., Yen G.-C. Quercetin Facilitates Cell Death and Chemosensitivity through RAGE/PI3K/AKT/MTOR Axis in Human Pancreatic Cancer Cells. J Food Drug Anal. 2019;27:887–896. doi: 10.1016/j.jfda.2019.07.001. PubMed DOI PMC
Safi A., Heidarian E., Ahmadi R. Quercetin synergistically enhances the anticancer efficacy of docetaxel through induction of apoptosis and modulation of PI3K/AKT, MAPK/ERK, and JAK/STAT3 Signaling Pathways in MDA-MB-231 Breast Cancer Cell Line. Int J Mol Cell Med. 2021;10:11–22. doi: 10.22088/IJMCM.BUMS.10.1.11. PubMed DOI PMC
Granato M., Rizzello C., Romeo M.A., Yadav S., Santarelli R., D’Orazi G., et al. Concomitant Reduction of C-Myc Expression and PI3K/AKT/MTOR Signaling by Quercetin Induces a Strong Cytotoxic Effect against Burkitt’s Lymphoma. Int J Biochem Cell Biol. 2016;79:393–400. doi: 10.1016/j.biocel.2016.09.006. PubMed DOI
Rossette M.C., Moraes D.C., Sacramento E.K., Romano-Silva M.A., Carvalho J.L., Gomes D.A., et al. The in vitro and in vivo antiangiogenic effects of flavokawain B. Phytother Res. 2017;31:1607–1613. doi: 10.1002/ptr.5891. PubMed DOI
Hua R., Pei Y., Gu H., Sun Y., He Y. Antitumor Effects of Flavokawain-B Flavonoid in Gemcitabine-Resistant Lung Cancer Cells Are Mediated via Mitochondrial-Mediated Apoptosis, ROS Production, Cell Migration and Cell Invasion Inhibition and Blocking of PI3K/AKT Signaling Pathway. J BUON. 2020;25:262–267. PubMed
Imran M., Aslam Gondal T., Atif M., Shahbaz M., Batool Qaisarani T., Hanif Mughal M., et al. Apigenin as an Anticancer Agent. Phytother Res. 2020;34:1812–1828. doi: 10.1002/ptr.6647. PubMed DOI
Chen X., Xu H., Yu X., Wang X., Zhu X., Xu X. Apigenin Inhibits in Vitro and in vivo tumorigenesis in cisplatin-resistant colon cancer cells by inducing autophagy, programmed cell death and targeting m-TOR/PI3K/Akt Signalling Pathway. J BUON. 2019;24:488–493. PubMed
Li N., Zhang Z., Jiang G., Sun H., Yu D. Nobiletin Sensitizes Colorectal Cancer Cells to Oxaliplatin by PI3K/Akt/MTOR Pathway. Front Biosci (Landmark Ed) 2019;24:303–312. doi: 10.2741/4719. PubMed DOI
Xing F., Sun C., Luo N., He Y., Chen M., Ding S., et al. Wogonin increases cisplatin sensitivity in ovarian cancer cells through inhibition of the phosphatidylinositol 3-Kinase (PI3K)/Akt Pathway. Med Sci Monit. 2019;25:6007–6014. doi: 10.12659/MSM.913829. PubMed DOI PMC
Baruah T.J., Kma L. Vicenin-2 Acts as a Radiosensitizer of the Non-Small Cell Lung Cancer by Lowering Akt Expression. Biofactors. 2019;45:200–210. doi: 10.1002/biof.1472. PubMed DOI
Imran M., Rauf A., Shah Z.A., Saeed F., Imran A., Arshad M.U., et al. Chemo-preventive and therapeutic effect of the dietary flavonoid kaempferol: a comprehensive review. Phytother Res. 2019;33:263–275. doi: 10.1002/ptr.6227. PubMed DOI
Riahi-Chebbi I., Souid S., Othman H., Haoues M., Karoui H., Morel A., et al. The Phenolic Compound Kaempferol Overcomes 5-Fluorouracil Resistance in Human Resistant LS174 Colon Cancer Cells. Sci Rep. 2019;9:195. doi: 10.1038/s41598-018-36808-z. PubMed DOI PMC
Chandrashekar N., Pandi A. Baicalein: a review on its anti-cancer effects and mechanisms in lung carcinoma. J Food Biochem. 2022;46:e14230. PubMed
Guo D., Jin J., Liu J., Wang Y., Li D., He Y. baicalein inhibits the progression and promotes radiosensitivity of esophageal squamous cell carcinoma by targeting HIF-1A. Drug Des Devel Ther. 2022;16:2423–2436. doi: 10.2147/DDDT.S370114. PubMed DOI PMC
Wei M., Ma R., Huang S., Liao Y., Ding Y., Li Z., et al. Oroxylin A increases the sensitivity of temozolomide on glioma cells by hypoxia-inducible factor 1α/Hedgehog pathway under hypoxia. J Cell Physiol. 2019;234:17392–17404. doi: 10.1002/jcp.28361. PubMed DOI
Li K., Li M., Luo Z., Mao Y., Yu Y., He Y., et al. Overcoming the hypoxia-induced drug resistance in liver tumor by the concurrent use of apigenin and paclitaxel. Biochem Biophys Res Commun. 2020;526:321–327. doi: 10.1016/j.bbrc.2020.03.010. PubMed DOI
Gao H., Xie J., Peng J., Han Y., Jiang Q., Han M., et al. Hispidulin inhibits proliferation and enhances chemosensitivity of gallbladder cancer cells by targeting HIF-1α. Exp Cell Res. 2015;332:236–246. doi: 10.1016/j.yexcr.2014.11.021. PubMed DOI
Sellam L.S., Zappasodi R., Chettibi F., Djennaoui D., Yahi-Ait Mesbah N., Amir-Tidadini Z.-C., et al. Silibinin Down-Regulates PD-L1 expression in nasopharyngeal carcinoma by interfering with tumor cell glycolytic metabolism. Arch Biochem Biophys. 2020;690 doi: 10.1016/j.abb.2020.108479. PubMed DOI PMC
Kapinova A., Stefanicka P., Kubatka P., Zubor P., Uramova S., Kello M., et al. Are plant-based functional foods better choice against cancer than single phytochemicals? a critical review of current breast cancer research. Biomed Pharmacother. 2017;96:1465–1477. doi: 10.1016/j.biopha.2017.11.134. PubMed DOI
Kubatka P., Uramova S., Kello M., Kajo K., Samec M., Jasek K., et al. Anticancer Activities of Thymus Vulgaris L. in experimental breast carcinoma in vivo and in vitro. Int J Mol Sci. 2019;20 doi: 10.3390/ijms20071749. PubMed DOI PMC
Kubatka, P, Kello, M, Kajo, K, Samec, M, Jasek, K, Vybohova, D, Uramova, S, Liskova, A, Sadlonova, V, Koklesova, L, et al. Chemopreventive and Therapeutic Efficacy of Cinnamomum Zeylanicum L. Bark in Experimental Breast Carcinoma: Mechanistic In Vivo and In Vitro Analyses. Molecules2020, 25, 1399, doi:10.3390/molecules25061399. PubMed PMC
Kubatka P., Kello M., Kajo K., Samec M., Liskova A., Jasek K., et al. Demonstrates oncostatic activity in the therapeutic and preventive model of breast carcinoma. Int J Mol Sci. 2020;22 doi: 10.3390/ijms22010183. PubMed DOI PMC
Fujiki H., Watanabe T., Sueoka E., Rawangkan A., Suganuma M. Cancer Prevention with Green Tea and Its Principal Constituent, EGCG: from early investigations to current focus on human cancer stem cells. Mol Cells. 2018;41:73–82. doi: 10.14348/molcells.2018.2227. PubMed DOI PMC
Han J.H., Kim M., Kim H.J., Jang S.B., Bae S.-J., Lee I.-K., et al. Targeting Lactate Dehydrogenase A with Catechin Resensitizes SNU620/5FU Gastric Cancer Cells to 5-Fluorouracil. Int J Mol Sci. 2021;22:5406. doi: 10.3390/ijms22105406. PubMed DOI PMC
Wu H., Du J., Li C., Li H., Guo H., Li Z. Kaempferol Can Reverse the 5-Fu resistance of colorectal cancer cells by inhibiting PKM2-mediated glycolysis. Int J Mol Sci. 2022;23:3544. doi: 10.3390/ijms23073544. PubMed DOI PMC
Semenza G.L. HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev. 2010;20:51. doi: 10.1016/j.gde.2009.10.009. PubMed DOI PMC
Chen Z., Tian D., Liao X., Zhang Y., Xiao J., Chen W., et al. Apigenin combined with gefitinib blocks autophagy flux and induces apoptotic cell death through inhibition of HIF-1α, c-Myc, p-EGFR, and Glucose Metabolism in EGFR L858R+T790M-Mutated H1975 Cells. Front Pharmacol. 2019;10:260. doi: 10.3389/fphar.2019.00260. PubMed DOI PMC
Konieczka K., Ritch R., Traverso C.E., Kim D.M., Kook M.S., Gallino A., et al. Flammer Syndrome. EPMA J. 2014;5:11. doi: 10.1186/1878-5085-5-11. PubMed DOI PMC
Flammer Syndrome: From Phenotype to Associated Pathologies, Prediction, Prevention and Personalisation; Golubnitschaja, O., Ed.; Advances in Predictive, Preventive and Personalised Medicine; Springer International Publishing, 2019; ISBN 978-3-030-13549-2.
Wang W., Yan Y., Guo Z., Hou H., Garcia M., Tan X., et al. All around Suboptimal Health — a joint position paper of the suboptimal health study consortium and european association for predictive. Preventive and Personalised Medicine EPMA J. 2021;12:403–433. doi: 10.1007/s13167-021-00253-2. PubMed DOI PMC
Golubnitschaja O., Liskova A., Koklesova L., Samec M., Biringer K., Büsselberg D., et al. Caution, “Normal” BMI: health risks associated with potentially masked individual underweight-EPMA position paper. EPMA J. 2021;2021:1–22. doi: 10.1007/s13167-021-00251-4. PubMed DOI PMC
Zubor P., Gondova A., Polivka J., Kasajova P., Konieczka K., Danko J., et al. Breast cancer and flammer syndrome: any symptoms in common for prediction, prevention and personalised medical approach? EPMA J. 2017;8:129–140. doi: 10.1007/s13167-017-0089-3. PubMed DOI PMC
Crigna A.T., Link B., Samec M., Giordano F.A., Kubatka P., Golubnitschaja O. Endothelin-1 Axes in the framework of predictive, preventive and personalised (3P) medicine. EPMA J. 2021 doi: 10.1007/s13167-021-00248-z. PubMed DOI PMC
Golubnitschaja O., Potuznik P., Polivka J.J., Pesta M., Kaverina O., Pieper C., et al. Ischemic Stroke of Unclear Aetiology: a case-by-case analysis and call for a multi-professional predictive. Preventive and Personalised Approach EPMA J. 2022;13:535–545. doi: 10.1007/s13167-022-00307-z. PubMed DOI PMC
Golubnitschaja O. Feeling Cold and Other Underestimated Symptoms in Breast Cancer: anecdotes or individual profiles for advanced patient stratification? EPMA J. 2017;8:17–22. doi: 10.1007/s13167-017-0086-6. PubMed DOI PMC
Koklesova L., Mazurakova A., Samec M., Kudela E., Biringer K., Kubatka P., et al. Mitochondrial health quality control: measurements and interpretation in the framework of predictive, preventive, and personalized medicine. EPMA J. 2022;13:177–193. doi: 10.1007/s13167-022-00281-6. PubMed DOI PMC
Koklesova L., Samec M., Liskova A., Zhai K., Büsselberg D., Giordano F.A., et al. Mitochondrial impairments in aetiopathology of multifactorial diseases: common origin but individual outcomes in context of 3P medicine. EPMA J. 2021:1–14. doi: 10.1007/s13167-021-00237-2. PubMed DOI PMC
Balamurugan K. HIF-1 at the Crossroads of Hypoxia, Inflammation, and Cancer. Int J Cancer. 2016;138:1058–1066. doi: 10.1002/ijc.29519. PubMed DOI PMC
Infantino V., Santarsiero A., Convertini P., Todisco S., Iacobazzi V. Cancer Cell Metabolism in Hypoxia: Role of HIF-1 as Key Regulator and Therapeutic Target. Int J Mol Sci. 2021;22:5703. doi: 10.3390/ijms22115703. PubMed DOI PMC
Li X., Wang M., Li S., Chen Y., Wang M., Wu Z., et al. HIF-1-Induced Mitochondrial Ribosome Protein L52: a mechanism for breast cancer cellular adaptation and metastatic initiation in response to hypoxia. Theranostics. 2021;11:7337–7359. doi: 10.7150/thno.57804. PubMed DOI PMC
Mazurakova A., Samec M., Koklesova L., Biringer K., Kudela E., Al-Ishaq R.K., et al. Anti-prostate cancer protection and therapy in the framework of predictive, preventive and personalised medicine - comprehensive effects of phytochemicals in primary. Secondary and Tertiary Care EPMA J. 2022;13:461–486. doi: 10.1007/s13167-022-00288-z. PubMed DOI PMC
Zhan X., Li J., Guo Y., Golubnitschaja O. Mass spectrometry analysis of human tear fluid biomarkers specific for ocular and systemic diseases in the context of 3P medicine. EPMA J. 2021;12:449–475. doi: 10.1007/s13167-021-00265-y. PubMed DOI PMC
Ellinger J., Alajati A., Kubatka P., Giordano F.A., Ritter M., Costigliola V., et al. Prostate cancer treatment costs increase more rapidly than for any other cancer-how to reverse the trend? EPMA J. 2022:1–7. doi: 10.1007/s13167-022-00276-3. PubMed DOI PMC
WHO recognition of 3PM medicine in overall management of sub-optimal health: https://search.bvsalud.org/global-literature-on-novel-coronavirus-2019-ncov/resource/en/covidwho-1427434 accessed on December 8th 2022.