Interaction of myricetin, ampelopsin (dihydromyricetin), and their sulfate metabolites with serum albumin, cytochrome P450 (CYP2C9, 2C19, and 3A4) enzymes, and organic anion-transporting polypeptides (OATP1B1 and OATP2B1)
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
ÚNKP-23-4
Nemzeti Kutatási, Fejlesztési és Innovaciós Alap
23-04654S
Grantová Agentura České Republiky
FK138184
Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
K138518
Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
BO/00381/21
Magyar Tudományos Akadémia
PubMed
39344282
PubMed Central
PMC11440035
DOI
10.1002/prp2.70021
Knihovny.cz E-zdroje
- Klíčová slova
- CYP enzymes, OATP transporters, ampelopsin, human serum albumin, myricetin,
- MeSH
- cytochrom P-450 CYP3A metabolismus MeSH
- cytochrom P450 CYP2C9 metabolismus MeSH
- flavonoidy * farmakologie MeSH
- flavonoly farmakologie MeSH
- lidé MeSH
- polypeptid C přenášející organické anionty * metabolismus MeSH
- přenašeče organických aniontů * metabolismus MeSH
- sérový albumin metabolismus MeSH
- sírany metabolismus MeSH
- systém (enzymů) cytochromů P-450 metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ampelopsin MeSH Prohlížeč
- CYP3A4 protein, human MeSH Prohlížeč
- cytochrom P-450 CYP3A MeSH
- cytochrom P450 CYP2C9 MeSH
- dihydromyricetin MeSH Prohlížeč
- flavonoidy * MeSH
- flavonoly MeSH
- myricetin MeSH Prohlížeč
- polypeptid C přenášející organické anionty * MeSH
- přenašeče organických aniontů * MeSH
- sérový albumin MeSH
- sírany MeSH
- SLCO1B1 protein, human MeSH Prohlížeč
- SLCO2B1 protein, human MeSH Prohlížeč
- systém (enzymů) cytochromů P-450 MeSH
Myricetin (MYR) and ampelopsin (AMP, or dihydromyricetin) are flavonoid aglycones found in certain plants and dietary supplements. During the presystemic biotransformation of flavonoids, mainly sulfate and glucuronide derivatives are produced, which are the dominant metabolites in the circulation. In this study, we tested the interactions of MYR, myricetin-3'-O-sulfate (M3'S), AMP, and ampelopsin-4'-O-sulfate (A4'S) with human serum albumin (HSA), cytochrome P450 enzymes (CYPs), and organic anion-transporting polypeptides (OATPs) using in vitro models, including the recently developed method for measuring flavonoid levels in living cells. M3'S and MYR bound to albumin with high affinity, and they showed moderate displacing effects versus the Site I marker warfarin. MYR, M3'S, AMP, and A4'S exerted no or only minor inhibitory effects on CYP2C9, CYP2C19, and CYP3A4 enzymes. M3'S and MYR caused considerable inhibitory actions on OATP1B1 at low micromolar concentrations (IC50 = 1.7 and 6.4 μM, respectively), while even their nanomolar levels resulted in strong inhibitory effects on OATP2B1 (IC50 = 0.3 and 0.4 μM, respectively). In addition, M3'S proved to be a substrate of OATP1B1 and OATP2B1. These results suggest that MYR-containing dietary supplements may affect the OATP-mediated transport of certain drugs, and OATPs are involved in the tissue uptake of M3'S.
Department of Laboratory Medicine Medical School University of Pécs Pécs Hungary
Department of Pharmacology Faculty of Pharmacy University of Pécs Pécs Hungary
Doctoral School of Biology Institute of Biology Eötvös Loránd University Budapest Hungary
Institute of Microbiology of the Czech Academy of Sciences Prague Czech Republic
Molecular Medicine Research Group János Szentágothai Research Centre University of Pécs Pécs Hungary
Zobrazit více v PubMed
Song X, Tan L, Wang M, et al. Myricetin: a review of the most recent research. Biomed Pharmacother. 2021;134:111017. doi:10.1016/j.biopha.2020.111017 PubMed DOI
Balázs O, Dombi Á, Zsidó BZ, et al. Inhibition of xanthine oxidase‐catalyzed xanthine and 6‐mercaptopurine oxidation by luteolin, naringenin, myricetin, ampelopsin and their conjugated metabolites. Biomed Pharmacother. 2023;167:115548. doi:10.1016/j.biopha.2023.115548 PubMed DOI
Imran M, Saeed F, Hussain G, et al. Myricetin: a comprehensive review on its biological potentials. Food Sci Nutr. 2021;9:5854‐5868. doi:10.1002/fsn3.2513 PubMed DOI PMC
Dang Y, Lin G, Xie Y, et al. Quantitative determination of myricetin in rat plasma by ultra performance liquid chromatography tandem mass spectrometry and its absolute bioavailability. Drug Res. 2014;64:516‐522. doi:10.1055/s-0033-1363220 PubMed DOI
Chen J, Wang X, Xia T, et al. Molecular mechanisms and therapeutic implications of dihydromyricetin in liver disease. Biomed Pharmacother. 2021;142:111927. doi:10.1016/j.biopha.2021.111927 PubMed DOI
Zhang J, Chen Y, Luo H, et al. Recent update on the pharmacological effects and mechanisms of dihydromyricetin. Front Pharmacol. 2018;9:1204. doi:10.3389/fphar.2018.01204 PubMed DOI PMC
Chen S, Zhao X, Wan J, et al. Dihydromyricetin improves glucose and lipid metabolism and exerts anti‐inflammatory effects in nonalcoholic fatty liver disease: a randomized controlled trial. Pharmacol Res. 2015;99:74‐81. doi:10.1016/j.phrs.2015.05.009 PubMed DOI
Fan L, Tong Q, Dong W, et al. Tissue distribution, excretion, and metabolic profile of dihydromyricetin, a flavonoid from vine tea (Ampelopsis grossedentata) after oral administration in rats. J Agric Food Chem. 2017;65:4597‐4604. doi:10.1021/acs.jafc.7b01155 PubMed DOI
Liu L, Sun S, Rui H, Li X. In vitro inhibitory effects of dihydromyricetin on human liver cytochrome P450 enzymes. Pharm Biol. 2017a;55:1868‐1874. doi:10.1080/13880209.2017.1339284 PubMed DOI PMC
Tong Q, Hou X, Fang J, et al. Determination of dihydromyricetin in rat plasma by LC–MS/MS and its application to a pharmacokinetic study. J Pharm Biomed Anal. 2015;114:455‐461. doi:10.1016/j.jpba.2015.06.030 PubMed DOI
Zhou J, Zeng P, Tu HH, Wang FQ. Development and application of high‐performance liquid chromatography for the study of ampelopsin pharmacokinetics in rat plasma using cloud‐point extraction. J Sep Sci. 2011;34:160‐168. doi:10.1002/jssc.201000382 PubMed DOI
Fanali G, di Masi A, Trezza V, Marino M, Fasano M, Ascenzi P. Human serum albumin: from bench to bedside. Mol Asp Med. 2012;33:209‐290. doi:10.1016/j.mam.2011.12.002 PubMed DOI
Yamasaki K, Chuang VTG, Maruyama T, Otagiri M. Albumin‐drug interaction and its clinical implication. Biochim Biophys Acta. 2013;1830:5435‐5443. doi:10.1016/j.bbagen.2013.05.005 PubMed DOI
Chen T, Zhu S, Lu Y, et al. Probing the interaction of anti‐cancer agent dihydromyricetin with human serum albumin: a typical method study. Anti Cancer Agents Med Chem. 2012;12:919‐928. doi:10.2174/187152012802650002 PubMed DOI
Qin C, Xie MX, Liu Y. Characterization of the myricetin‐human serum albumin complex by spectroscopic and molecular modeling approaches. Biomacromolecules. 2007;8:2182‐2189. doi:10.1021/bm070319c PubMed DOI
Kaci H, Bodnárová S, Fliszár‐Nyúl E, et al. Interaction of luteolin, naringenin, and their sulfate and glucuronide conjugates with human serum albumin, cytochrome P450 (CYP2C9, CYP2C19, and CYP3A4) enzymes and organic anion transporting polypeptide (OATP1B1 and OATP2B1) transporters. Biomed Pharmacother. 2023;157:114078. doi:10.1016/j.biopha.2022.114078 PubMed DOI
Mohos V, Fliszár‐Nyúl E, Schilli G, et al. Interaction of chrysin and its main conjugated metabolites chrysin‐7‐sulfate and chrysin‐7‐glucuronide with serum albumin. Int J Mol Sci. 2018;19:4073. doi:10.3390/ijms19124073 PubMed DOI PMC
Poór M, Boda G, Needs PW, Kroon PA, Lemli B, Bencsik T. Interaction of quercetin and its metabolites with warfarin: displacement of warfarin from serum albumin and inhibition of CYP2C9 enzyme. Biomed Pharmacother. 2017;88:574‐581. doi:10.1016/j.biopha.2017.01.092 PubMed DOI
McDonnell AM, Dang CH. Basic review of the cytochrome P450 system. J Adv Pract Oncol. 2013;4:263‐268. doi:10.6004/jadpro.2013.4.4.7 PubMed DOI PMC
Zhao M, Ma J, Li M, et al. Cytochrome P450 enzymes and drug metabolism in humans. Int J Mol Sci. 2021;22:12808. doi:10.3390/ijms222312808 PubMed DOI PMC
Li Y, Ning J, Wang Y, et al. Drug interaction study of flavonoids toward CYP3A4 and their quantitative structure activity relationship (QSAR) analysis for predicting potential effects. Toxicol Lett. 2018;294:27‐36. doi:10.1016/j.toxlet.2018.05.008 PubMed DOI
Liu L, Yin X, Wang X, Li X. Determination of dihydromyricetin in rat plasma by LC‐MS/MS and its application to a pharmacokinetic study. Pharm Biol. 2017b;55:657‐662. doi:10.1080/13880209.2016.1266669 PubMed DOI PMC
Lou D, Bao SS, Li YH, Lin QM, Yang SF, He JY. Inhibitory mechanisms of myricetin on human and rat liver cytochrome P450 enzymes. Eur J Drug Metab Pharmacokinet. 2019;44:611‐618. doi:10.1007/s13318-019-00546-y PubMed DOI
Östlund J, Zlabek V, Zamaratskaia G. In vitro inhibition of human CYP2E1 and CYP3A by quercetin and myricetin in hepatic microsomes is not gender dependent. Toxicology. 2017;381:10‐18. doi:10.1016/j.tox.2017.02.012 PubMed DOI
Shitara Y, Maeda K, Ikejiri K, Yoshida K, Horie T, Sugiyama Y. Clinical significance of organic anion transporting polypeptides (OATPs) in drug disposition: their roles in hepatic clearance and intestinal absorption: clinical significance of OATPs in drug disposition. Biopharm Drug Dispos. 2013;34:45‐78. doi:10.1002/bdd.1823 PubMed DOI
Kinzi J, Grube M, Meyer Zu Schwabedissen HE. OATP2B1—the underrated member of the organic anion transporting polypeptide family of drug transporters? Biochem Pharmacol. 2021;188:114534. doi:10.1016/j.bcp.2021.114534 PubMed DOI
Shitara Y. Clinical importance of OATP1B1 and OATP1B3 in drug‐drug interactions. Drug Metab Pharmacokinet. 2011;26:220‐227. doi:10.2133/dmpk.DMPK-10-RV-094 PubMed DOI
Fan X, Bai J, Hu M, et al. Drug interaction study of flavonoids toward OATP1B1 and their 3D structure activity relationship analysis for predicting hepatoprotective effects. Toxicology. 2020;437:152445. doi:10.1016/j.tox.2020.152445 PubMed DOI
Peng T, Liu S, Li Y, Zhang H, Hagenbuch B, Gui C. Investigating the interactions of flavonoids with human OATP2B1: inhibition assay, IC50 determination, and structure‐activity relationship analysis. RSC Med Chem. 2023;14:890‐898. doi:10.1039/d3md00078h PubMed DOI PMC
Wang X, Wolkoff AW, Morris ME. Flavonoids as a novel class of human organic anion‐transporting polypeptide OATP1B1 (OATP‐C) modulators. Drug Metab Dispos. 2005;33:1666‐1672. doi:10.1124/dmd.105.005926 PubMed DOI
Xiang Y, Liu S, Yang J, Wang Z, Zhang H, Gui C. Investigation of the interactions between flavonoids and human organic anion transporting polypeptide 1B1 using fluorescent substrate and 3D‐QSAR analysis. Biochim Biophys Acta Biomembr. 2020;1862:183210. doi:10.1016/j.bbamem.2020.183210 PubMed DOI
Navrátilová L, Mandíková JR, Pávek P, Mladěnka P, Trejtnar F. Honey flavonoids inhibit hOATP2B1 and hOATP1A2 transporters and hOATP‐mediated rosuvastatin cell uptake in vitro. Xenobiotica. 2018;48:745‐755. doi:10.1080/00498254.2017.1358469 PubMed DOI
Mohos V, Fliszár‐Nyúl E, Ungvári O, et al. Effects of chrysin and its major conjugated metabolites chrysin‐7‐sulfate and chrysin‐7‐glucuronide on cytochrome P450 enzymes and on OATP, P‐gp, BCRP, and MRP2 transporters. Drug Metab Dispos. 2020a;48:1064‐1073. doi:10.1124/dmd.120.000085 PubMed DOI
Mohos V, Fliszár‐Nyúl E, Ungvári O, et al. Inhibitory effects of quercetin and its main methyl, sulfate, and glucuronic acid conjugates on cytochrome P450 enzymes, and on OATP, BCRP and MRP2 transporters. Nutrients. 2020b;12:2306. doi:10.3390/nu12082306 PubMed DOI PMC
Kaci H, Bakos É, Needs PW, et al. The 2‐aminoethyl diphenylborinate‐based fluorescent method identifies quercetin and luteolin metabolites as substrates of organic anion transporting polypeptides, OATP1B1 and OATP2B1. Eur J Pharm Sci. 2024;196:106740. doi:10.1016/j.ejps.2024.106740 PubMed DOI
Káňová K, Petrásková L, Pelantová H, et al. Sulfated metabolites of luteolin, myricetin, and ampelopsin: Chemoenzymatic preparation and biophysical properties. J Agric Food Chem. 2020;68:11197‐11206. doi:10.1021/acs.jafc.0c03997 PubMed DOI
Hu T, Liu Y. Probing the interaction of cefodizime with human serum albumin using multi‐spectroscopic and molecular docking techniques. J Pharm Biomed Anal. 2015;107:325‐332. doi:10.1016/j.jpba.2015.01.010 PubMed DOI
Mohos V, Fliszár‐Nyúl E, Lemli B, et al. Testing the pharmacokinetic interactions of 24 colonic flavonoid metabolites with human serum albumin and cytochrome P450 enzymes. Biomol Ther. 2020c;10:409. doi:10.3390/biom10030409 PubMed DOI PMC
van de Weert M, Stella L. Fluorescence quenching and ligand binding: a critical discussion of a popular methodology. J Mol Struct. 2011;998:144‐150. doi:10.1016/j.molstruc.2011.05.023 DOI
Mohammadgholi A, Leilabadi‐Asl A, Divsalar A, Eslami‐Moghadam M. Multi‐spectroscopic studies of the interaction of new synthesized platin complex with human carrier protein of serum albumin. J Biomol Struct Dyn. 2021;39:1506‐1511. doi:10.1080/07391102.2020.1745690 PubMed DOI
Peschke M, Verkerk UH, Kebarle P. Features of the ESI mechanism that affect the observation of multiply charged noncovalent protein complexes and the determination of the association constant by the titration method. J Am Soc Mass Spectrom. 2004;15:1424‐1434. doi:10.1016/j.jasms.2004.05.005 PubMed DOI
Bakos É, Német O, Patik I, et al. A novel fluorescence‐based functional assay for human OATP1A2 and OATP1C1 identifies interaction between third‐generation P‐gp inhibitors and OATP1A2. FEBS J. 2020;287:2468‐2485. doi:10.1111/febs.15156 PubMed DOI
Patik I, Székely V, Német O, et al. Identification of novel cell‐impermeant fluorescent substrates for testing the function and drug interaction of organic anion‐transporting polypeptides, OATP1B1/1B3 and 2B1. Sci Rep. 2018;8:2630. doi:10.1038/s41598-018-20815-1 PubMed DOI PMC
Izumi S, Nozaki Y, Komori T, et al. Substrate‐dependent inhibition of organic anion transporting polypeptide 1B1: comparative analysis with prototypical probe substrates estradiol‐17β‐glucuronide, estrone‐3‐sulfate, and sulfobromophthalein. Drug Metab Dispos. 2013;41:1859‐1866. doi:10.1124/dmd.113.052290 PubMed DOI
Harding SD, Sharman JL, Faccenda E, et al. The IUPHAR/BPS guide to PHARMACOLOGY in 2019: updates and expansion to encompass the new guide to IMMUNOPHARMACOLOGY. Nucleic Acids Res. 2018;46:D1091‐D1106. doi:10.1093/nar/gkx1121 PubMed DOI PMC
Alexander SPH, Fabbro D, Kelly E, et al. The concise guide to PHARMACOLOGY 2023/24: enzymes. Br J Pharmacol. 2023a;180:S289‐S373. doi:10.1111/bph.16181 PubMed DOI
Alexander SPH, Fabbro D, Kelly E, et al. The concise guide to PHARMACOLOGY 2023/24: transporters. Br J Pharmacol. 2023b;180:S374‐S469. doi:10.1111/bph.16182 PubMed DOI
Mullie P, Clarys P, Deriemaeker P, Hebbelinck M. Estimation of daily human intake of food flavonoids. Plant Foods Hum Nutr. 2007;62:93‐98. doi:10.1007/s11130-007-0047-7 PubMed DOI
Murphy KJ, Walker KM, Dyer KA, Bryan J. Estimation of daily intake of flavonoids and major food sources in middle‐aged Australian men and women. Nutr Res. 2019;61:64‐81. doi:10.1016/j.nutres.2018.10.006 PubMed DOI
Zamora‐Ros R, Andres‐Lacueva C, Lamuela‐Raventós RM, et al. Estimation of dietary sources and flavonoid intake in a Spanish adult population (EPIC‐Spain). J Am Diet Assoc. 2010;110:390‐398. doi:10.1016/j.jada.2009.11.024 PubMed DOI
Aarbakke J. Clinical pharmacokinetics of phenylbutazone. Clin Pharmacokinet. 1978;3:369‐380. doi:10.2165/00003088-197803050-00003 PubMed DOI
Veronich K, White G, Kapoor A. Effects of phenylbutazone, tolbutamide, and clofibric acid on binding of racemic warfarin and its enantiomers to human serum albumin. J Pharm Sci. 1979;68:1515‐1518. doi:10.1002/jps.2600681213 PubMed DOI
Guo YJ, Zheng SL. Effect of myricetin on cytochrome P450 isoforms CYP1A2, CYP2C9 and CYP3A4 in rats. Pharmazie. 2014;69:306‐310. doi:10.1691/ph.2014.3842 PubMed DOI
Hao T, Ling Y, Wu M, et al. Enhanced oral bioavailability of docetaxel in rats combined with myricetin: in situ and in vivo evidences. Eur J Pharm Sci. 2017;101:71‐79. doi:10.1016/j.ejps.2017.02.009 PubMed DOI
Noé J, Portmann R, Brun M‐E, Funk C. Substrate‐dependent drug‐drug interactions between gemfibrozil, fluvastatin and other organic anion‐transporting peptide (OATP) substrates on OATP1B1, OATP2B1, and OATP1B3. Drug Metab Dispos. 2007;35:1308‐1314. doi:10.1124/dmd.106.012930 PubMed DOI
Cialdella‐Kam L, Nieman DC, Sha W, Meaney MP, Knab AM, Shanely RA. Dose‐response to 3 months of quercetin‐containing supplements on metabolite and quercetin conjugate profile in adults. Br J Nutr. 2013;109:1923‐1933. doi:10.1017/S0007114512003972 PubMed DOI
Day AJ, Mellon F, Barron D, Sarrazin G, Morgan MR, Williamson G. Human metabolism of dietary flavonoids: identification of plasma metabolites of quercetin. Free Radic Res. 2001;35:941‐952. doi:10.1080/10715760100301441 PubMed DOI
Mullen W, Edwards CA, Crozier A. Absorption, excretion and metabolite profiling of methyl‐, glucuronyl‐, glucosyl‐ and sulpho‐conjugates of quercetin in human plasma and urine after ingestion of onions. Br J Nutr. 2006;96:107‐116. doi:10.1079/bjn20061809 PubMed DOI