Altered activities of antioxidant enzymes in patients with metabolic syndrome
Jazyk angličtina Země Švýcarsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23429207
PubMed Central
PMC5644676
DOI
10.1159/000348569
PII: 000348569
Knihovny.cz E-zdroje
- MeSH
- antioxidancia analýza MeSH
- aryldialkylfosfatasa krev MeSH
- biologické markery krev MeSH
- enzymy krev MeSH
- glutathion krev MeSH
- glutathionperoxidasa (GPx1) MeSH
- glutathionperoxidasa krev MeSH
- glutathionreduktasa krev MeSH
- katalasa krev MeSH
- lidé středního věku MeSH
- lidé MeSH
- lipoproteiny LDL krev MeSH
- metabolický syndrom krev diagnóza enzymologie MeSH
- oxidační stres MeSH
- studie případů a kontrol MeSH
- superoxiddismutasa krev MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antioxidancia MeSH
- aryldialkylfosfatasa MeSH
- biologické markery MeSH
- enzymy MeSH
- glutathion MeSH
- glutathionperoxidasa (GPx1) MeSH
- glutathionperoxidasa MeSH
- glutathionreduktasa MeSH
- GPX1 protein, human MeSH Prohlížeč
- katalasa MeSH
- lipoproteiny LDL MeSH
- PON1 protein, human MeSH Prohlížeč
- superoxiddismutasa MeSH
OBJECTIVE: In the pathogenesis of the metabolic syndrome (MetS), an increase of oxidative stress could play an important role which is closely linked with insulin resistance, endothelial dysfunction, and chronic inflammation. The aim of our study was to assess several parameters of the antioxidant status in MetS. METHODS: 40 subjects with MetS and 40 age- and sex-matched volunteers without MetS were examined for activities of superoxide dismutase (CuZnSOD), catalase (CAT), glutathione peroxidase 1 (GPX1), glutathione reductase (GR), paraoxonase1 (PON1), concentrations of reduced glutathione (GSH), and conjugated dienes in low-density lipoprotein (CD-LDL). RESULTS: Subjects with MetS had higher activities of CuZnSOD (p < 0.05) and GR (p < 0.001), higher concentrations of CD-LDL (p < 0.001), lower activities of CAT (p < 0.05) and PON1 (p < 0.05), and lower concentrations of GSH (p < 0.05), as compared with controls. Activity of GPX1 was not significantly changed. CONCLUSIONS: Our results implicated an increased oxidative stress in MetS and a decreased antioxidative defense that correlated with some laboratory (triglycerides, high-density lipoprotein cholesterol (HDL-C)) and clinical (waist circumference, blood pressure) components of MetS.
Zobrazit více v PubMed
Grundy SM. Metabolic syndrome: a multiplex cardiovascular risk factor. J Clin Endocrinol Metabol. 2007;92:399–404. PubMed
Roberts CK, Sindhu KK. Oxidative stress and metabolic syndrome. Life Sci. 2009;84:705–712. PubMed
Duracková Z. Some current insights into oxidative stress. Physiol Res. 2010;59:459–469. PubMed
Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39:44–84. PubMed
Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine. 4th ed. Oxford: Oxford University Press; 2008.
Surh YJ. Transcriptional regulation of cellular antioxidant defense mechanism. In: Surh YJ, Packer L, editors. Oxidative Stress, Inflammation and Health. Boca Raton: CRC Press; 2005. pp. 21–40.
Soran H, Younis NN, Charlton-Menys V, Durrington P. Variation in paraoxonase-1 activity and atherosclerosis. Curr Opin Lipidol. 2009;20:265–274. PubMed
Harris ED. Regulation of antioxidant enzymes. FASEB J. 1992;6:2675–2683. PubMed
Alberti KG, Zimmet P, Shaw J. The metabolic syndrome – a new worldwide definition. Lancet. 2005;366:1059–1062. PubMed
Kodydková J, Vávrová L, Zeman M, Jirák R, Macásek J, Stanková B, Tvrzická E, Zák A. Antioxidative enzymes and increased oxidative stress in depressive women. Clin Biochem. 2009;42:1368–1374. PubMed
Griffith OW. Glutathione and glutathione disulphide. In: Bergemeyer HU, editor. Methods of Enzymatic Analysis. Weinheim: VCH; 1985. pp. 521–529.
Wieland H, Seidel D. A simple specific method for precipitation of low density lipoproteins. J Lipid Res. 1983;24:904–909. PubMed
Vogeser M, König D, Frey I, Predel HG, Parhofer KG, Berg A. Fasting serum insulin and the homeostasis model of insulin resistance (HOMA-IR) in the monitoring of lifestyle interventions in obese persons. Clin Biochem. 2007;40:964–968. PubMed
Roth E, Manhart N, Wessner B. Assessing the antioxidative status in critically ill patients. Curr Opin Clin Nutr Metab Care. 2004;7:161–168. PubMed
Yamagishi SI, Edelstein D, Du XL, Brownlee M. Hyperglycemia potentiates collagen-induced platelet activation through mitochondrial superoxide overproduction. Diabetes. 2001;50:1491–1494. PubMed
Paravicini TM, Touyz RM. NADPH oxidases, reactive oxygen species, and hypertension: clinical implications and therapeutic possibilities. Diabetes Care. 2008;31:S170–S180. PubMed
Nordberg J, Arnér ES. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med. 2001;31:1287–1312. PubMed
Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 2004;114:1752–1761. PubMed PMC
Dimitrijevic-Sreckovic V, Colak E, Djordjevic P, Gostiljac D, Sreckovic B, Popovic S, Canovic F, Ilic M, Obrenovic R, Vukcevic V, Nikolic D, Nisic T, Milic G, Pejcic G. Prothrombogenic factors and reduced antioxidative defense in children and adolescents with pre-metabolic and metabolic syndrome. Clin Chem Lab Med. 2007;45:1140–1144. PubMed
Cardona F, Túnez I, Tasset I, Montilla P, Collantes E, Tinahones FJ. Fat overload aggravates oxidative stress in patients with the metabolic syndrome. Eur J Clin Invest. 2008;38:510–515. PubMed
Cardona F, Tunez I, Tasset I, Murri M, Tinahones FJ. Similar increase in oxidative stress after fat overload in persons with baseline hypertriglyceridaemia with or without the metabolic syndrome. Clin Biochem. 2008;41:701–705. PubMed
Amstad P, Peskin A, Shah G, Mirault ME, Moret R, Zbinden I, Cerutti P. The balance between Cu, Zn-superoxide dismutase and catalase affects the sensitivity of mouse epidermal cells to oxidative stress. Biochemistry. 1991;30:9305–9313. PubMed
Low FM, Hampton MB, Winterbourn CC. Peroxiredoxin 2 and peroxide metabolism in the erythrocyte. Antioxid Redox Signal. 2008;10:1621–30. PubMed
Kirkman HN, Galiano S, Gaetani GF. The function of catalase-bound NADPH. J Biol Chem. 1987;262:660–666. PubMed
Viroonudomphol D, Pongpaew P, Tungtrongchitr R, Phonrat B, Supawan V, Vudhivai N, Schelp FP. Erythrocyte antioxidant enzymes and blood pressure in relation to overweight and obese Thai in Bangkok. Southeast Asian J Trop Med Public Health. 2000;31:325–334. PubMed
Rodrigo R, Prat H, Passalacqua W, Araya J, Guichard C, Bächler JP. Relationship between oxidative stress and essential hypertension. Hypertens Res. 2007;30:1159–1167. PubMed
Shin MJ, Park E. Contribution of insulin resistance to reduced antioxidant enzymes and vitamins in nonobese Korean children. Clin Chim Acta. 2006;365:200–205. PubMed
Nandeesha H, Sathiyapriya V, Bobby Z, Pavithran P, Agrawal A, Selvaraj N. Altered oxidant-antioxidant status in non-obese men with moderate essential hypertension. Indian J Med Sci. 2007;61:326–331. PubMed
Chistiakov DA, Zotova EV, Savost'anov KV, Bursa TR, Galeev IV, Strokov IA, Nosikov VV. The 262T>C promoter polymorphism of the catalase gene is associated with diabetic neuropathy in type 1 diabetic Russian patients. Diabetes Metab. 2006;32:63–68. PubMed
Bougoulia M, Triantos A, Kolioakos G. Plasma interleukin-6 levels, glutathione peroxidase and isoprostane in obese women before and after weight loss. Association with cardiovascular risk factors. Hormones (Athens) 2006;5:192–199. PubMed
Paşaoğlu H, Muhtaroğlu S, Güneş M, Utaş C. The role of the oxidative state of glutathione and glutathione-related enzymes in anemia of hemodialysis patients. Clin Biochem. 1996;29:567–572. PubMed
Garin MC, Kalix B, Morabia A, James RW. Small, dense lipoprotein particles and reduced paraoxonase-1 in patients with the metabolic syndrome. J Clin Endocrinol Metab. 2005;90:2264–2269. PubMed
Rizos E, Tambaki AP, Gazi I, Tselepis AD, Elisaf M. Lipoprotein-associated PAF-acetylhydrolase activity in subjects with the metabolic syndrome. Prostaglandins Leukot Essent Fatty Acids. 2005;72:203–209. PubMed
Novak F, Vavrova L, Kodydkova J, Novak F, Hynkova M, Zak A, Novakova O. Decreased paraoxonase activity in critically ill patients with sepsis. Clin Exp Med. 2010;10:21–25. PubMed
Rosenblat M, Aviram M. Paraoxonases role in the prevention of cardiovascular diseases. Biofactors. 2009;35:98–104. PubMed
Güzel S, Seven A, Satman I, Burçak G. Comparison of oxidative stress indicators in plasma of recent-onset and long-term type 1 diabetic patients. J Toxicol Environ Health A. 2000;59:7–14. PubMed
Zák A, Tvrzická E, Vecka M, Jáchymová M, Duffková L, Stanková B, Vávrová L, Kodydková J, Zeman M. Severity of metabolic syndrome unfavorably influences oxidative stress and fatty acid metabolism in men. Tohoku J Exp Med. 2007;212:359–371. PubMed
Zeman M, Zák A, Vecka M, Tvrzická E, Romaniv S, Konárková M. Treatment of hypertriglyceridaemia with fenofibrate, fatty acid composition of plasma and LDL, and their relations to parameters of lipoperoxidation of LDL. Ann N Y Acad Sci. 2002;967:336–341. PubMed
Holvoet P, Lee DH, Steffes M, Gross M, Jacobs DR., Jr Association between circulating oxidized low-density lipoprotein and incidence of the metabolic syndrome. JAMA. 2008;299:2287–2293. PubMed PMC