Phytochemical-based nanodrugs going beyond the state-of-the-art in cancer management-Targeting cancer stem cells in the framework of predictive, preventive, personalized medicine
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
37033601
PubMed Central
PMC10076662
DOI
10.3389/fphar.2023.1121950
PII: 1121950
Knihovny.cz E-zdroje
- Klíčová slova
- cancer stem cells therapy, nanomedicine, nanoparticles, phytochemicals, plant-derived foods, predictive preventive personalized medicine, primary secondary tertiary care,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Cancer causes many deaths worldwide each year, especially due to tumor heterogeneity leading to disease progression and treatment failure. Targeted treatment of heterogeneous population of cells - cancer stem cells is still an issue in protecting affected individuals against associated multidrug resistance and disease progression. Nanotherapeutic agents have the potential to go beyond state-of-the-art approaches in overall cancer management. Specially assembled nanoparticles act as carriers for targeted drug delivery. Several nanodrugs have already been approved by the US Food and Drug Administration (FDA) for treating different cancer types. Phytochemicals isolated from plants demonstrate considerable potential for nanomedical applications in oncology thanks to their antioxidant, anti-inflammatory, anti-proliferative, and other health benefits. Phytochemical-based NPs can enhance anticancer therapeutic effects, improve cellular uptake of therapeutic agents, and mitigate the side effects of toxic anticancer treatments. Per evidence, phytochemical-based NPs can specifically target CSCs decreasing risks of tumor relapse and metastatic disease manifestation. Therefore, this review focuses on current outlook of phytochemical-based NPs and their potential targeting CSCs in cancer research studies and their consideration in the framework of predictive, preventive, and personalized medicine (3PM).
Centre for Advanced Material Application Slovak Academy of Sciences Bratislava Slovakia
Zobrazit více v PubMed
Abdelmoneem M. A., Mahmoud M., Zaky A., Helmy M. W., Sallam M., Fang J.-Y., et al. (2018). Dual-targeted casein micelles as green nanomedicine for synergistic phytotherapy of hepatocellular carcinoma. J. Control Release 287, 78–93. 10.1016/j.jconrel.2018.08.026 PubMed DOI
Abe S., Otsuki M. (2002). Styrene maleic acid neocarzinostatin treatment for hepatocellular carcinoma. Curr. Med. Chem. Anticancer Agents 2, 715–726. 10.2174/1568011023353679 PubMed DOI
Abotaleb M., Samuel S., Varghese E., Varghese S., Kubatka P., Liskova A., et al. (2018). Flavonoids in cancer and apoptosis. Cancers 11, 28. 10.3390/cancers11010028 PubMed DOI PMC
Al-Otaibi A. M., Al-Gebaly A. S., Almeer R., Albasher G., Al-Qahtani W. S., Abdel Moneim A. E. (2022). Potential of green-synthesized selenium nanoparticles using apigenin in human breast cancer MCF-7 cells. Environ. Sci. Pollut. Res. Int. 29, 47539–47548. 10.1007/s11356-022-19166-2 PubMed DOI
Alphandéry E., Grand-Dewyse P., Lefèvre R., Mandawala C., Durand-Dubief M. (2015). Cancer therapy using nanoformulated substances: Scientific, regulatory and financial aspects. Expert Rev. Anticancer Ther. 15, 1233–1255. 10.1586/14737140.2015.1086647 PubMed DOI
Ashrafizadeh M., Javanmardi S., Moradi-Ozarlou M., Mohammadinejad R., Farkhondeh T., Samarghandian S., et al. (2020). Natural products and phytochemical nanoformulations targeting mitochondria in oncotherapy: An updated review on resveratrol. Biosci. Rep. 40. 10.1042/BSR20200257 PubMed DOI PMC
Askar M. A., El Shawi O. E., Abou zaid O. A. R., Mansour N. A., Hanafy A. M. (2021). Breast cancer suppression by curcumin-naringenin-magnetic-nano-particles: In vitro and in vivo studies. Tumor Biol. 43, 225–247. 10.3233/TUB-211506 PubMed DOI
Assaraf Y. G., Brozovic A., Gonçalves A. C., Jurkovicova D., Linē A., Machuqueiro M., et al. (2019). The multi-factorial nature of clinical multidrug resistance in cancer. Drug Resist Updat 46, 100645. 10.1016/j.drup.2019.100645 PubMed DOI
Babaei G., Aziz S. G.-G., Jaghi N. Z. Z. (2021). EMT, cancer stem cells and autophagy; the three main axes of metastasis. Biomed. Pharmacother. 133, 110909. 10.1016/j.biopha.2020.110909 PubMed DOI
Baetke S. C., Lammers T., Kiessling F. (2015). Applications of nanoparticles for diagnosis and therapy of cancer. Br. J. Radiol. 88, 20150207. 10.1259/bjr.20150207 PubMed DOI PMC
Barabadi H., Vahidi H., Mahjoub M., Kosar K., Kamali K., Ponmurugan K., et al. (2020). Emerging antineoplastic gold nanomaterials for cervical cancer therapeutics: A systematic review. J. Clust. Sci. 31, 1173–1184. 10.1007/s10876-019-01733-2 DOI
Barenholz Y. (2012). Doxil®-the first FDA-approved nano-drug: Lessons learned. J. Control Release 160, 117–134. 10.1016/j.jconrel.2012.03.020 PubMed DOI
Below J., M Das J. (2022). “Vincristine,” in StatPearls (Treasure Island (FL): StatPearls Publishing; ).
Benedetto G., Vestal C. G., Richardson C. (2015). Aptamer-functionalized nanoparticles as “smart bombs”: The unrealized potential for personalized medicine and targeted cancer treatment. Target Oncol. 10, 467–485. 10.1007/s11523-015-0371-z PubMed DOI
Bhattacharya T., Soares G. A. B., Chopra H., Rahman M. M., Hasan Z., Swain S. S., et al. (2022). Applications of phyto-nanotechnology for the treatment of neurodegenerative disorders. Mater. (Basel) 15, 804. 10.3390/ma15030804 PubMed DOI PMC
Borah A., Pillai S. C., Rochani A. K., Palaninathan V., Nakajima Y., Maekawa T., et al. (2020). GANT61 and curcumin-loaded PLGA nanoparticles for GLI1 and PI3K/Akt-Mediated inhibition in breast adenocarcinoma. Nanotechnology 31, 185102. 10.1088/1361-6528/ab6d20 PubMed DOI
Busatto S., Pham A., Suh A., Shapiro S., Wolfram J. (2019). Organotropic drug delivery: Synthetic nanoparticles and extracellular vesicles. Biomed. Microdevices 21, 46. 10.1007/s10544-019-0396-7 PubMed DOI PMC
Cencic A., Chingwaru W. (2010). The role of functional foods, nutraceuticals, and food supplements in intestinal health. Nutrients 2, 611–625. 10.3390/nu2060611 PubMed DOI PMC
Chan M. M., Chen R., Fong D. (2018). Targeting cancer stem cells with dietary phytochemical - repositioned drug combinations. Cancer Lett. 433, 53–64. 10.1016/j.canlet.2018.06.034 PubMed DOI PMC
Chatterjee D. K., Diagaradjane P., Krishnan S. (2011). Nanoparticle-mediated hyperthermia in cancer therapy. Ther. Deliv. 2, 1001–1014. 10.4155/tde.11.72 PubMed DOI PMC
Chaudhary K., Masram D. T. (2020). “Biological activities of nanoparticles and mechanism of action,” in Model organisms to study biological activities and toxicity of nanoparticles. Editors Siddhardha B., Dyavaiah M., Kasinathan K. (Singapore: Springer; ), 19–34.
Chen Q., Li N., Wang X., Yang Y., Xiang Y., Long X., et al. (2022). Mitochondria-targeting chemodynamic therapy nanodrugs for cancer treatment. Front. Pharmacol. 13, 847048. 10.3389/fphar.2022.847048 PubMed DOI PMC
Cherukuri P., Glazer E. S., Curley S. A. (2010). Targeted hyperthermia using metal nanoparticles. Adv. Drug Deliv. Rev. 62, 339–345. 10.1016/j.addr.2009.11.006 PubMed DOI PMC
De Jong W. H., Borm P. J. A. (2008). Drug delivery and nanoparticles:applications and hazards. Int. J. Nanomedicine 3, 133–149. 10.2147/ijn.s596 PubMed DOI PMC
Dhupal M., Chowdhury D. (2020). Phytochemical-based nanomedicine for advanced cancer theranostics: Perspectives on clinical trials to clinical use. IJN 15, 9125–9157. 10.2147/IJN.S259628< PubMed DOI PMC
Dick J. E. (2008). Stem cell concepts renew cancer research. Blood 112, 4793–4807. 10.1182/blood-2008-08-077941 PubMed DOI
Ellinger J., Alajati A., Kubatka P., Giordano F. A., Ritter M., Costigliola V., et al. (2022). Prostate cancer treatment costs increase more rapidly than for any other cancer-how to reverse the trend? EPMA J. 13, 1–7. 10.1007/s13167-022-00276-3 PubMed DOI PMC
Elsayed A. M., Sherif N. M., Hassan N. S., Althobaiti F., Hanafy N. A. N., Sahyon H. A. (2021). Novel quercetin encapsulated chitosan functionalized copper oxide nanoparticles as anti-breast cancer agent via regulating P53 in rat model. Int. J. Biol. Macromol. 185, 134–152. 10.1016/j.ijbiomac.2021.06.085 PubMed DOI
Fischer H. C., ChanNanotoxicity W. C. W. (2007). Nanotoxicity: The growing need for in vivo study. Curr. Opin. Biotechnol. 18, 565–571. 10.1016/j.copbio.2007.11.008 PubMed DOI
Frampton J. E. (2020). Liposomal irinotecan: A review in metastatic pancreatic adenocarcinoma. Drugs 80, 1007–1018. 10.1007/s40265-020-01336-6 PubMed DOI PMC
FramptonMifamurtide J. E. (2010). Mifamurtide: A review of its use in the treatment of osteosarcoma. Paediatr. Drugs 12, 141–153. 10.2165/11204910-000000000-00000 PubMed DOI
Fu M., Zhuang X., Zhang T., Guan Y., Meng Q., Zhang Y. (2020). PEGylated leuprolide with improved pharmacokinetic properties. Bioorg Med. Chem. 28, 115306. 10.1016/j.bmc.2020.115306 PubMed DOI
Ganguly S., Dewanjee S., Sen R., Chattopadhyay D., Ganguly S., Gaonkar R., et al. (2021). Apigenin-loaded galactose tailored PLGA nanoparticles: A possible strategy for liver targeting to treat hepatocellular carcinoma. Colloids Surf. B Biointerfaces 204, 111778. 10.1016/j.colsurfb.2021.111778 PubMed DOI
Ganthala P. D., Alavala S., Chella N., Andugulapati S. B., Bathini N. B., Sistla R. (2022). Co-encapsulated nanoparticles of erlotinib and quercetin for targeting lung cancer through nuclear EGFR and PI3K/AKT inhibition. Colloids Surf. B Biointerfaces 211, 112305. 10.1016/j.colsurfb.2021.112305 PubMed DOI
Gavas S., Quazi S., Karpiński T. M. (2021). Nanoparticles for cancer therapy: Current progress and challenges. Nanoscale Res. Lett. 16, 173. 10.1186/s11671-021-03628-6 PubMed DOI PMC
Gawde K. A., Sau S., Tatiparti K., Kashaw S. K., Mehrmohammadi M., Azmi A. S., et al. (2018). Paclitaxel and di-fluorinated curcumin loaded in albumin nanoparticles for targeted synergistic combination therapy of ovarian and cervical cancers. Colloids Surf. B Biointerfaces 167, 8–19. 10.1016/j.colsurfb.2018.03.046 PubMed DOI
Gobbo O. L., Sjaastad K., Radomski M. W., Volkov Y., Prina-Mello A. (2015). Magnetic nanoparticles in cancer theranostics. Theranostics 5, 1249–1263. 10.7150/thno.11544 PubMed DOI PMC
Golubnitschaja O., Liskova A., Koklesova L., Samec M., Biringer K., Büsselberg D., et al. (2021). Caution, “normal” BMI: Health risks associated with potentially masked individual underweight-EPMA position paper 2021. EPMA J. 12, 243–264. 10.1007/s13167-021-00251-4 PubMed DOI PMC
Gu H.-F., Ren F., Mao X.-Y., Du M. (2021). Mineralized and GSH-responsive hyaluronic acid based nano-carriers for potentiating repressive effects of sulforaphane on breast cancer stem cells-like properties. Carbohydr. Polym. 269, 118294. 10.1016/j.carbpol.2021.118294 PubMed DOI
Gwinn M. R., Vallyathan V. (2006). Nanoparticles: Health effects-pros and cons. Environ. Health Perspect. 114, 1818–1825. 10.1289/ehp.8871 PubMed DOI PMC
Hamida R. S., Ali M. A., Redhwan A., Bin-Meferij M. M. (2020). Cyanobacteria - a promising platform in green nanotechnology: A review on nanoparticles fabrication and their prospective applications. Int. J. Nanomedicine 15, 6033–6066. 10.2147/IJN.S256134 PubMed DOI PMC
Hanahan D., Weinberg R. A. (2011). Hallmarks of cancer: The next generation. Cell 144, 646–674. 10.1016/j.cell.2011.02.013 PubMed DOI
Hesari M., Mohammadi P., Khademi F., Shackebaei D., Momtaz S., Moasefi N., et al. (2021). Current advances in the use of nanophytomedicine therapies for human cardiovascular diseases. IJN 16, 3293–3315. 10.2147/IJN.S295508< PubMed DOI PMC
Huang J., Tao C., Yu Y., Yu F., Zhang H., Gao J., et al. (2016). Simultaneous targeting of differentiated breast cancer cells and breast cancer stem cells by combination of docetaxel- and sulforaphane-loaded self-assembled poly(D, L-lactide-Co-Glycolide)/Hyaluronic acid block copolymer-based nanoparticles. J. Biomed. Nanotechnol. 12, 1463–1477. 10.1166/jbn.2016.2234 PubMed DOI
Huang T., Peng L., Han Y., Wang D., He X., Wang J., et al. (2022). Lipid nanoparticle-based MRNA vaccines in cancers: Current advances and future prospects. Front. Immunol. 13, 922301. 10.3389/fimmu.2022.922301 PubMed DOI PMC
Inbaraj B. S., Hua L.-H., Chen B.-H. (2021). Comparative study on inhibition of pancreatic cancer cells by resveratrol gold nanoparticles and a resveratrol nanoemulsion prepared from grape skin. Pharmaceutics 13, 1871. 10.3390/pharmaceutics13111871 PubMed DOI PMC
Jeon S., Jun E., Chang H., Yhee J. Y., Koh E.-Y., Kim Y., et al. (2022). Prediction the clinical EPR effect of nanoparticles in patient-derived xenograft models. J. Control Release 351, 37–49. 10.1016/j.jconrel.2022.09.007 PubMed DOI
Jose J., Kumar R., Harilal S., Mathew G. E., Parambi D. G. T., Prabhu A., et al. (2020). Magnetic nanoparticles for hyperthermia in cancer treatment: An emerging tool. Environ. Sci. Pollut. Res. 27, 19214–19225. 10.1007/s11356-019-07231-2 PubMed DOI
Kaur P., Aliru M. L., Chadha A. S., Asea A., Krishnan S. (2016). Hyperthermia using nanoparticles – promises and pitfalls. Int. J. Hyperth. 32, 76–88. 10.3109/02656736.2015.1120889 PubMed DOI PMC
Kesharwani P., Banerjee S., Padhye S., Sarkar F. H., Iyer A. K. (2015). Hyaluronic acid engineered nanomicelles loaded with 3,4-difluorobenzylidene curcumin for targeted killing of CD44+ stem-like pancreatic cancer cells. Biomacromolecules 16, 3042–3053. 10.1021/acs.biomac.5b00941 PubMed DOI
Khan H., Ullah H., Martorell M., Valdes S. E., Belwal T., Tejada S., et al. (2021). Flavonoids nanoparticles in cancer: Treatment, prevention and clinical prospects. Semin. Cancer Biol. 69, 200–211. 10.1016/j.semcancer.2019.07.023 PubMed DOI
Khoobchandani M., Katti K. K., Karikachery A. R., Thipe V. C., Srisrimal D., Dhurvas Mohandoss D. K., et al. (2020). New approaches in breast cancer therapy through green nanotechnology and nano-ayurvedic medicine - pre-clinical and pilot human clinical investigations. Int. J. Nanomedicine 15, 181–197. 10.2147/IJN.S219042 PubMed DOI PMC
Koklesova L., Liskova A., Samec M., Buhrmann C., Samuel S. M., Varghese E., et al. (2020). Carotenoids in cancer apoptosis-the road from bench to bedside and back. Cancers (Basel) 12, 2425. 10.3390/cancers12092425 PubMed DOI PMC
Koklesova L., Liskova A., Samec M., Qaradakhi T., Zulli A., Smejkal K., et al. (2020). Genoprotective activities of plant natural substances in cancer and chemopreventive strategies in the context of 3P medicine. EPMA J. 11, 261–287. 10.1007/s13167-020-00210-5 PubMed DOI PMC
Koklesova L., Mazurakova A., Samec M., Kudela E., Biringer K., Kubatka P., et al. (2022). Mitochondrial health quality control: Measurements and interpretation in the framework of predictive, preventive, and personalized medicine. EPMA J. 13, 177–193. 10.1007/s13167-022-00281-6 PubMed DOI PMC
Koklesova L., Samec M., Liskova A., Zhai K., Büsselberg D., Giordano F. A., et al. (2021). Mitochondrial impairments in aetiopathology of multifactorial diseases: Common origin but individual outcomes in context of 3P medicine. EPMA J. 12, 27–40. 10.1007/s13167-021-00237-2 PubMed DOI PMC
Kubatka P., Mazurakova A., Samec M., Koklesova L., Zhai K., Al-Ishaq R., et al. (2021). Flavonoids against non-physiologic inflammation attributed to cancer initiation, development, and progression—3PM pathways. EPMA J. 12, 559–587. 10.1007/s13167-021-00257-y PubMed DOI PMC
Kumar P., Yadav N., Chaudhary B., Jain V., Balaramnavar V. M., Alharbi K. S., et al. (2022). Promises of phytochemical based nano drug delivery systems in the management of cancer. Chem. Biol. Interact. 351, 109745. 10.1016/j.cbi.2021.109745 PubMed DOI
Kuo Y.-C., Wang L.-J., Rajesh R. (2019). Targeting human brain cancer stem cells by curcumin-loaded nanoparticles grafted with anti-aldehyde dehydrogenase and sialic acid: Colocalization of ALDH and CD44. Mater Sci. Eng. C Mater Biol. Appl. 102, 362–372. 10.1016/j.msec.2019.04.065 PubMed DOI
Lathia J., Liu H., Matei D. (2020). The clinical impact of cancer stem cells. Oncologist 25, 123–131. 10.1634/theoncologist.2019-0517 PubMed DOI PMC
Li C., Lin J., Wu P., Zhao R., Zou J., Zhou M., et al. (2018). Small molecule nanodrug assembled of dual-anticancer drug conjugate for synergetic cancer metastasis therapy. Bioconjug Chem. 29, 3495–3502. 10.1021/acs.bioconjchem.8b00657 PubMed DOI
Li L., Zhang M., Liu T., Li J., Sun S., Chen J., et al. Quercetin-ferrum nanoparticles enhance photothermal therapy by modulating the tumor immunosuppressive microenvironment. Acta Biomater. 154, 2022, 454–466. 10.1016/j.actbio.2022.10.008 PubMed DOI
Li X., Li W., Wang M., Liao Z. (2021). Magnetic nanoparticles for cancer theranostics: Advances and prospects. J. Control Release 335, 437–448. 10.1016/j.jconrel.2021.05.042 PubMed DOI
Li Y., Wang Z., Ajani J. A., Song S. (2021). Drug resistance and cancer stem cells. Cell Commun. Signal 19, 19. 10.1186/s12964-020-00627-5 PubMed DOI PMC
Li Z., Chen Y., Yang Y., Yu Y., Zhang Y., Zhu D., et al. (2019). Recent advances in nanomaterials-based chemo-photothermal combination therapy for improving cancer treatment. Front. Bioeng. Biotechnol. 7, 293. 10.3389/fbioe.2019.00293 PubMed DOI PMC
Libutti S. K., Paciotti G. F., Byrnes A. A., Alexander H. R., Gannon W. E., Walker M., et al. (2010). Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-RhTNF nanomedicine. Clin. Cancer Res. 16, 6139–6149. 10.1158/1078-0432.CCR-10-0978 PubMed DOI PMC
Link B., Torres Crigna A., Hölzel M., Giordano F. A., Golubnitschaja O. (2021). Abscopal effects in metastatic cancer: Is a predictive approach possible to improve individual outcomes? J. Clin. Med. 10, 5124. 10.3390/jcm10215124 PubMed DOI PMC
Liskova A., Samec M., Koklesova L., Brockmueller A., Zhai K., Abdellatif B., et al. (2021). Flavonoids as an effective sensitizer for anti-cancer therapy: Insights into multi-faceted mechanisms and applicability towards individualized patient profiles. EPMA J. 12, 155–176. 10.1007/s13167-021-00242-5 PubMed DOI PMC
Liszbinski R. B., Romagnoli G. G., Gorgulho C. M., Basso C. R., Pedrosa V. A., Kaneno R. (2020). Anti-EGFR-coated gold nanoparticles in vitro carry 5-fluorouracil to colorectal cancer cells. Mater. (Basel) 13, 375. 10.3390/ma13020375 PubMed DOI PMC
Liu M., Wang B., Guo C., Hou X., Cheng Z., Chen D. (2019). Novel multifunctional triple folic acid, biotin and CD44 targeting PH-sensitive nano-actiniaes for breast cancer combinational therapy. Drug Deliv. 26, 1002–1016. 10.1080/10717544.2019.1669734 PubMed DOI PMC
Liu P., Behray M., Wang Q., Wang W., Zhou Z., Chao Y., et al. (2018). Anti-cancer activities of allyl isothiocyanate and its conjugated silicon quantum dots. Sci. Rep. 8, 1084. 10.1038/s41598-018-19353-7 PubMed DOI PMC
Liu R. H. (2004). Potential synergy of phytochemicals in cancer prevention: Mechanism of action. J. Nutr. 134, 3479S–3485S. 10.1093/jn/134.12.3479S PubMed DOI
Liu Y., Crawford B. M., Vo-Dinh T. (2018). Gold nanoparticles-mediated photothermal therapy and immunotherapy. Immunotherapy 10, 1175–1188. 10.2217/imt-2018-0029 PubMed DOI
Maeda H. (2001). The enhanced permeability and retention (EPR) effect in tumor vasculature: The key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul. 41, 189–207. 10.1016/s0065-2571(00)00013-3 PubMed DOI
Mahmoudi K., Bouras A., Bozec D., Ivkov R., Hadjipanayis C. (2018). Magnetic hyperthermia therapy for the treatment of glioblastoma: A review of the therapy’s history, efficacy and application in humans. Int. J. Hyperth. 34, 1316–1328. 10.1080/02656736.2018.1430867 PubMed DOI PMC
Marinheiro D., Ferreira B. J. M. L., Oskoei P., Oliveira H., Daniel-da-Silva A. L. (2021). Encapsulation and enhanced release of resveratrol from mesoporous silica nanoparticles for melanoma therapy. Mater. (Basel) 14, 1382. 10.3390/ma14061382 PubMed DOI PMC
Martin M., López-Tarruella S. (2016). Emerging therapeutic options for HER2-positive breast cancer. Am. Soc. Clin. Oncol. Educ. Book 35, e64–e70. 10.1200/EDBK_159167 PubMed DOI
Massironi A., Marzorati S., Marinelli A., Toccaceli M., Gazzotti S., Ortenzi M. A., et al. (2022). Synthesis and characterization of curcumin-loaded nanoparticles of poly(glycerol sebacate): A novel highly stable anticancer system. Molecules 27, 6997. 10.3390/molecules27206997 PubMed DOI PMC
Mazurakova A., Koklesova L., Samec M., Kudela E., Kajo K., Skuciova V., et al. (2022). Anti-breast cancer effects of phytochemicals: Primary, secondary, and tertiary care. EPMA J. 13, 315–334. 10.1007/s13167-022-00277-2 PubMed DOI PMC
Mazurakova A., Samec M., Koklesova L., Biringer K., Kudela E., Al-Ishaq R. K., et al. (2022). Anti-prostate cancer protection and therapy in the framework of predictive, preventive and personalised medicine - comprehensive effects of phytochemicals in primary, secondary and tertiary care. EPMA J. 13, 461–486. 10.1007/s13167-022-00288-z PubMed DOI PMC
Melim C., Magalhães M., Santos A. C., Campos E. J., Cabral C. (2022). Nanoparticles as phytochemical carriers for cancer treatment: News of the last decade. Expert Opin. Drug Deliv. 19, 179–197. 10.1080/17425247.2022.2041599 PubMed DOI
Miao L., Zhang Y., Huang L. (2021). MRNA vaccine for cancer immunotherapy. Mol. Cancer 20, 41. 10.1186/s12943-021-01335-5 PubMed DOI PMC
Milane L., Trivedi M., Singh A., Talekar M., Amiji M. (2015). Mitochondrial biology, targets, and drug delivery. J. Control Release 207, 40–58. 10.1016/j.jconrel.2015.03.036 PubMed DOI
Missaoui W. N., Arnold R. D., Cummings B. S. (2018). Toxicological status of nanoparticles: What we know and what we don’t know. Chem. Biol. Interact. 295, 1–12. 10.1016/j.cbi.2018.07.015 PubMed DOI PMC
Mitchell M. J., Billingsley M. M., Haley R. M., Wechsler M. E., Peppas N. A., Langer R. (2021). Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101–124. 10.1038/s41573-020-0090-8 PubMed DOI PMC
Nagarajan R. (2008). Building blocks for nanotechnology nanoparticles: Synthesis, stabilization, passivation, and functionalization ACS symposium series. Am. Chem. Soc. 996, ch001. 10.1021/bk-2008-0996.ch001 DOI
Najahi-Missaoui W., Arnold R. D., CummingsNanoparticles B. S. S. (2020). Are we there yet? Int. J. Mol. Sci. 22, 385. 10.3390/ijms22010385 PubMed DOI PMC
Nazer S., Andleeb S., Ali S., Gulzar N., Iqbal T., Khan M. A. R., et al. (2020). Synergistic antibacterial efficacy of biogenic synthesized silver nanoparticles using ajuga bractosa with standard antibiotics: A study against bacterial pathogens. Curr. Pharm. Biotechnol. 21, 206–218. 10.2174/1389201020666191001123219 PubMed DOI
Neelakandan M., Manoharan S., Muralinaidu R., Thara J. M. (2022). Tumor preventive and antioxidant efficacy of chlorogenic acid-loaded chitosan nanoparticles in experimental skin carcinogenesis. Naunyn Schmiedeb. Arch. Pharmacol. 396, 533–546. 10.1007/s00210-022-02330-3 PubMed DOI
Nirachonkul W., Ogonoki S., Thumvijit T., Chiampanichayakul S., Panyajai P., Anuchapreeda S., et al. (2021). CD123-Targeted nano-curcumin molecule enhances cytotoxic efficacy in leukemic stem cells. Nanomater. (Basel) 11, 2974. 10.3390/nano11112974 PubMed DOI PMC
Norouzi M. (2020). Gold nanoparticles in glioma theranostics. Pharmacol. Res. 156, 104753. 10.1016/j.phrs.2020.104753 PubMed DOI
Palliyage G. H., Hussein N., Mimlitz M., Weeder C., Alnasser M. H. A., Singh S., et al. (2021). Novel curcumin-resveratrol solid nanoparticles synergistically inhibit proliferation of melanoma cells. Pharm. Res. 38, 851–871. 10.1007/s11095-021-03043-7 PubMed DOI
Papachristofilou A., Hipp M. M., Klinkhardt U., Früh M., Sebastian M., Weiss C., et al. (2019). Phase Ib evaluation of a self-adjuvanted protamine formulated MRNA-based active cancer immunotherapy, BI1361849 (CV9202), combined with local radiation treatment in patients with stage IV non-small cell lung cancer. J. Immunother. Cancer 7, 38. 10.1186/s40425-019-0520-5 PubMed DOI PMC
Patra J. K., Das G., Fraceto L. F., Campos E. V. R., Rodriguez-Torres M., del P., et al. (2018). Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology 16, 71. 10.1186/s12951-018-0392-8 PubMed DOI PMC
Peng Z. (2005). Current status of gendicine in China: Recombinant human ad-P53 agent for treatment of cancers. Hum. Gene Ther. 16, 1016–1027. 10.1089/hum.2005.16.1016 PubMed DOI
Pradhan R., Chatterjee S., Hembram K. C., Sethy C., Mandal M., Kundu C. N. (2021). Nano formulated resveratrol inhibits metastasis and angiogenesis by reducing inflammatory cytokines in oral cancer cells by targeting tumor associated macrophages. J. Nutr. Biochem. 92, 108624. 10.1016/j.jnutbio.2021.108624 PubMed DOI
Prasetyanti P. R., Medema J. P. (2017). Intra-tumor heterogeneity from a cancer stem cell perspective. Mol. Cancer 16, 41. 10.1186/s12943-017-0600-4 PubMed DOI PMC
Puri A., Loomis K., Smith B., Lee J.-H., Yavlovich A., Heldman E., et al. (2009). Lipid-based nanoparticles as pharmaceutical drug carriers: From concepts to clinic. Crit. Rev. Ther. Drug Carr. Syst. 26, 523–580. 10.1615/critrevtherdrugcarriersyst.v26.i6.10 PubMed DOI PMC
Ramalingam V., Muthukumar Sathya P., Srivalli T., Mohan H. (2022). Synthesis of quercetin functionalized wurtzite type zinc oxide nanoparticles and their potential to regulate intrinsic apoptosis signaling pathway in human metastatic ovarian cancer. Life Sci. 309, 121022. 10.1016/j.lfs.2022.121022 PubMed DOI
Ravi R., Zeyaullah M., Ghosh S., Khan Warsi M., Baweja R., AlShahrani A. M., et al. (2022). Use of gold nanoparticle-silibinin conjugates: A novel approach against lung cancer cells. Front. Chem. 10, 1018759. 10.3389/fchem.2022.1018759 PubMed DOI PMC
Riganti C., Contino M. (2019). New strategies to overcome resistance to chemotherapy and immune system in cancer. Int. J. Mol. Sci. 20, 4783. 10.3390/ijms20194783 PubMed DOI PMC
Roy A., Bulut O., Some S., Kumar Mandal A., Deniz Yilmaz M. (2019). Green synthesis of silver nanoparticles: Biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv. 9, 2673–2702. 10.1039/C8RA08982E PubMed DOI PMC
Sabzini M., Pourmadadi M., Yazdian F., Khadiv-Parsi P., Rashedi H. (2022). Development of chitosan/halloysite/graphitic-carbon nitride nanovehicle for targeted delivery of quercetin to enhance its limitation in cancer therapy: An in vitro cytotoxicity against MCF-7 cells. Int. J. Biol. Macromol. 226, 159–171. 10.1016/j.ijbiomac.2022.11.189 PubMed DOI
Sahu A., Kim M., Ryu J., Son J.-G., Lee E., Noh D. Y., et al. (2018). Nanographene oxide as a switch for CW/pulsed NIR laser triggered drug release from liposomes. Mater. Sci. Eng. C 82, 19–24. 10.1016/j.msec.2017.08.057 PubMed DOI
Samec M., Liskova A., Koklesova L., Samuel S. M., Zhai K., Buhrmann C., et al. (2020). Flavonoids against the warburg phenotype-concepts of predictive, preventive and personalised medicine to cut the gordian knot of cancer cell metabolism. EPMA J. 11, 377–398. 10.1007/s13167-020-00217-y PubMed DOI PMC
Sebastian M., Schröder A., Scheel B., Hong H. S., Muth A., von Boehmer L., et al. (2019). A phase I/IIa study of the MRNA-based cancer immunotherapy CV9201 in patients with stage IIIB/IV non-small cell lung cancer. Cancer Immunol. Immunother. 68, 799–812. 10.1007/s00262-019-02315-x PubMed DOI PMC
Shen S., Xu X., Lin S., Zhang Y., Liu H., Zhang C., et al. (2021). A nanotherapeutic strategy to overcome chemotherapeutic resistance of cancer stem-like cells. Nat. Nanotechnol. 16, 104–113. 10.1038/s41565-020-00793-0 PubMed DOI
Singh S. (2010). Nanomedicine-nanoscale drugs and delivery systems. J. Nanosci. Nanotechnol. 10, 7906–7918. 10.1166/jnn.2010.3617 PubMed DOI
Smith L., Kuncic Z., Ostrikov K., Ken), Kumar S. (2012). Nanoparticles in cancer imaging and therapy. J. Nanomater. 2012, 1–7. 10.1155/2012/891318 DOI
Sousa-Junior A., Yang C.-T., Korangath P., Ivkov R., Bakuzis A. (2022). A predictive pharmacokinetic model for immune cell-mediated uptake and retention of nanoparticles in tumors. Int. J. Mol. Sci. 23, 15664. 10.3390/ijms232415664 PubMed DOI PMC
Sun R., Liu Y., Li S.-Y., Shen S., Du X.-J., Xu C.-F., et al. (2015). Co-delivery of all-trans-retinoic acid and doxorubicin for cancer therapy with synergistic inhibition of cancer stem cells. Biomaterials 37, 405–414. 10.1016/j.biomaterials.2014.10.018 PubMed DOI
Sun T., Zhang Y. S., Pang B., Hyun D. C., Yang M., Xia Y. (2014). Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem. Int. Ed. Engl. 53, 12320–12364. 10.1002/anie.201403036 PubMed DOI
Sung H., Ferlay J., Siegel R. L., Laversanne M., Soerjomataram I., Jemal A., et al. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 71, 209–249. 10.3322/caac.21660 PubMed DOI
Tabassam Q., Mehmood T., Raza A. R., Ullah A., Saeed F., Anjum F. M. (2020). Synthesis, characterization and anti-cancer therapeutic potential of withanolide-A with 20nm SAuNPs conjugates against SKBR3 breast cancer cell line. Int. J. Nanomedicine 15, 6649–6658. 10.2147/IJN.S258528 PubMed DOI PMC
Tabassum N., Verma V., Kumar M., Kumar A., Singh B. (2018). Nanomedicine in cancer stem cell therapy: From fringe to forefront. Cell Tissue Res. 374, 427–438. 10.1007/s00441-018-2928-5 PubMed DOI
Tan X., Zhou Y., Shen L., Jia H., Tan X. (2019). A mitochondria-targeted delivery system of doxorubicin and evodiamine for the treatment of metastatic breast cancer. RSC Adv. 9, 37067–37078. 10.1039/C9RA07096F PubMed DOI PMC
Thipe V. C., Panjtan Amiri K., Bloebaum P., Raphael Karikachery A., Khoobchandani M., Katti K. K., et al. (2019). Development of resveratrol-conjugated gold nanoparticles: Interrelationship of increased resveratrol corona on anti-tumor efficacy against breast, pancreatic and prostate cancers. Int. J. Nanomedicine 14, 4413–4428. 10.2147/IJN.S204443 PubMed DOI PMC
Verma A., Gautam S. P., Bansal K. K., Prabhakar N., Rosenholm J. M. (2019). Green nanotechnology: Advancement in phytoformulation research. Medicines 6, 39. 10.3390/medicines6010039 PubMed DOI PMC
Vilas-Boas V., Carvalho F., Espiña B. (2020). Magnetic hyperthermia for cancer treatment: Main parameters affecting the outcome of in vitro and in vivo studies. Molecules 25, 2874. 10.3390/molecules25122874 PubMed DOI PMC
Vimala K., Kannan S. (2021). Phyto-drug conjugated nanomaterials enhance apoptotic activity in cancer. Adv. Protein Chem. Struct. Biol. 125, 275–305. 10.1016/bs.apcsb.2020.12.003 PubMed DOI
Vinluan R. D., Zheng J. (2015). Serum protein adsorption and excretion pathways of metal nanoparticles. Nanomedicine (Lond) 10, 2781–2794. 10.2217/nnm.15.97 PubMed DOI PMC
von Minckwitz G., Huang C.-S., Mano M. S., Loibl S., Mamounas E. P., Untch M., et al. (2019). Trastuzumab emtansine for residual invasive HER2-positive breast cancer. N. Engl. J. Med. 380, 617–628. 10.1056/NEJMoa1814017 PubMed DOI
Wang B., Liu X., Teng Y., Yu T., Chen J., Hu Y., et al. (2017). Improving anti-melanoma effect of curcumin by biodegradable nanoparticles. Oncotarget 8, 108624–108642. 10.18632/oncotarget.20585 PubMed DOI PMC
Wang H., Agarwal P., Zhao S., Xu R. X., Yu J., Lu X., et al. (2015). Hyaluronic acid-decorated dual responsive nanoparticles of pluronic F127, PLGA, and chitosan for targeted Co-delivery of doxorubicin and irinotecan to eliminate cancer stem-like cells. Biomaterials 72, 74–89. 10.1016/j.biomaterials.2015.08.048 PubMed DOI PMC
Wang H., He X. (2018). Nanoparticles for targeted drug delivery to cancer stem cells and tumor. Methods Mol. Biol. 1831, 59–67. 10.1007/978-1-4939-8661-3_6 PubMed DOI PMC
Wang R., Song B., Wu J., Zhang Y., Chen A., Shao L. (2018). Potential adverse effects of nanoparticles on the reproductive system. Int. J. Nanomedicine 13, 8487–8506. 10.2147/IJN.S170723 PubMed DOI PMC
Wang W., Yan Y., Guo Z., Hou H., Garcia M., Tan X., et al. (2021). All around suboptimal health - a joint position paper of the suboptimal health study consortium and European association for predictive, preventive and personalised medicine. EPMA J. 12, 403–433. 10.1007/s13167-021-00253-2 PubMed DOI PMC
Yaari Z., da Silva D., Zinger A., Goldman E., Kajal A., Tshuva R., et al. (2016). Theranostic barcoded nanoparticles for personalized cancer medicine. Nat. Commun. 7, 13325. 10.1038/ncomms13325 PubMed DOI PMC
Yang K., Liao Z., Wu Y., Li M., Guo T., Lin J., et al. (2020). Curcumin and glu-GNPs induce radiosensitivity against breast cancer stem-like cells. Biomed. Res. Int. 2020, 3189217. 10.1155/2020/3189217 PubMed DOI PMC
Yang Z., Sun N., Cheng R., Zhao C., Liu J., Tian Z. (2017). Hybrid nanoparticles coated with hyaluronic acid lipoid for targeted Co-delivery of paclitaxel and curcumin to synergistically eliminate breast cancer stem cells. J. Mater Chem. B 5, 6762–6775. 10.1039/c7tb01510k PubMed DOI
Yang Z., Wang D., Zhang C., Liu H., Hao M., Kan S., et al. (2022). The applications of gold nanoparticles in the diagnosis and treatment of gastrointestinal cancer. Front. Oncol. 11, 11. 10.3389/fonc.2021.819329 PubMed DOI PMC
Zhang L., Chen W., Tu G., Chen X., Lu Y., Wu L., et al. (2020). Enhanced chemotherapeutic efficacy of PLGA-encapsulated epigallocatechin gallate (EGCG) against human lung cancer. Int. J. Nanomedicine 15, 4417–4429. 10.2147/IJN.S243657 PubMed DOI PMC
Zhang M., Kim H. S., Jin T., Moon W. K. (2017). Near-infrared photothermal therapy using EGFR-targeted gold nanoparticles increases autophagic cell death in breast cancer. J. Photochem. Photobiol. B Biol. 170, 58–64. 10.1016/j.jphotobiol.2017.03.025 PubMed DOI
Zhang M., Viennois E., Prasad M., Zhang Y., Wang L., Zhang Z., et al. (2016). Edible ginger-derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials 101, 321–340. 10.1016/j.biomaterials.2016.06.018 PubMed DOI PMC
Zheng N.-G., Mo S.-J., Li J.-P., Wu J.-L. (2014). Anti-CSC effects in human esophageal squamous cell carcinomas and eca109/9706 cells induced by nanoliposomal quercetin alone or combined with CD 133 antiserum. Asian Pac J. Cancer Prev. 15, 8679–8684. 10.7314/apjcp.2014.15.20.8679 PubMed DOI
Zhou M., Dong J., Huang J., Ye W., Zheng Z., Huang K., et al. (2022). Chitosan-gelatin-EGCG nanoparticle-meditated LncRNA TMEM44-AS1 silencing to activate the P53 signaling pathway for the synergistic reversal of 5-FU resistance in gastric cancer. Adv. Sci. (Weinh) 9, e2105077. 10.1002/advs.202105077 PubMed DOI PMC
Zwicke G. L., Ali Mansoori G., Jeffery C. J. (2012). Utilizing the folate receptor for active targeting of cancer nanotherapeutics. Nano Rev. 3, 18496. 10.3402/nano.v3i0.18496 PubMed DOI PMC