Chemopreventive and Therapeutic Efficacy of Cinnamomum zeylanicum L. Bark in Experimental Breast Carcinoma: Mechanistic In Vivo and In Vitro Analyses

. 2020 Mar 19 ; 25 (6) : . [epub] 20200319

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32204409

Grantová podpora
1/0136/19, 1/0653/19, and 1/0753/17 Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
APVV-16-0021 and APVV-16-0446 Agentúra na Podporu Výskumu a Vývoja
code ITMS2014 + 313011D103 "Medicínsky univerzitný vedecký park v Košiciach (MediPark, Košice - Fáza II.)",
ITMS: 26220120053 "CENTER OF EXCELLENCE FOR RESEARCH IN PERSONALIZED THERAPY (CEVYPET)",

Comprehensive oncology research suggests an important role of phytochemicals or whole plant foods in the modulation of signaling pathways associated with anticancer action. The goal of this study is to assess the anticancer activities of Cinnamomum zeylanicum L. using rat, mouse, and cell line breast carcinoma models. C. zeylanicum (as bark powder) was administered in the diet at two concentrations of 0.1% (w/w) and 1% (w/w) during the whole experiment in chemically induced rat mammary carcinomas and a syngeneic 4T1 mouse model. After autopsy, histopathological and molecular evaluations of mammary gland tumors in rodents were carried out. Moreover, in vitro analyses using MCF-7 and MDA-MB-231 cells were performed. The dominant metabolites present in the tested C. zeylanicum essential oil (with relative content over 1%) were cinnamaldehyde, cinnamaldehyde dimethyl acetal, cinnamyl acetate, eugenol, linalool, eucalyptol, limonene, o-cymol, and α-terpineol. The natural mixture of mentioned molecules demonstrated significant anticancer effects in our study. In the mouse model, C. zeylanicum at a higher dose (1%) significantly decreased tumor volume by 44% when compared to controls. In addition, treated tumors showed a significant dose-dependent decrease in mitotic activity index by 29% (0.1%) and 45.5% (1%) in comparison with the control group. In rats, C. zeylanicum in both doses significantly reduced the tumor incidence by 15.5% and non-significantly suppressed tumor frequency by more than 30% when compared to controls. An evaluation of the mechanism of anticancer action using valid oncological markers showed several positive changes after treatment with C. zeylanicum. Histopathological analysis of treated rat tumor specimens showed a significant decrease in the ratio of high-/low-grade carcinomas compared to controls. In treated rat carcinomas, we found caspase-3 and Bax expression increase. On the other hand, we observed a decrease in Bcl-2, Ki67, VEGF, and CD24 expressions and MDA levels. Assessment of epigenetic changes in rat tumor cells in vivo showed a significant decrease in lysine methylation status of H3K4m3 and H3K9m3 in the high-dose treated group, a dose-dependent increase in H4K16ac levels (H4K20m3 was not changed), down-regulations of miR21 and miR155 in low-dose cinnamon groups (miR22 and miR34a were not modulated), and significant reduction of the methylation status of two out of five gene promoters-ATM and TIMP3 (PITX2, RASSF1, PTEN promoters were not changed). In vitro study confirmed results of animal studies, in that the essential oil of C. zeylanicum displayed significant anticancer efficacy in MCF-7 and MDA-MB-231 cells (using MTS, BrdU, cell cycle, annexin V/PI, caspase-3/7, Bcl-2, PARP, and mitochondrial membrane potential analyses). As a conclusion, C. zeylanicum L. showed chemopreventive and therapeutic activities in animal breast carcinoma models that were also significantly confirmed by mechanistic evaluations in vitro and in vivo.

Biomedical Research Center Slovak Academy of Sciences 845 05 Bratislava Slovakia

Department of Anatomy Jessenius Faculty of Medicine Comenius University in Bratislava 036 01 Martin Slovakia

Department of Animal Physiology Institute of Biology and Ecology Faculty of Science P J Šafarik University 04001 Košice Slovakia

Department of Biochemistry Jessenius Faculty of Medicine Comenius University in Bratislava 036 01 Martin Slovakia

Department of Histology and Embryology Jessenius Faculty of Medicine Comenius University in Bratislava 036 01 Martin Slovakia

Department of Immunology and School of Medicine Keimyung University Dalseo Gu 42601 Daegu Korea

Department of Medical Biology Faculty of Medicine P J Safarik University 04011 Kosice Slovakia

Department of Medical Biology Jessenius Faculty of Medicine Comenius University in Bratislava 03601 Martin Slovakia

Department of Microbiology and Immunology Jessenius Faculty of Medicine Comenius University in Bratislava 036 01 Martin Slovakia

Department of Natural Drugs Faculty of Pharmacy University of Veterinary and Pharmaceutical Sciences 612 42 Brno Czech Republic

Department of Obstetrics and Gynecology Jessenius Faculty of Medicine Comenius University in Bratislava 036 01 Martin Slovakia

Department of Pharmacology Faculty of Medicine P J Šafarik University 040 11 Košice Slovakia

Division of Oncology Biomedical Center Martin Comenius University in Bratislava Jessenius Faculty of Medicine 036 01 Martin Slovakia

OBGY Health and Care Ltd 01001 Zilina Slovakia

St Elisabeth Oncology Institute Department of Pathology 812 50 Bratislava Slovakia

Weill Cornell Medicine in Qatar Qatar Foundation Education City 24144 Doha Qatar

Zobrazit více v PubMed

Kapinova A., Stefanicka P., Kubatka P., Zubor P., Uramova S., Kello M., Mojzis J., Blahutova D., Qaradakhi T., Zulli A., et al. Are plant-based functional foods better choice against cancer than single phytochemicals? A critical review of current breast cancer research. Biomed. Pharm. 2017;96:1465–1477. doi: 10.1016/j.biopha.2017.11.134. PubMed DOI

Kubatka P., Kapinová A., Kružliak P., Kello M., Výbohová D., Kajo K., Novák M., Chripková M., Adamkov M., Péč M., et al. Antineoplastic effects of Chlorella pyrenoidosa in the breast cancer model. Nutrition. 2015;31:560–569. doi: 10.1016/j.nut.2014.08.010. PubMed DOI

Kubatka P., Kapinová A., Kello M., Kruzliak P., Kajo K., Výbohová D., Mahmood S., Murin R., Viera T., Mojžiš J., et al. Fruit peel polyphenols demonstrate substantial anti-tumour effects in the model of breast cancer. Eur. J. Nutr. 2016;55:955–965. doi: 10.1007/s00394-015-0910-5. PubMed DOI

Kubatka P., Kello M., Kajo K., Kruzliak P., Výbohová D., Šmejkal K., Maršík P., Zulli A., Gönciová G., Mojžiš J., et al. Young barley indicates antitumor effects in experimental breast cancer in vivo and in vitro. Nutr. Cancer. 2016;68:611–621. doi: 10.1080/01635581.2016.1154577. PubMed DOI

Kubatka P., Uramova S., Kello M., Kajo K., Kruzliak P., Mojzis J., Vybohova D., Adamkov M., Jasek K., Lasabova Z., et al. Antineoplastic effects of clove buds (Syzygium aromaticum L.) in the model of breast carcinoma. J. Cell. Mol. Med. 2017;21:2837–2851. doi: 10.1111/jcmm.13197. PubMed DOI PMC

Kubatka P., Kello M., Kajo K., Kruzliak P., Výbohová D., Mojžiš J., Adamkov M., Fialová S., Veizerová L., Zulli A., et al. Oregano demonstrates distinct tumour-suppressive effects in the breast carcinoma model. Eur. J. Nutr. 2017;56:1303–1316. doi: 10.1007/s00394-016-1181-5. PubMed DOI

Kubatka P., Uramova S., Kello M., Kajo K., Samec M., Jasek K., Vybohova D., Liskova A., Mojzis J., Adamkov M., et al. Anticancer activities of Thymus vulgaris L. in experimental breast carcinoma in vivo and in vitro. Int. J. Mol. Sci. 2019;20:1749. doi: 10.3390/ijms20071749. PubMed DOI PMC

Kapinova A., Kubatka P., Golubnitschaja O., Kello M., Zubor P., Solar P., Pec M. Dietary phytochemicals in breast cancer research: Anticancer effects and potential utility for effective chemoprevention. Env. Health Prev. Med. 2018;23:1–18. doi: 10.1186/s12199-018-0724-1. PubMed DOI PMC

Kapinova A., Kubatka P., Liskova A., Baranenko D., Kruzliak P., Matta M., Büsselberg D., Malicherova B., Zulli A., Kwon T.K., et al. Controlling metastatic cancer: The role of phytochemicals in cell signaling. J. Cancer Res. Clin. Oncol. 2019;145:1087–1109. doi: 10.1007/s00432-019-02892-5. PubMed DOI

Jasek K., Kubatka P., Samec M., Liskova A., Smejkal K., Vybohova D., Bugos O., Biskupska-Bodova K., Bielik T., Zubor P., et al. DNA methylation status in cancer disease: Modulations by plant-derived Natural compounds and dietary interventions. Biomolecules. 2019;9:289. doi: 10.3390/biom9070289. PubMed DOI PMC

Samec M., Liskova A., Kubatka P., Uramova S., Zubor P., Samuel S.M., Zulli A., Pec M., Bielik T., Biringer K., et al. The role of dietary phytochemicals in the carcinogenesis via the modulation of miRNA expression. J. Cancer Res. Clin. Oncol. 2019;145:1665–1679. doi: 10.1007/s00432-019-02940-0. PubMed DOI

Samec M., Liskova A., Koklesova L., Mestanova V., Franekova M., Kassayova M., Bojkova B., Uramova S., Zubor P., Janikova K., et al. Fluctuations of histone chemical modifications in breast, prostate, and colorectal cancer: An implication of phytochemicals as defenders of chromatin equilibrium. Biomolecules. 2019;9:829. doi: 10.3390/biom9120829. PubMed DOI PMC

Kapinova A., Kubatka P., Zubor P., Golubnitschaja O., Dankova Z., Uramova S., Pilchova I., Caprnda M., Opatrilova R., Richnavsky J., et al. The hypoxia-responsive long non-coding RNAs may impact on the tumor biology and subsequent management of breast cancer. Biomed. Pharm. 2018;99:51–58. doi: 10.1016/j.biopha.2017.12.104. PubMed DOI

Mao Y., Hao J., Jin Z.-Q., Niu Y.-Y., Yang X., Liu D., Cao R., Wu X.-Z. Network pharmacology-based and clinically relevant prediction of the active ingredients and potential targets of Chinese herbs in metastatic breast cancer patients. Oncotarget. 2017;8:27007–27021. doi: 10.18632/oncotarget.15351. PubMed DOI PMC

Pourzand A., Tajaddini A., Pirouzpanah S., Asghari-Jafarabadi M., Samadi N., Ostadrahimi A.-R., Sanaat Z. Associations between dietary allium vegetables and risk of breast cancer: A hospital-based matched case-control study. J. Breast Cancer. 2016;19:292–300. doi: 10.4048/jbc.2016.19.3.292. PubMed DOI PMC

Liu X., Lv K. Cruciferous vegetables intake is inversely associated with risk of breast cancer: A meta-analysis. Breast. 2013;22:309–313. doi: 10.1016/j.breast.2012.07.013. PubMed DOI

Fung T.T., Chiuve S.E., Willett W.C., Hankinson S.E., Hu F.B., Holmes M.D. Intake of specific fruits and vegetables in relation to risk of estrogen receptor-negative breast cancer among postmenopausal women. Breast Cancer Res. Treat. 2013;138:925–930. doi: 10.1007/s10549-013-2484-3. PubMed DOI PMC

Cardoso-Ugarte G.A., López-Malo A., Sosa-Morales M.E. Cinnamon (Cinnamomum zeylanicum) essential oils. In: Preedy V.R., editor. Essential Oils in Food Preservation, Flavor and Safety. Academic Press; San Diego, CA, USA: 2016. pp. 339–347. Chapter 38.

Ghosh T., Basu A., Adhikari D., Roy D., Pal A.K. Antioxidant activity and structural features of Cinnamomum zeylanicum. 3 Biotech. 2015;5:939–947. doi: 10.1007/s13205-015-0296-3. PubMed DOI PMC

Unlu M., Ergene E., Unlu G.V., Zeytinoglu H.S., Vural N. Composition, antimicrobial activity and in vitro cytotoxicity of essential oil from Cinnamomum zeylanicum Blume (Lauraceae) Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2010;48:3274–3280. doi: 10.1016/j.fct.2010.09.001. PubMed DOI

Chiang Y.-F., Chen H.-Y., Huang K.-C., Lin P.-H., Hsia S.-M. Dietary antioxidant trans-cinnamaldehyde reduced visfatin-induced breast cancer progression: In vivo and in vitro study. Antioxidants. 2019;8:625. doi: 10.3390/antiox8120625. PubMed DOI PMC

Wong H.-Y., Tsai K., Liu Y.-H., Yang S., Chen T.-W., Cherng J., Chou K.-S., Chang C.-M., Yao B.T., Cherng J.-M. Cinnamomum verum component 2-methoxycinnamaldehyde: A novel anticancer agent with both anti-topoisomerase I and II activities in human lung adenocarcinoma A549 cells in vitro and in vivo. Phytother. Res. 2016;30:331–340. doi: 10.1002/ptr.5536. PubMed DOI

Chen T.-W., Tsai K.-D., Yang S.-M., Wong H.-Y., Liu Y.-H., Cherng J., Chou K.-S., Wang Y.-T., Cuizon J., Cherng J.-M. Discovery of a novel anti-cancer agent targeting both topoisomerase I & II as well as telomerase activities in human lung adenocarcinoma A549 cells in vitro and in vivo: Cinnamomum verum component cuminaldehyde. Curr. Cancer Drug Targets. 2016;16:796–806. PubMed

Perng D.-S., Tsai Y.-H., Cherng J., Kuo C.-W., Shiao C.-C., Cherng J.-M. Discovery of a novel anti-cancer agent targeting both topoisomerase I and II in hepatocellular carcinoma Hep 3B cells in vitro and in vivo: Cinnamomum verum component 2-methoxycinnamaldehyde. J. Drug Target. 2016;24:624–634. doi: 10.3109/1061186X.2015.1132221. PubMed DOI

Han X., Parker T.L. Antiinflammatory activity of cinnamon (Cinnamomum zeylanicum) bark essential oil in a human skin disease model. Phytother. Res. 2017;31:1034–1038. doi: 10.1002/ptr.5822. PubMed DOI PMC

Najar B., Shortrede J.E., Pistelli L., Buhagiar J. Chemical composition and in vitro cytotoxic screening of sixteen commercial essential oils on five cancer cell lines. Chem. Biodivers. 2020;17:e1900478. doi: 10.1002/cbdv.201900478. PubMed DOI

Kessler E.R., Su L.-J., Gao D., Torkko K.C., Wacker M., Anduha M., Chronister N., Maroni P., Crawford E.D., Flaig T.W., et al. Phase II trial of acai juice product in biochemically recurrent prostate cancer. Integr. Cancer. 2018;17:1103–1108. doi: 10.1177/1534735418803755. PubMed DOI PMC

Lesinski G.B., Reville P.K., Mace T.A., Young G.S., Ahn-Jarvis J., Thomas-Ahner J., Vodovotz Y., Ameen Z., Grainger E., Riedl K., et al. Consumption of soy isoflavone enriched bread in men with prostate cancer is associated with reduced proinflammatory cytokines and immunosuppressive cells. Cancer Prev. Res. 2015;8:1036–1044. doi: 10.1158/1940-6207.CAPR-14-0464. PubMed DOI PMC

Pantuck A.J., Leppert J.T., Zomorodian N., Aronson W., Hong J., Barnard R.J., Seeram N., Liker H., Wang H., Elashoff R., et al. Phase II study of pomegranate juice for men with rising prostate-specific antigen following surgery or radiation for prostate cancer. Clin. Cancer Res. J. Am. Assoc. Cancer Res. 2006;12:4018–4026. doi: 10.1158/1078-0432.CCR-05-2290. PubMed DOI

He W., Zhang W., Zheng Q., Wei Z., Wang Y., Hu M., Ma F., Tao N., Luo C. Cinnamaldehyde causes apoptosis of myeloid-derived suppressor cells through the activation of TLR4. Oncol. Lett. 2019;18:2420–2426. doi: 10.3892/ol.2019.10544. PubMed DOI PMC

Abdullah M.L., Hafez M.M., Al-Hoshani A., Al-Shabanah O. Anti-metastatic and anti-proliferative activity of eugenol against triple negative and HER2 positive breast cancer cells. BMC Complement. Altern. Med. 2018;18:321. doi: 10.1186/s12906-018-2392-5. PubMed DOI PMC

Islam S.S., Aboussekhra A. Sequential combination of cisplatin with eugenol targets ovarian cancer stem cells through the Notch-Hes1 signalling pathway. J. Exp. Clin. Cancer Res. 2019;38:382. doi: 10.1186/s13046-019-1360-3. PubMed DOI PMC

Rodenak-Kladniew B., Castro A., Stärkel P., de Saeger C., García de Bravo M., Crespo R. Linalool induces cell cycle arrest and apoptosis in HepG2 cells through oxidative stress generation and modulation of Ras/MAPK and Akt/mTOR pathways. Life Sci. 2018;199:48–59. doi: 10.1016/j.lfs.2018.03.006. PubMed DOI

Jabir M.S., Taha A.A., Sahib U.I., Taqi Z.J., Al-Shammari A.M., Salman A.S. Novel of nano delivery system for Linalool loaded on gold nanoparticles conjugated with CALNN peptide for application in drug uptake and induction of cell death on breast cancer cell line. Mater. Sci. Eng. C Mater. Biol. Appl. 2019;94:949–964. doi: 10.1016/j.msec.2018.10.014. PubMed DOI

Leighton X., Bera A., Eidelman O., Eklund M., Puthillathu N., Pollard H.B., Srivastava M. High ANXA7 potentiates eucalyptol toxicity in hormone-refractory prostate cancer. Anticancer Res. 2018;38:3831–3842. doi: 10.21873/anticanres.12667. PubMed DOI

Grasselly C., Denis M., Bourguignon A., Talhi N., Mathe D., Tourette A., Serre L., Jordheim L.P., Matera E.L., Dumontet C. The antitumor activity of combinations of cytotoxic chemotherapy and immune checkpoint inhibitors is model-dependent. Front. Immunol. 2018;9:2100. doi: 10.3389/fimmu.2018.02100. PubMed DOI PMC

Solár P., Sačková V., Hrčková G., Demečková V., Kassayová M., Bojková B., Mudroňová D., Gancarčíková S., Jendželovský R., Fedoročko P. Antitumor effect of the combination of manumycin a and immodin is associated with antiplatelet activity and increased granulocyte tumor infiltration in a 4T1 breast tumor model. Oncol. Rep. 2017;37:368–378. doi: 10.3892/or.2016.5265. PubMed DOI

Demečková V., Solár P., Hrčková G., Mudroňová D., Bojková B., Kassayová M., Gancarčiková S. Immodin and its immune system supportive role in paclitaxel therapy of 4T1 mouse breast cancer. Biomed. Pharm. 2017;89:245–256. doi: 10.1016/j.biopha.2017.02.034. PubMed DOI

Kisková T., Jendželovský R., Rentsen E., Maier-Salamon A., Kokošová N., Papčová Z., Mikeš J., Orendáš P., Bojková B., Kubatka P., et al. Resveratrol enhances the chemopreventive effect of celecoxib in chemically induced breast cancer in rats. Eur. J. Cancer Prev. 2014;23:506–513. doi: 10.1097/CEJ.0000000000000083. PubMed DOI

Kiskova T., Demeckova V., Jendzelovska Z., Kiktava M., Venglovska K., Bohmdorfer M., Jager W., Thalhammer T. Nocturnal resveratrol administration inhibits chemically induced breast cancer formation in rats. J. Physiol. Pharm. 2017;68:867–875. PubMed

Abdelmageed M.E., Shehatou G.S., Abdelsalam R.A., Suddek G.M., Salem H.A. Cinnamaldehyde ameliorates STZ-induced rat diabetes through modulation of IRS1/PI3K/AKT2 pathway and AGEs/RAGE interaction. Naunyn Schmiedeberg’s Arch. Pharm. 2019;392:243–258. doi: 10.1007/s00210-018-1583-4. PubMed DOI

Iwano H., Ujita W., Nishikawa M., Ishii S., Inoue H., Yokota H. Effect of dietary eugenol on xenobiotic metabolism and mediation of UDP-glucuronosyltransferase and cytochrome P450 1A1 expression in rat liver. Int. J. Food Sci. Nutr. 2014;65:241–244. doi: 10.3109/09637486.2013.845650. PubMed DOI

Oner Z., Altınoz E., Elbe H., Ekinci N. The protective and therapeutic effects of linalool against doxorubicin-induced cardiotoxicity in Wistar albino rats. Hum. Exp. Toxicol. 2019;38:803–813. doi: 10.1177/0960327119842634. PubMed DOI

Ceremuga T.E., McClellan C.B., Green X.C., Heber B.E., Jolly M.L., Malone T.B., Schaaf J.L., Isaacs A.P. Investigation of the anxiolytic and antidepressant effects of eucalyptol (1,8-cineole), a compound from eucalyptus, in the adult male sprague-dawley rat. AANA J. 2017;85:277–284. PubMed

D’Alessio P.A., Ostan R., Bisson J.-F., Schulzke J.D., Ursini M.V., Béné M.C. Oral administration of d-limonene controls inflammation in rat colitis and displays anti-inflammatory properties as diet supplementation in humans. Life Sci. 2013;92:1151–1156. doi: 10.1016/j.lfs.2013.04.013. PubMed DOI

Jeyabalan J., Aqil F., Munagala R., Annamalai L., Vadhanam M.V., Gupta R.C. Chemopreventive and therapeutic activity of dietary blueberry against estrogen-mediated breast cancer. J. Agric. Food Chem. 2014;62:3963–3971. doi: 10.1021/jf403734j. PubMed DOI PMC

Ravoori S., Vadhanam M.V., Aqil F., Gupta R.C. Inhibition of estrogen-mediated mammary tumorigenesis by blueberry and black raspberry. J. Agric. Food Chem. 2012;60:5547–5555. doi: 10.1021/jf205325p. PubMed DOI

Singletary K., MacDonald C., Wallig M. Inhibition by rosemary and carnosol of 7,12-dimethylbenz[a]anthracene (DMBA)-induced rat mammary tumorigenesis and in vivo DMBA-DNA adduct formation. Cancer Lett. 1996;104:43–48. doi: 10.1016/0304-3835(96)04227-9. PubMed DOI

Bishayee A., Mandal A., Bhattacharyya P., Bhatia D. Pomegranate exerts chemoprevention of experimentally induced mammary tumorigenesis by suppression of cell proliferation and induction of apoptosis. Nutr. Cancer. 2016;68:120–130. doi: 10.1080/01635581.2016.1115094. PubMed DOI PMC

Wang Q., Zhang L., Yuan X., Ou Y., Zhu X., Cheng Z., Zhang P., Wu X., Meng Y., Zhang L. The relationship between the Bcl-2/Bax proteins and the mitochondria-mediated apoptosis pathway in the differentiation of adipose-derived stromal cells into neurons. PLoS ONE. 2016;11:e0163327. doi: 10.1371/journal.pone.0163327. PubMed DOI PMC

Chen X.-X., Leung G.P.-H., Zhang Z.-J., Xiao J.-B., Lao L.-X., Feng F., Mak J.C.-W., Wang Y., Sze S.C.-W., Zhang K.Y.-B. Proanthocyanidins from Uncaria rhynchophylla induced apoptosis in MDA-MB-231 breast cancer cells while enhancing cytotoxic effects of 5-fluorouracil. Food Chem. Toxicol. 2017;107:248–260. doi: 10.1016/j.fct.2017.07.012. PubMed DOI

Murad H., Hawat M., Ekhtiar A., AlJapawe A., Abbas A., Darwish H., Sbenati O., Ghannam A. Induction of G1-phase cell cycle arrest and apoptosis pathway in MDA-MB-231 human breast cancer cells by sulfated polysaccharide extracted from Laurencia papillosa. Cancer Cell Int. 2016;16:39. doi: 10.1186/s12935-016-0315-4. PubMed DOI PMC

Wang X., Welsh N. Bcl-2 maintains the mitochondrial membrane potential, but fails to affect production of reactive oxygen species and endoplasmic reticulum stress, in sodium palmitate-induced β-cell death. Upsala J. Med. Sci. 2014;119:306–315. doi: 10.3109/03009734.2014.962714. PubMed DOI PMC

Redza-Dutordoir M., Averill-Bates D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta. 2016;1863:2977–2992. doi: 10.1016/j.bbamcr.2016.09.012. PubMed DOI

Morales-Cruz M., Cruz-Montañez A., Figueroa C.M., González-Robles T., Davila J., Inyushin M., Loza-Rosas S.A., Molina A.M., Muñoz-Perez L., Kucheryavykh L.Y., et al. Combining stimulus-triggered release and active targeting strategies improves cytotoxicity of cytochrome c nanoparticles in tumor cells. Mol. Pharm. 2016;13:2844–2854. doi: 10.1021/acs.molpharmaceut.6b00461. PubMed DOI PMC

García-Quiroz J., García-Becerra R., Santos-Cuevas C., Ramírez-Nava G.J., Morales-Guadarrama G., Cárdenas-Ochoa N., Segovia-Mendoza M., Prado-Garcia H., Ordaz-Rosado D., Avila E., et al. Synergistic antitumorigenic activity of calcitriol with curcumin or resveratrol is mediated by angiogenesis inhibition in triple negative breast cancer xenografts. Cancers. 2019;11:1739. doi: 10.3390/cancers11111739. PubMed DOI PMC

Royston K.J., Paul B., Nozell S., Rajbhandari R., Tollefsbol T.O. Withaferin A and sulforaphane regulate breast cancer cell cycle progression through epigenetic mechanisms. Exp. Cell Res. 2018;368:67–74. doi: 10.1016/j.yexcr.2018.04.015. PubMed DOI PMC

Goldsmith C.D., Bond D.R., Jankowski H., Weidenhofer J., Stathopoulos C.E., Roach P.D., Scarlett C.J. The olive biophenols oleuropein and hydroxytyrosol selectively reduce proliferation, influence the cell cycle, and induce apoptosis in pancreatic cancer cells. Int. J. Mol. Sci. 2018;19:1937. doi: 10.3390/ijms19071937. PubMed DOI PMC

Sp N., Kang D.Y., Kim D.H., Park J.H., Lee H.G., Kim H.J., Darvin P., Park Y.-M., Yang Y.M. Nobiletin inhibits CD36-dependent tumor angiogenesis, migration, invasion, and sphere formation through the Cd36/Stat3/Nf-Κb signaling axis. Nutrients. 2018;10:772. doi: 10.3390/nu10060772. PubMed DOI PMC

Chia J.-S., Du J.-L., Hsu W.-B., Sun A., Chiang C.-P., Wang W.-B. Inhibition of metastasis, angiogenesis, and tumor growth by Chinese herbal cocktail tien-hsien liquid. BMC Cancer. 2010;10:175. doi: 10.1186/1471-2407-10-175. PubMed DOI PMC

Wang H., Khor T.O., Shu L., Su Z., Fuentes F., Lee J.-H., Kong A.-N.T. Plants against cancer: A review on natural phytochemicals in preventing and treating cancers and their druggability. Anticancer Agents Med. Chem. 2012;12:1281–1305. doi: 10.2174/187152012803833026. PubMed DOI PMC

Ramjiawan R.R., Griffioen A.W., Duda D.G. Anti-angiogenesis for cancer revisited: Is there a role for combinations with immunotherapy? Angiogenesis. 2017;20:185–204. doi: 10.1007/s10456-017-9552-y. PubMed DOI PMC

Parveen A., Subedi L., Kim H.W., Khan Z., Zahra Z., Farooqi M.Q., Kim S.Y. Phytochemicals targeting VEGF and VEGF-related multifactors as anticancer therapy. J. Clin. Med. 2019;8:350. doi: 10.3390/jcm8030350. PubMed DOI PMC

Saberi-Karimian M., Katsiki N., Caraglia M., Boccellino M., Majeed M., Sahebkar A. Vascular endothelial growth factor: An important molecular target of curcumin. Crit. Rev. Food Sci. Nutr. 2019;59:299–312. doi: 10.1080/10408398.2017.1366892. PubMed DOI

Kangsamaksin T., Chaithongyot S., Wootthichairangsan C., Hanchaina R., Tangshewinsirikul C., Svasti J. Lupeol and stigmasterol suppress tumor angiogenesis and inhibit cholangiocarcinoma growth in mice via downregulation of tumor necrosis factor-α. PLoS ONE. 2017;12:e0189628. doi: 10.1371/journal.pone.0189628. PubMed DOI PMC

Kowshik J., Giri H., Kishore T.K.K., Kesavan R., Vankudavath R.N., Reddy G.B., Dixit M., Nagini S. Ellagic acid inhibits VEGF/VEGFR2, PI3K/Akt and MAPK signaling cascades in the hamster cheek pouch carcinogenesis model. Anticancer Agents Med. Chem. 2014;14:1249–1260. doi: 10.2174/1871520614666140723114217. PubMed DOI

Srinivasan K. Antioxidant potential of spices and their active constituents. Crit. Rev. Food Sci. Nutr. 2014;54:352–372. doi: 10.1080/10408398.2011.585525. PubMed DOI

Pan Y., Deng Z.-Y., Zheng S.-L., Chen X., Zhang B., Li H. Daily dietary antioxidant interactions are due to not only the quantity but also the ratios of hydrophilic and lipophilic phytochemicals. J. Agric. Food Chem. 2018;66:9107–9120. doi: 10.1021/acs.jafc.8b03412. PubMed DOI

Cui X., Gong J., Han H., He L., Teng Y., Tetley T., Sinharay R., Chung K.F., Islam T., Gilliland F., et al. Relationship between free and total malondialdehyde, a well-established marker of oxidative stress, in various types of human biospecimens. J. Thorac. Dis. 2018;10:3088–3097. doi: 10.21037/jtd.2018.05.92. PubMed DOI PMC

Eghbaliferiz S., Iranshahi M. Prooxidant activity of polyphenols, flavonoids, anthocyanins and carotenoids: Updated review of mechanisms and catalyzing metals. Phytother. Res. 2016;30:1379–1391. doi: 10.1002/ptr.5643. PubMed DOI

Zhu J., Jiang Y., Yang X., Wang S., Xie C., Li X., Li Y., Chen Y., Wang X., Meng Y., et al. Wnt/β-catenin pathway mediates (-)-Epigallocatechin-3-gallate (EGCG) inhibition of lung cancer stem cells. Biochem. Biophys. Res. Commun. 2016;482:15–21. doi: 10.1016/j.bbrc.2016.11.038. PubMed DOI

Fu Y., Chang H., Peng X., Bai Q., Yi L., Zhou Y., Zhu J., Mi M. Resveratrol inhibits breast cancer stem-like cells and induces autophagy via suppressing Wnt/β-catenin signaling pathway. PLoS ONE. 2014;9:e102535. doi: 10.1371/journal.pone.0102535. PubMed DOI PMC

Mak K.-K., Wu A.T.H., Lee W.-H., Chang T.-C., Chiou J.-F., Wang L.-S., Wu C.-H., Huang C.-Y.F., Shieh Y.-S., Chao T.-Y., et al. Pterostilbene, a bioactive component of blueberries, suppresses the generation of breast cancer stem cells within tumor microenvironment and metastasis via modulating NF-κB/microRNA 448 circuit. Mol. Nutr. Food Res. 2013;57:1123–1134. doi: 10.1002/mnfr.201200549. PubMed DOI

Shima H., Yamada A., Ishikawa T., Endo I. Are breast cancer stem cells the key to resolving clinical issues in breast cancer therapy? Gland Surg. 2017;6:82–88. doi: 10.21037/gs.2016.08.03. PubMed DOI PMC

Rennó A.L., Alves-Júnior M.J., Rocha R.M., De Souza P.C., de Souza V.B., Jampietro J., Vassallo J., Hyslop S., Anhê G.F., de Moraes Schenka N.G., et al. Decreased expression of stem cell markers by simvastatin in 7,12-dimethylbenz(a)anthracene (DMBA)-induced breast cancer. Toxicol. Pathol. 2015;43:400–410. doi: 10.1177/0192623314544707. PubMed DOI

Levi E., Misra S., Du J., Patel B.B., Majumdar A.P.N. Combination of aging and dimethylhydrazine treatment causes an increase in cancer-stem cell population of rat colonic crypts. Biochem. Biophys. Res. Commun. 2009;385:430–433. doi: 10.1016/j.bbrc.2009.05.080. PubMed DOI PMC

Liskova A., Kubatka P., Samec M., Zubor P., Mlyncek M., Bielik T., Samuel S.M., Zulli A., Kwon T.K., Büsselberg D. Dietary phytochemicals targeting cancer stem cells. Molecules. 2019;24:899. doi: 10.3390/molecules24050899. PubMed DOI PMC

Dandawate P.R., Subramaniam D., Jensen R.A., Anant S. Targeting cancer stem cells and signaling pathways by phytochemicals: Novel approach for breast cancer therapy. Semin. Cancer Biol. 2016;40–41:192–208. doi: 10.1016/j.semcancer.2016.09.001. PubMed DOI PMC

Oh J., Hlatky L., Jeong Y.-S., Kim D. Therapeutic effectiveness of anticancer phytochemicals on cancer stem cells. Toxins. 2016;8:199. doi: 10.3390/toxins8070199. PubMed DOI PMC

Uramova S., Kubatka P., Dankova Z., Kapinova A., Zolakova B., Samec M., Zubor P., Zulli A., Valentova V., Kwon T.K., et al. Plant natural modulators in breast cancer prevention: Status quo and future perspectives reinforced by predictive, preventive, and personalized medical approach. EPMA J. 2018;9:403–419. doi: 10.1007/s13167-018-0154-6. PubMed DOI PMC

Maleva Kostovska I., Jakimovska M., Popovska-Jankovic K., Kubelka-Sabit K., Karagjozov M., Plaseska-Karanfilska D. TIMP3 promoter methylation represents an epigenetic marker of BRCA1ness breast cancer tumours. Pathol. Oncol. Res. 2018;24:937–940. doi: 10.1007/s12253-018-0398-4. PubMed DOI

Wang L.-S., Kuo C.-T., Huang T.H.-M., Yearsley M., Oshima K., Stoner G.D., Yu J., Lechner J.F., Huang Y.-W. Black raspberries protectively regulate methylation of Wnt pathway genes in precancerous colon tissue. Cancer Prev. Res. 2013;6:1317–1327. doi: 10.1158/1940-6207.CAPR-13-0077. PubMed DOI PMC

Huang Y.-W., Gu F., Dombkowski A., Wang L.-S., Stoner G.D. Black raspberries demethylate Sfrp4, a WNT pathway antagonist, in rat esophageal squamous cell papilloma. Mol. Carcinog. 2016;55:1867–1875. doi: 10.1002/mc.22435. PubMed DOI

Chatterjee B., Ghosh K., Kanade S.R. Resveratrol modulates epigenetic regulators of promoter histone methylation and acetylation that restores BRCA1, p53, p21CIP1 in human breast cancer cell lines. Biofactors Oxf. Engl. 2019;45:818–829. doi: 10.1002/biof.1544. PubMed DOI

Royston K., Udayakumar N., Lewis K., Tollefsbol T. A novel combination of withaferin a and sulforaphane inhibits epigenetic machinery, cellular viability and induces apoptosis of breast cancer cells. Int. J. Mol. Sci. 2017;18:1092. doi: 10.3390/ijms18051092. PubMed DOI PMC

Khan S.A., Reddy D., Gupta S. Global histone post-translational modifications and cancer: Biomarkers for diagnosis, prognosis and treatment? World J. Biol. Chem. 2015;6:333–345. doi: 10.4331/wjbc.v6.i4.333. PubMed DOI PMC

De la Parra C., Castillo-Pichardo L., Cruz-Collazo A., Cubano L., Redis R., Calin G.A., Dharmawardhane S. Soy isoflavone genistein-mediated downregulation of miR-155 contributes to the anticancer effects of genistein. Nutr. Cancer. 2016;68:154–164. doi: 10.1080/01635581.2016.1115104. PubMed DOI PMC

Hargraves K.G., He L., Firestone G.L. Phytochemical regulation of the tumor suppressive microRNA, miR-34a, by p53-dependent and independent responses in human breast cancer cells. Mol. Carcinog. 2016;55:486–498. doi: 10.1002/mc.22296. PubMed DOI PMC

Sayeed M.A., Bracci M., Lazzarini R., Tomasetti M., Amati M., Lucarini G., Di Primio R., Santarelli L. Use of potential dietary phytochemicals to target miRNA: Promising option for breast cancer prevention and treatment? J. Funct. Foods. 2017;28:177–193. doi: 10.1016/j.jff.2016.11.008. DOI

Wang J., Li Y., Ding M., Zhang H., Xu X., Tang J. Molecular mechanisms and clinical applications of miR-22 in regulating malignant progression in human cancer (Review) Int. J. Oncol. 2016;50:345–355. doi: 10.3892/ijo.2016.3811. PubMed DOI PMC

Imani S., Zhang X., Hosseinifard H., Fu S., Fu J. The diagnostic role of microRNA-34a in breast cancer: A systematic review and meta-analysis. Oncotarget. 2017;8:23177–23187. doi: 10.18632/oncotarget.15520. PubMed DOI PMC

Venturutti L., Romero L.V., Urtreger A.J., Chervo M.F., Cordo Russo R.I., Mercogliano M.F., Inurrigarro G., Pereyra M.G., Proietti C.J., Izzo F., et al. Stat3 regulates ErbB-2 expression and co-opts ErbB-2 nuclear function to induce miR-21 expression, PDCD4 downregulation and breast cancer metastasis. Oncogene. 2016;35:2208–2222. doi: 10.1038/onc.2015.281. PubMed DOI

Jung D.E., Park S.B., Kim K., Kim C., Song S.Y. CG200745, an HDAC inhibitor, induces anti-tumour effects in cholangiocarcinoma cell lines via miRNAs targeting the Hippo pathway. Sci. Rep. 2017;7:10921. doi: 10.1038/s41598-017-11094-3. PubMed DOI PMC

Wang H., Bian S., Yang C.S. Green tea polyphenol EGCG suppresses lung cancer cell growth through upregulating miR-210 expression caused by stabilizing HIF-1α. Carcinogenesis. 2011;32:1881–1889. doi: 10.1093/carcin/bgr218. PubMed DOI PMC

Golubnitschaja O., Baban B., Boniolo G., Wang W., Bubnov R., Kapalla M., Krapfenbauer K., Mozaffari M.S., Costigliola V. Medicine in the early twenty-first century: Paradigm and anticipation—EPMA position paper 2016. EPMA J. 2016;7:23. doi: 10.1186/s13167-016-0072-4. PubMed DOI PMC

Golubnitschaja O., Debald M., Yeghiazaryan K., Kuhn W., Pešta M., Costigliola V., Grech G. Breast cancer epidemic in the early twenty-first century: Evaluation of risk factors, cumulative questionnaires and recommendations for preventive measures. Tumor Biol. 2016;37:12941–12957. doi: 10.1007/s13277-016-5168-x. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Aronia melanocarpa L. fruit peels show anti-cancer effects in preclinical models of breast carcinoma: The perspectives in the chemoprevention and therapy modulation

. 2024 ; 14 () : 1463656. [epub] 20241007

Salvia officinalis L. exerts oncostatic effects in rodent and in vitro models of breast carcinoma

. 2024 ; 15 () : 1216199. [epub] 20240223

Significance of flavonoids targeting PI3K/Akt/HIF-1α signaling pathway in therapy-resistant cancer cells - A potential contribution to the predictive, preventive, and personalized medicine

. 2024 Jan ; 55 () : 103-118. [epub] 20230304

Therapy-resistant breast cancer in focus: Clinically relevant mitigation by flavonoids targeting cancer stem cells

. 2023 ; 14 () : 1160068. [epub] 20230406

Anti-breast cancer effects of phytochemicals: primary, secondary, and tertiary care

. 2022 Jun ; 13 (2) : 315-334. [epub] 20220414

Flavonoids as an effective sensitizer for anti-cancer therapy: insights into multi-faceted mechanisms and applicability towards individualized patient profiles

. 2021 Jun ; 12 (2) : 155-176. [epub] 20210517

Rhus coriaria L. (Sumac) Demonstrates Oncostatic Activity in the Therapeutic and Preventive Model of Breast Carcinoma

. 2020 Dec 26 ; 22 (1) : . [epub] 20201226

Genoprotective activities of plant natural substances in cancer and chemopreventive strategies in the context of 3P medicine

. 2020 Jun ; 11 (2) : 261-287. [epub] 20200529

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace