Aronia melanocarpa L. fruit peels show anti-cancer effects in preclinical models of breast carcinoma: The perspectives in the chemoprevention and therapy modulation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39435289
PubMed Central
PMC11491292
DOI
10.3389/fonc.2024.1463656
Knihovny.cz E-zdroje
- Klíčová slova
- Aronia melanocarpa L., breast carcinoma, epigenetics, in vitro models, mechanism of action, rodent models,
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: Within oncology research, there is a high effort for new approaches to prevent and treat cancer as a life-threatening disease. Specific plant species that adapt to harsh conditions may possess unique properties that may be utilized in the management of cancer. HYPOTHESIS: Chokeberry fruit is rich in secondary metabolites with anti-cancer activities potentially useful in cancer prevention and treatment. AIMS OF THE STUDY AND METHODS: Based on mentioned hypothesis, the main goal of our study was to evaluate the antitumor effects of dietary administered Aronia melanocarpa L. fruit peels (in two concentrations of 0.3 and 3% [w/w]) in the therapeutic syngeneic 4T1 mouse adenocarcinoma model, the chemopreventive model of chemically induced mammary carcinogenesis in rats, a cell antioxidant assay, and robust in vitro analyses using MCF-7 and MDA-MB-231 cancer cells. RESULTS: The dominant metabolites in the A. melanocarpa fruit peel extract tested were phenolic derivatives classified as anthocyanins and procyanidins. In a therapeutic model, aronia significantly reduced the volume of 4T1 tumors at both higher and lower doses. In the same tumors, we noted a significant dose-dependent decrease in the mitotic activity index compared to the control. In the chemopreventive model, the expression of Bax was significantly increased by aronia at both doses. Additionally, aronia decreased Bcl-2 and VEGF levels, increasing the Bax/Bcl-2 ratio compared to the control group. The cytoplasmic expression of caspase-3 was significantly enhanced when aronia was administered at a higher dosage, in contrast to both the control group and the aronia group treated with a lower dosage. Furthermore, the higher dosage of aronia exhibited a significant reduction in the expression of the tumor stem cell marker CD133 compared to the control group. In addition, the examination of aronia`s epigenetic impact on tumor tissue through in vivo analyses revealed significant alterations in histone chemical modifications, specifically H3K4m3 and H3K9m3, miRNAs expression (miR155, miR210, and miR34a) and methylation status of tumor suppressor genes (PTEN and TIMP3). In vitro studies utilizing a methanolic extract of A.melanocarpa demonstrated significant anti-cancer properties in the MCF-7 and MDA-MB-231 cell lines. Various analyses, including Resazurin, cell cycle, annexin V/PI, caspase-3/7, Bcl-2, PARP, and mitochondrial membrane potential, were conducted in this regard. Additionally, the aronia extract enhanced the responsiveness to epirubicin in both cancer cell lines. CONCLUSION: This study is the first to analyze the antitumor effect of A. melanocarpa in selected models of experimental breast carcinoma in vivo and in vitro. The utilization of the antitumor effects of aronia in clinical practice is still minimal and requires precise and long-term clinical evaluations. Individualized cancer-type profiling and patient stratification are crucial for effectively implementing plant nutraceuticals within targeted anti-cancer strategies in clinical oncology.
Department of Molecular Pharmacy Faculty of Pharmacy Masaryk University Brno Czechia
Department of Natural Drugs Faculty of Pharmacy Masaryk University Brno Czechia
Department of Pathology St Elisabeth Oncology Institute Bratislava Slovakia
Department of Pharmacology Faculty of Medicine P J Šafárik University Košice Slovakia
Department of Physiology and Biophysics Weill Cornell Medicine in Qatar Qatar Foundation Doha Qatar
Zobrazit více v PubMed
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. . Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer J Clin. (2021) 71:209–49. doi: 10.3322/caac.21660 PubMed DOI
Liskova A, Stefanicka P, Samec M, Smejkal K, Zubor P, Bielik T, et al. . Dietary phytochemicals as the potential protectors against carcinogenesis and their role in cancer chemoprevention. Clin Exp Med. (2020) 20:173–90. doi: 10.1007/s10238-020-00611-w PubMed DOI
Kubatka P, Mazurakova A, Samec M, Koklesova L, Zhai K, AL-Ishaq R, et al. . Flavonoids against non-physiologic inflammation attributed to cancer initiation, development, and progression—3PM pathways. EPMA J. (2021) 12:559–87. doi: 10.1007/s13167-021-00257-y PubMed DOI PMC
Koklesova L, Liskova A, Samec M, Qaradakhi T, Zulli A, Smejkal K, et al. . Genoprotective activities of plant natural substances in cancer and chemopreventive strategies in the context of 3P medicine. EPMA J. (2020) 11:261–87. doi: 10.1007/s13167-020-00210-5 PubMed DOI PMC
Liskova A, Samec M, Koklesova L, Brockmueller A, Zhai K, Abdellatif B, et al. . Flavonoids as an effective sensitizer for anti-cancer therapy: insights into multi-faceted mechanisms and applicability towards individualized patient profiles. EPMA J. (2021) 12:155–76. doi: 10.1007/s13167-021-00242-5 PubMed DOI PMC
Kapinova A, Kubatka P, Liskova A, Baranenko D, Kruzliak P, Matta M, et al. . Controlling metastatic cancer: the role of phytochemicals in cell signaling. J Cancer Res Clin Oncol. (2019) 145:1087–109. doi: 10.1007/s00432-019-02892-5 PubMed DOI PMC
Uramova S, Kubatka P, Dankova Z, Kapinova A, Zolakova B, Samec M, et al. . Plant natural modulators in breast cancer prevention: status quo and future perspectives reinforced by predictive, preventive, and personalized medical approach. EPMA J. (2018) 9:403–19. doi: 10.1007/s13167-018-0154-6 PubMed DOI PMC
Mazurakova A, Koklesova L, Samec M, Kudela E, Kajo K, Skuciova V, et al. . Anti-breast cancer effects of phytochemicals: primary, secondary, and tertiary care. EPMA J. (2022) 13:315–34. doi: 10.1007/s13167-022-00277-2 PubMed DOI PMC
Sidor A, Gramza-Michałowska A. Black chokeberry aronia melanocarpa L.-A qualitative composition, phenolic profile and antioxidant potential. Molecules. (2019) 24:3710. doi: 10.3390/molecules24203710 PubMed DOI PMC
Gill NK, Rios D, Osorio-Camacena E, Mojica BE, Kaur B, Soderstrom MA, et al. . Anticancer effects of extracts from three different chokeberry species. Nutr Cancer. (2021) 73:1168–74. doi: 10.1080/01635581.2020.1789679 PubMed DOI
Tamkutė L, Jančiukė G, Pukalskienė M, Sarapinienė I, Arvydas Skeberdis V, Rimantas Venskutonis P. Cranberry and black chokeberry extracts isolated with pressurized ethanol from defatted by supercritical CO2 pomace inhibit colorectal carcinoma cells and increase global antioxidant response of meat products during in vitro digestion. Food Res Int. (2022) 161:111803. doi: 10.1016/j.foodres.2022.111803 PubMed DOI
Wei J, Yu W, Hao R, Fan J, Gao J. Anthocyanins from Aronia melanocarpa Induce Apoptosis in Caco-2 Cells through Wnt/β-Catenin Signaling Pathway. Chem Biodivers. (2020) 17:e2000654. doi: 10.1002/cbdv.202000654 PubMed DOI
Choi HS, Kim J-H, Kim S-L, Deng H-Y, Lee D, Kim CS, et al. . Catechol derived from aronia juice through lactic acid bacteria fermentation inhibits breast cancer stem cell formation via modulation Stat3/IL-6 signaling pathway. Mol Carcinog. (2018) 57:1467–79. doi: 10.1002/mc.22870 PubMed DOI
Choi HS, Kim S-L, Kim J-H, Deng H-Y, Yun B-S, Lee D-S. Triterpene Acid (3-O-p-Coumaroyltormentic Acid) Isolated From Aronia Extracts Inhibits Breast Cancer Stem Cell Formation through Downregulation of c-Myc Protein. Int J Mol Sci. (2018) 19:2528. doi: 10.3390/ijms19092528 PubMed DOI PMC
Kwak JH, Kim Y, Ryu SI, Lee M, Lee H-J, Lim YP, et al. . Anti-inflammatory effect from extracts of Red Chinese cabbage and Aronia in LPS-stimulated RAW 264.7 cells. Food Sci Nutr. (2020) 8:1898–903. doi: 10.1002/fsn3.1472 PubMed DOI PMC
Thani NAA, Keshavarz S, Lwaleed BA, Cooper AJ, Rooprai HK. Cytotoxicity of gemcitabine enhanced by polyphenolics from Aronia melanocarpa in pancreatic cancer cell line AsPC-1. J Clin Pathol. (2014) 67:949–54. doi: 10.1136/jclinpath-2013-202075 PubMed DOI
Kubatka P, Kapinová A, Kružliak P, Kello M, Výbohová D, Kajo K, et al. . Antineoplastic effects of Chlorella pyrenoidosa in the breast cancer model. Nutrition. (2015) 31:560–9. doi: 10.1016/j.nut.2014.08.010 PubMed DOI
Kubatka P, Kello M, Kajo K, Kruzliak P, Výbohová D, Šmejkal K, et al. . Young barley indicates antitumor effects in experimental breast cancer. In Vivo In Vitro Nutr Cancer. (2016) 68:611–21. doi: 10.1080/01635581.2016.1154577 PubMed DOI
Kubatka P, Kapinová A, Kello M, Kruzliak P, Kajo K, Výbohová D, et al. . Fruit peel polyphenols demonstrate substantial anti-tumour effects in the model of breast cancer. Eur J Nutr. (2016) 55:955–65. doi: 10.1007/s00394-015-0910-5 PubMed DOI
Kubatka P, Kello M, Kajo K, Kruzliak P, Výbohová D, Mojžiš J, et al. . Oregano demonstrates distinct tumour-suppressive effects in the breast carcinoma model. Eur J Nutr. (2017) 56:1303–16. doi: 10.1007/s00394-016-1181-5 PubMed DOI
Kubatka P, Uramova S, Kello M, Kajo K, Kruzliak P, Mojzis J, et al. . Antineoplastic effects of clove buds (Syzygium aromaticum L.) in the model of breast carcinoma. J Cell Mol Med. (2017) 21:2837–51. doi: 10.1111/jcmm.13197 PubMed DOI PMC
Kubatka P, Uramova S, Kello M, Kajo K, Samec M, Jasek K, et al. . Anticancer activities of thymus vulgaris L. in experimental breast carcinoma in vivo and in vitro. Int J Mol Sci. (2019) 20:1749. doi: 10.3390/ijms20071749 PubMed DOI PMC
Kubatka P, Kello M, Kajo K, Samec M, Jasek K, Vybohova D, et al. . Chemopreventive and therapeutic efficacy of cinnamomum zeylanicum L. Bark in experimental breast carcinoma: mechanistic in vivo and in vitro analyses. Molecules. (2020) 25:1399. doi: 10.3390/molecules25061399 PubMed DOI PMC
Kubatka P, Kello M, Kajo K, Samec M, Liskova A, Jasek K, et al. . (Sumac) demonstrates oncostatic activity in the therapeutic and preventive model of breast carcinoma. Int J Mol Sci. (2020) 22:183. doi: 10.3390/ijms22010183 PubMed DOI PMC
Ravoori S, Vadhanam MV, Aqil F, Gupta RC. Inhibition of estrogen-mediated mammary tumorigenesis by blueberry and black raspberry. J Agric Food Chem. (2012) 60:5547–55. doi: 10.1021/jf205325p PubMed DOI
Jeyabalan J, Aqil F, Munagala R, Annamalai L, Vadhanam MV, Gupta RC. Chemopreventive and therapeutic activity of dietary blueberry against estrogen-mediated breast cancer. J Agric Food Chem. (2014) 62:3963–71. doi: 10.1021/jf403734j PubMed DOI PMC
Russo J, Russo IH. Atlas and histologic classification of tumors of the rat mammary gland. J Mammary Gland Biol Neoplasia. (2000) 5:187–200. doi: 10.1023/a:1026443305758 PubMed DOI
Russo J. Significance of rat mammary tumors for human risk assessment. Toxicol Pathol. (2015) 43:145–70. doi: 10.1177/0192623314532036 PubMed DOI PMC
Kubatka P, Kajo K, Zihlavnikova K, Adamicova K, Vybohova D, Pec M, et al. . Immunohistochemical and histomorphological analysis of rat mammary tumors after simvastatin treatment. Neoplasma. (2012) 59:516–23. doi: 10.4149/neo_2012_066 PubMed DOI
Hošek J, Bartos M, Chudík S, Dall’Acqua S, Innocenti G, Kartal M, et al. . Natural compound cudraflavone B shows promising anti-inflammatory properties. vitro J Nat Prod. (2011) 74:614–9. doi: 10.1021/np100638h PubMed DOI
Malaník M, Treml J, Leláková V, Nykodýmová D, Oravec M, Marek J, et al. . Anti-inflammatory and antioxidant properties of chemical constituents of Broussonetia papyrifera. Bioorg Chem. (2020) 104:104298. doi: 10.1016/j.bioorg.2020.104298 PubMed DOI
Hanáková Z, Hošek J, Babula P, Dall’Acqua S, Václavík J, Šmejkal K. C-Geranylated Flavanones from Paulownia tomentosa Fruits as Potential Anti-inflammatory Compounds Acting via Inhibition of TNF-α Production. J Nat Prod. (2015) 78:850–63. doi: 10.1021/acs.jnatprod.5b00005 PubMed DOI
Wolfe KL, Liu RH. Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. J Agric Food Chem. (2007) 55:8896–907. doi: 10.1021/jf0715166 PubMed DOI
Duarte D, Vale N. Evaluation of synergism in drug combinations and reference models for future orientations in oncology. Curr Res Pharmacol Drug Discov. (2022) 3:100110. doi: 10.1016/j.crphar.2022.100110 PubMed DOI PMC
Abotaleb M, Samuel S, Varghese E, Varghese S, Kubatka P, Liskova A, et al. . Flavonoids in cancer and apoptosis. Cancers. (2018) 11:28. doi: 10.3390/cancers11010028 PubMed DOI PMC
Liskova A, Kubatka P, Samec M, Zubor P, Mlyncek M, Bielik T, et al. . Dietary phytochemicals targeting cancer stem cells. Molecules. (2019) 24:899. doi: 10.3390/molecules24050899 PubMed DOI PMC
Kapinova A, Stefanicka P, Kubatka P, Zubor P, Uramova S, Kello M, et al. . Are plant-based functional foods better choice against cancer than single phytochemicals? A critical review of current breast cancer research. BioMed Pharmacother. (2017) 96:1465–77. doi: 10.1016/j.biopha.2017.11.134 PubMed DOI
Leitzmann C. Characteristics and health benefits of phytochemicals. CMR. (2016) 23:69–74. doi: 10.1159/000444063 PubMed DOI
Farvid MS, Chen WY, Rosner BA, Tamimi RM, Willett WC, Eliassen AH. Fruit and vegetable consumption and breast cancer incidence: Repeated measures over 30 years of follow-up. Int J Cancer. (2019) 144:1496–510. doi: 10.1002/ijc.31653 PubMed DOI PMC
Farvid MS, Barnett JB, Spence ND. Fruit and vegetable consumption and incident breast cancer: a systematic review and meta-analysis of prospective studies. Br J Cancer. (2021) 125:284–98. doi: 10.1038/s41416-021-01373-2 PubMed DOI PMC
Toledo E, Salas-Salvadó J, Donat-Vargas C, Buil-Cosiales P, Estruch R, Ros E, et al. . Mediterranean diet and invasive breast cancer risk among women at high cardiovascular risk in the PREDIMED trial: A randomized clinical trial. JAMA Intern Med. (2015) 175:1752–60. doi: 10.1001/jamainternmed.2015.4838 PubMed DOI
Castelló A, Pollán M, Buijsse B, Ruiz A, Casas AM, Baena-Cañada JM, et al. . Spanish Mediterranean diet and other dietary patterns and breast cancer risk: Case-control EpiGEICAM study. Br J Cancer. (2014) 111:1454–62. doi: 10.1038/bjc.2014.434 PubMed DOI PMC
El Hasasna H, Saleh A, Samri HA, Athamneh K, Attoub S, Arafat K, et al. . Rhus coriaria suppresses angiogenesis, metastasis and tumor growth of breast cancer through inhibition of STAT3, NFκB and nitric oxide pathways. Sci Rep. (2016) 6:21144. doi: 10.1038/srep21144 PubMed DOI PMC
Liskova A, Koklesova L, Samec M, Smejkal K, Samuel SM, Varghese E, et al. . Flavonoids in cancer metastasis. Cancers (Basel). (2020) 12:1498. doi: 10.3390/cancers12061498 PubMed DOI PMC
Liskova A, Koklesova L, Samec M, Varghese E, Abotaleb M, Samuel SM, et al. . Implications of flavonoids as potential modulators of cancer neovascularity. J Cancer Res Clin Oncol. (2020) 146:3079–96. doi: 10.1007/s00432-020-03383-8 PubMed DOI PMC
Abotaleb M, Liskova A, Kubatka P, Büsselberg D. Therapeutic potential of plant phenolic acids in the treatment of cancer. Biomolecules. (2020) 10:221. doi: 10.3390/biom10020221 PubMed DOI PMC
Taheri R, Connolly BA, Brand MH, Bolling BW. Underutilized chokeberry (Aronia melanocarpa, Aronia arbutifolia, Aronia prunifolia) accessions are rich sources of anthocyanins, flavonoids, hydroxycinnamic acids, and proanthocyanidins. J Agric Food Chem. (2013) 61:8581–8. doi: 10.1021/jf402449q PubMed DOI
Liang L, Liu X, He J, Shao Y, Liu J, Wang Z, et al. . Cyanidin-3-glucoside induces mesenchymal to epithelial transition via activating Sirt1 expression in triple negative breast cancer cells. Biochimie. (2019) 162:107–15. doi: 10.1016/j.biochi.2019.03.004 PubMed DOI
Black rice (Oryza sativa L.) extract modulates ultraviolet-induced expression of matrix metalloproteinases and procollagen in a skin cell model . Available online at: https://pubmed.ncbi.nlm.nih.gov/29484380/ (Accessed June 16, 2023). PubMed
Pastorková B, Illés P, Dvořák Z. Profiling of anthocyanidins against transcriptional activities of steroid and nuclear receptors. Drug Chem Toxicol. (2018) 41:434–40. doi: 10.1080/01480545.2017.1380659 PubMed DOI
Nanashima N, Horie K, Maeda H. Phytoestrogenic activity of blackcurrant anthocyanins is partially mediated through estrogen receptor beta. Molecules. (2017) 23:74. doi: 10.3390/molecules23010074 PubMed DOI PMC
Ma X, Ning S. Cyanidin-3-glucoside attenuates the angiogenesis of breast cancer via inhibiting STAT3/VEGF pathway. Phytother Res. (2019) 33:81–9. doi: 10.1002/ptr.6201 PubMed DOI
Wang L, Li H, Yang S, Ma W, Liu M, Guo S, et al. . Cyanidin-3-o-glucoside directly binds to ERα36 and inhibits EGFR-positive triple-negative breast cancer. Oncotarget. (2016) 7:68864–82. doi: 10.18632/oncotarget.12025 PubMed DOI PMC
Li W, Peng C, Zhaojie L, Wei W. Chemopreventive and therapeutic properties of anthocyanins in breast cancer: A comprehensive review. Nutr Res. (2022) 107:48–64. doi: 10.1016/j.nutres.2022.08.005 PubMed DOI
Kubatka P, Mazurakova A, Koklesova L, Kuruc T, Samec M, Kajo K, et al. . Salvia officinalis L. exerts oncostatic effects in rodent and in vitro models of breast carcinoma. Front Pharmacol. (2024) 15:1216199. doi: 10.3389/fphar.2024.1216199 PubMed DOI PMC
Grasselly C, Denis M, Bourguignon A, Talhi N, Mathe D, Tourette A, et al. . The antitumor activity of combinations of cytotoxic chemotherapy and immune checkpoint inhibitors is model-dependent. Front Immunol. (2018) 9:2100. doi: 10.3389/fimmu.2018.02100 PubMed DOI PMC
Solár P, Sačková V, Hrčková G, Demečková V, Kassayová M, Bojková B, et al. . Antitumor effect of the combination of manumycin A and Immodin is associated with antiplatelet activity and increased granulocyte tumor infiltration in a 4T1 breast tumor model. Oncol Rep. (2017) 37:368–78. doi: 10.3892/or.2016.5265 PubMed DOI
Demečková V, Solár P, Hrčková G, Mudroňová D, Bojková B, Kassayová M, et al. . Immodin and its immune system supportive role in paclitaxel therapy of 4T1 mouse breast cancer. BioMed Pharmacother. (2017) 89:245–56. doi: 10.1016/j.biopha.2017.02.034 PubMed DOI
Singletary K, MacDonald C, Wallig M. Inhibition by rosemary and carnosol of 7,12-dimethylbenz[a]anthracene (DMBA)-induced rat mammary tumorigenesis and in vivo DMBA-DNA adduct formation. Cancer Lett. (1996) 104:43–8. doi: 10.1016/0304-3835(96)04227-9 PubMed DOI
Bishayee A, Mandal A, Bhattacharyya P, Bhatia D. Pomegranate exerts chemoprevention of experimentally induced mammary tumorigenesis by suppression of cell proliferation and induction of apoptosis. Nutr Cancer. (2016) 68:120–30. doi: 10.1080/01635581.2016.1115094 PubMed DOI PMC
Pistritto G, Trisciuoglio D, Ceci C, Garufi A, D’Orazi G. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY). (2016) 8:603–19. doi: 10.18632/aging.100934 PubMed DOI PMC
Fouad YA, Aanei C. Revisiting the hallmarks of cancer. Am J Cancer Res. (2017) 7:1016–36. PubMed PMC
Li X, Meng Y, Xie C, Zhu J, Wang X, Li Y, et al. . Diallyl Trisulfide inhibits breast cancer stem cells via suppression of Wnt/β-catenin pathway. J Cell Biochem. (2018) 119:4134–41. doi: 10.1002/jcb.26613 PubMed DOI
Goldsmith CD, Bond DR, Jankowski H, Weidenhofer J, Stathopoulos CE, Roach PD, et al. . The olive biophenols oleuropein and hydroxytyrosol selectively reduce proliferation, influence the cell cycle, and induce apoptosis in pancreatic cancer cells. Int J Mol Sci. (2018) 19:1937. doi: 10.3390/ijms19071937 PubMed DOI PMC
Moghadam ER, Ang HL, Asnaf SE, Zabolian A, Saleki H, Yavari M, et al. . Broad-spectrum preclinical antitumor activity of chrysin: current trends and future perspectives. Biomolecules. (2020) 10:1374. doi: 10.3390/biom10101374 PubMed DOI PMC
Richardsen E, Andersen S, Al-Saad S, Rakaee M, Nordby Y, Pedersen MI, et al. . Evaluation of the proliferation marker Ki-67 in a large prostatectomy cohort. PloS One. (2017) 12:e0186852. doi: 10.1371/journal.pone.0186852 PubMed DOI PMC
Adams LS, Phung S, Yee N, Seeram NP, Li L, Chen S. Blueberry phytochemicals inhibit growth and metastatic potential of MDA-MB-231 breast cancer cells through modulation of the phosphatidylinositol 3-kinase pathway. Cancer Res. (2010) 70:3594–605. doi: 10.1158/0008-5472.CAN-09-3565 PubMed DOI PMC
Kumar N, Singh R, Saminathan M, Singh KP, Dhama K, Milton AAP, et al. . Therapeutic effect of hydroethanolic extract of Trianthema portulacastrum L. against N-Nitroso-N-Methylurea-induced mammary tumors in Wistar rats. IJTK. (2020) 19:406–15. http://nopr.niscpr.res.in/handle/123456789/54343.
Yu SS, Spicer DV, Hawes D, Tseng C-C, Yang CS, Pike MC, et al. . Biological effects of green tea capsule supplementation in pre-surgery postmenopausal breast cancer patients. Front Oncol. (2013) 3:298. doi: 10.3389/fonc.2013.00298 PubMed DOI PMC
Peach CJ, Mignone VW, Arruda MA, Alcobia DC, Hill SJ, Kilpatrick LE, et al. . Molecular pharmacology of VEGF-A isoforms: binding and signalling at VEGFR2. Int J Mol Sci. (2018) 19:1264. doi: 10.3390/ijms19041264 PubMed DOI PMC
Batmomolin A, Ahsan A, I. Wiyasa WA, Santoso S. Ethanolic extract of Moringa oleifera leaves improve inflammation, angiogenesis, and blood pressure in rat model of preeclampsia. J App Pharm Sci. (2020) 10:52–7. doi: 10.7324/JAPS.2020.10806 DOI
Zunica ERM, Yang S, Coulter A, White C, Kirwan JP, Gilmore LA. Moringa oleifera seed extract concomitantly supplemented with chemotherapy worsens tumor progression in mice with triple negative breast cancer and obesity. Nutrients. (2021) 13:2923. doi: 10.3390/nu13092923 PubMed DOI PMC
Al-Ataby IA, Talib WH. Daily consumption of lemon and ginger herbal infusion caused tumor regression and activation of the immune system in a mouse model of breast cancer. Front Nutr. (2022) 9:829101. doi: 10.3389/fnut.2022.829101 PubMed DOI PMC
Telang NT. Stem cell models for breast and colon cancer: experimental approach for drug discovery. Int J Mol Sci. (2022) 23:9223. doi: 10.3390/ijms23169223 PubMed DOI PMC
Deldar Abad Paskeh M, Asadi S, Zabolian A, Saleki H, Khoshbakht MA, Sabet S, et al. . Targeting cancer stem cells by dietary agents: an important therapeutic strategy against human Malignancies. Int J Mol Sci. (2021) 22:11669. doi: 10.3390/ijms222111669 PubMed DOI PMC
Crabtree JS, Miele L. Breast cancer stem cells. Biomedicines. (2018) 6:77. doi: 10.3390/biomedicines6030077 PubMed DOI PMC
Shima H, Yamada A, Ishikawa T, Endo I. Are breast cancer stem cells the key to resolving clinical issues in breast cancer therapy? Gland Surg. (2017) 6:82–8. doi: 10.21037/gs.2016.08.03 PubMed DOI PMC
Liu TT, Li XF, Wang L, Yang JL. CD133 expressionand clinicopathologic significance in benign and Malignant breast lesions. Cancer biomark. (2020) 28:293–9. doi: 10.3233/CBM-190196 PubMed DOI
Singh D, Singh P, Pradhan A, Srivastava R, Sahoo SK. Reprogramming cancer stem-like cells with nanoforskolin enhances the efficacy of paclitaxel in targeting breast cancer. ACS Appl Bio Mater. (2021) 4:3670–85. doi: 10.1021/acsabm.1c00141 PubMed DOI
Kim S-H, Singh SV. Monocarboxylate transporter 1 is a novel target for breast cancer stem like-cell inhibition by diallyl trisulfide. Mol Carcinog. (2022) 61:752–63. doi: 10.1002/mc.23415 PubMed DOI PMC
Prajapati KS, Shuaib M, Kushwaha PP, Singh AK, Kumar S. Identification of cancer stemness related miRNA(s) using integrated bioinformatics analysis and in vitro validation. 3 Biotech. (2021) 11:446. doi: 10.1007/s13205-021-02994-3 PubMed DOI PMC
Mese G, Yalcin-Ozuysal O. Epigenetics of Breast Cancer: DNA Methylome and Global Histone Modifications. In: Mishra MK, Bishnupuri KS, editors. Epigenetic Advancements in Cancer. Springer International Publishing, Cham: (2016). p. 207–28. doi: 10.1007/978-3-319-24951-3_9 DOI
Pasculli B, Barbano R, Parrella P. Epigenetics of breast cancer: Biology and clinical implication in the era of precision medicine. Semin Cancer Biol. (2018) 51:22–35. doi: 10.1016/j.semcancer.2018.01.007 PubMed DOI
Karsli-Ceppioglu S, Dagdemir A, Judes G, Ngollo M, Penault-Llorca F, Pajon A, et al. . Epigenetic mechanisms of breast cancer: an update of the current knowledge. Epigenomics. (2014) 6:651–64. doi: 10.2217/epi.14.59 PubMed DOI
Chatterjee B, Ghosh K, Kanade SR. Resveratrol modulates epigenetic regulators of promoter histone methylation and acetylation that restores BRCA1, p53, p21CIP1 in human breast cancer cell lines. Biofactors. (2019) 45:818–29. doi: 10.1002/biof.1544 PubMed DOI
Royston K, Udayakumar N, Lewis K, Tollefsbol T. A novel combination of withaferin A and sulforaphane inhibits epigenetic machinery, cellular viability and induces apoptosis of breast cancer cells. IJMS. (2017) 18:1092. doi: 10.3390/ijms18051092 PubMed DOI PMC
Royston KJ, Paul B, Nozell S, Rajbhandari R, Tollefsbol TO. Withaferin A and sulforaphane regulate breast cancer cell cycle progression through epigenetic mechanisms. Exp Cell Res. (2018) 368:67–74. doi: 10.1016/j.yexcr.2018.04.015 PubMed DOI PMC
Smolarz B, Durczyński A, Romanowicz H, Szyłło K, Hogendorf P. miRNAs in cancer (Review of literature). Int J Mol Sci. (2022) 23:2805. doi: 10.3390/ijms23052805 PubMed DOI PMC
Singh R, Mo Y-Y. Role of microRNAs in breast cancer. Cancer Biol Ther. (2013) 14:201–12. doi: 10.4161/cbt.23296 PubMed DOI PMC
Tahiri A, Leivonen S-K, Lüders T, Steinfeld I, Ragle Aure M, Geisler J, et al. . Deregulation of cancer-related miRNAs is a common event in both benign and Malignant human breast tumors. Carcinogenesis. (2014) 35:76–85. doi: 10.1093/carcin/bgt333 PubMed DOI
Samec M, Liskova A, Kubatka P, Uramova S, Zubor P, Samuel SM, et al. . The role of dietary phytochemicals in the carcinogenesis via the modulation of miRNA expression. J Cancer Res Clin Oncol. (2019) 145:1665–79. doi: 10.1007/s00432-019-02940-0 PubMed DOI PMC
Afsar S, Syed RU, Bin Break MK, Alsukaybi RH, Alanzi RA, Alshobrmi AM, et al. . The dual role of MiR-210 in the aetiology of cancer: A focus on hypoxia-inducible factor signalling. Pathol - Res Pract. (2024) 253:155018. doi: 10.1016/j.prp.2023.155018 PubMed DOI
Wang H, Bian S, Yang CS. Green tea polyphenol EGCG suppresses lung cancer cell growth through upregulating miR-210 expression caused by stabilizing HIF-1α. Carcinogenesis. (2011) 32:1881–9. doi: 10.1093/carcin/bgr218 PubMed DOI PMC
Attari F, Keighobadi F, Abdollahi M, Arefian E, Lotfizadeh R, Sepehri H, et al. . Inhibitory effect of flavonoid xanthomicrol on triple-negative breast tumor via regulation of cancer-associated microRNAs. Phytother Res. (2021) 35:1967–82. doi: 10.1002/ptr.6940 PubMed DOI
Sun D-W, Zhang H-D, Mao L, Mao C-F, Chen W, Cui M, et al. . Luteolin inhibits breast cancer development and progression in vitro and in vivo by suppressing notch signaling and regulating miRNAs. Cell Physiol Biochem. (2015) 37:1693–711. doi: 10.1159/000438535 PubMed DOI
Jasek K, Kubatka P, Samec M, Liskova A, Smejkal K, Vybohova D, et al. . DNA methylation status in cancer disease: modulations by plant-derived natural compounds and dietary interventions. Biomolecules. (2019) 9:289. doi: 10.3390/biom9070289 PubMed DOI PMC
Vietri MT, D’Elia G, Benincasa G, Ferraro G, Caliendo G, Nicoletti GF, et al. . DNA methylation and breast cancer: A way forward (Review). Int J Oncol. (2021) 59:1–12. doi: 10.3892/ijo.2021.5278 PubMed DOI
Liu W, Ao L, Zhou Z, Cui Z, Zhou Y, Yuan X, et al. . CpG island hypermethylation of multiple tumor suppressor genes associated with loss of their protein expression during rat lung carcinogenesis induced by 3-methylcholanthrene and diethylnitrosamine. Biochem Biophys Res Commun. (2010) 402:507–14. doi: 10.1016/j.bbrc.2010.10.061 PubMed DOI
Wang L-S, Kuo C-T, Huang TH-M, Yearsley M, Oshima K, Stoner GD, et al. . Black raspberries protectively regulate methylation of Wnt pathway genes in precancerous colon tissue. Cancer Prev Res (Phila). (2013) 6:1317–27. doi: 10.1158/1940-6207.CAPR-13-0077 PubMed DOI PMC
Huang Y-W, Gu F, Dombkowski A, Wang L-S, Stoner GD. Black raspberries demethylate Sfrp4, a WNT pathway antagonist, in rat esophageal squamous cell papilloma. Mol Carcinog. (2016) 55:1867–75. doi: 10.1002/mc.22435 PubMed DOI
Zhai K, Mazurakova A, Koklesova L, Kubatka P, Büsselberg D. Flavonoids synergistically enhance the anti-glioblastoma effects of chemotherapeutic drugs. Biomolecules. (2021) 11:1841. doi: 10.3390/biom11121841 PubMed DOI PMC
Kikuchi H, Yuan B, Hu X, Okazaki M. Chemopreventive and anticancer activity of flavonoids and its possibility for clinical use by combining with conventional chemotherapeutic agents. Am J Cancer Res. (2019) 9:1517–35. PubMed PMC
Polivka J, Altun I, Golubnitschaja O. Pregnancy-associated breast cancer: the risky status quo and new concepts of predictive medicine. EPMA J. (2018) 9:1–13. doi: 10.1007/s13167-018-0129-7 PubMed DOI PMC
Golubnitschaja O, Liskova A, Koklesova L, Samec M, Biringer K, Büsselberg D, et al. . Caution, “normal” BMI: health risks associated with potentially masked individual underweight-EPMA Position Paper 2021. EPMA J. (2021) 12:243–64. doi: 10.1007/s13167-021-00251-4 PubMed DOI PMC
Wang W, Yan Y, Guo Z, Hou H, Garcia M, Tan X, et al. . All around suboptimal health — a joint position paper of the Suboptimal Health Study Consortium and European Association for Predictive, Preventive and Personalised Medicine. EPMA J. (2021) 12:403–33. doi: 10.1007/s13167-021-00253-2 PubMed DOI PMC
Crigna AT, Samec M, Koklesova L, Liskova A, Giordano FA, Kubatka P, et al. . Cell-free nucleic acid patterns in disease prediction and monitoring-hype or hope? EPMA J. (2020) 11:603–27. doi: 10.1007/s13167-020-00226-x PubMed DOI PMC
Fröhlich H, Patjoshi S, Yeghiazaryan K, Kehrer C, Kuhn W, Golubnitschaja O. Premenopausal breast cancer: potential clinical utility of a multi-omics based machine learning approach for patient stratification. EPMA J. (2018) 9:175–86. doi: 10.1007/s13167-018-0131-0 PubMed DOI PMC
Goldstein E, Yeghiazaryan K, Ahmad A, Giordano FA, Fröhlich H, Golubnitschaja O. Optimal multiparametric set-up modelled for best survival outcomes in palliative treatment of liver Malignancies: unsupervised machine learning and 3 PM recommendations. EPMA J. (2020) 11:505–15. doi: 10.1007/s13167-020-00221-2 PubMed DOI PMC