Testing the Pharmacokinetic Interactions of 24 Colonic Flavonoid Metabolites with Human Serum Albumin and Cytochrome P450 Enzymes

. 2020 Mar 06 ; 10 (3) : . [epub] 20200306

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32155912

Grantová podpora
EFOP-3.6.1.-16-2016-00004 European Social Fund - International
No. CZ.02.1.01/0.0/0.0/16_019/0000841 European Food Safety Authority - International
K123836 Nemzeti Kutatási Fejlesztési és Innovációs Hivatal - International
2017-1.2.1-NKP-2017-00002 NAP-2 - International
GINOP 2.3.2-15-2016-00050 "PEPSYS" Gazdaságfejlesztési és Innovációs Operatív Program - International

Flavonoids are abundant polyphenols in nature. They are extensively biotransformed in enterocytes and hepatocytes, where conjugated (methyl, sulfate, and glucuronide) metabolites are formed. However, bacterial microflora in the human intestines also metabolize flavonoids, resulting in the production of smaller phenolic fragments (e.g., hydroxybenzoic, hydroxyacetic and hydroxycinnamic acids, and hydroxybenzenes). Despite the fact that several colonic metabolites appear in the circulation at high concentrations, we have only limited information regarding their pharmacodynamic effects and pharmacokinetic interactions. Therefore, in this in vitro study, we investigated the interactions of 24 microbial flavonoid metabolites with human serum albumin and cytochrome P450 (CYP2C9, 2C19, and 3A4) enzymes. Our results demonstrated that some metabolites (e.g., 2,4-dihydroxyacetophenone, pyrogallol, O-desmethylangolensin, and 2-hydroxy-4-methoxybenzoic acid) form stable complexes with albumin. However, the compounds tested did not considerably displace Site I and II marker drugs from albumin. All CYP isoforms examined were significantly inhibited by O-desmethylangolensin; nevertheless, only its effect on CYP2C9 seems to be relevant. Furthermore, resorcinol and phloroglucinol showed strong inhibitory effects on CYP3A4. Our results demonstrate that, besides flavonoid aglycones and their conjugated derivatives, some colonic metabolites are also able to interact with proteins involved in the pharmacokinetics of drugs.

Zobrazit více v PubMed

Cook N.C., Samman S. Flavonoids – Chemistry, metabolism, cardioprotective effects, and dietary sources. J. Nutr. Biochem. 1996;7:66–76. doi: 10.1016/0955-2863(95)00168-9. DOI

Wattel A., Kamel S., Mentaverri R., Lorget F., Prouillet C., Petit J.P., Fardelonne P., Brazier M. Potent inhibitory effect of naturally occurring flavonoids quercetin and kaempferol on in vitro osteoclastic bone resorption. Biochem. Pharmacol. 2003;65:35–42. doi: 10.1016/S0006-2952(02)01445-4. PubMed DOI

Comalada M., Camuesco D., Sierra S., Ballester I., Xaus J., Gálvez J., Zarzuelo A. In vivo quercitrin anti-inflammatory effect involves release of quercetin, which inhibits inflammation through down--regulation of the NF--κB pathway. Eur. J. Immunol. 2005;35:584–592. doi: 10.1002/eji.200425778. PubMed DOI

Vida R.G., Fittler A., Somogyi-Végh A., Poór M. Dietary quercetin supplements: Assessment of online product informations and quantitation of quercetin in the products by high-performance liquid chromatography. Phytother. Res. 2019;33:1912–1920. doi: 10.1002/ptr.6382. PubMed DOI

Mohos V., Fliszár-Nyúl E., Schilli G., Hetényi C., Lemli B., Kunsági-Máté S., Bognár B., Poór M. Interaction of chrysin and its main conjugated metabolites chrysin-7-sulfate and chrysin-7-glucuronide with serum albumin. Int. J. Mol. Sci. 2018;19:4073. doi: 10.3390/ijms19124073. PubMed DOI PMC

Xiao J., Kai G. A Review of Dietary Polyphenol-Plasma Protein Interactions: Characterization, Influence on the Bioactivity, and Structure-Affinity Relationship. Crit. Rev. Food Sci. Nutr. 2012;52:85–101. doi: 10.1080/10408398.2010.499017. PubMed DOI

Korobkova E.A. Effect of Natural Polyphenols on CYP Metabolism: Implications for Diseases. Chem. Res. Toxicol. 2015;28:1359–1390. doi: 10.1021/acs.chemrestox.5b00121. PubMed DOI

Miron A., Aprotosoaie A.C., Trifan A., Xiao J. Flavonoids as modulators of metabolic enzymes and drugtransporters. Ann. N.Y. Acad. Sci. 2017;1398:152–167. doi: 10.1111/nyas.13384. PubMed DOI

Li Y., Paxton J.W. The effects of flavonoids on the ABC transporters: consequences for the pharmacokinetics of substrate drugs. Expert Opin. Drug Metab. Toxicol. 2013;9:267–285. doi: 10.1517/17425255.2013.749858. PubMed DOI

Cermak R. Effect of dietary flavonoids on pathways involved in drug metabolism. Expert Opin. Drug Metab. Toxicol. 2008;4:17–35. doi: 10.1517/17425255.4.1.17. PubMed DOI

Srinivas N.R. Recent trends in preclinical drug–drug interactionstudies of flavonoids – Review of case studies, issues and perspectives. Phytother. Res. 2015;29:1679–1691. doi: 10.1002/ptr.5447. PubMed DOI

Manach C., Donovan J.L. Pharmacokinetics and Metabolism of Dietary Flavonoids in Humans. Free Rad. Res. 2004;38:771–785. doi: 10.1080/10715760410001727858. PubMed DOI

Wang Y., Ho C.T. Metabolism of Flavonoids. In: Yoshikawa T., editor. Food Factors for Health Promotion. Volume 61. Karger Forum Nutr; .Basel, Switzerland: 2009. pp. 64–74. PubMed

Del Rio D., Rodriguez-Mateos A., Spencer J.P.E., Tognolini M., Borges G., Crozier A. Dietary (poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal. 2013;18:1818–1892. doi: 10.1089/ars.2012.4581. PubMed DOI PMC

Rechner A.R., Kuhnle G., Bremner P., Hubbard G.P., Moore K.P., Rice-Evans C.A. The metabolic fate of dietary polyphenols in humans. Free Rad. Biol. Med. 2002;33:220–235. doi: 10.1016/S0891-5849(02)00877-8. PubMed DOI

Aura A.M. Microbial metabolism of dietary phenolic compounds in the colon. Phytochem. Rev. 2008;3:407–429. doi: 10.1007/s11101-008-9095-3. DOI

Serra A., Macia A., Romero M.P., Reguant J., Ortega N., Motilva M.J. Metabolic pathways of the colonic metabolism of flavonoids (flavonols, flavones and flavanones) and phenolic acids. Food Chem. 2012;130:383–393. doi: 10.1016/j.foodchem.2011.07.055. DOI

Roufegarinejad L., Amarowicz R., Jahanban-Esfahlan A. Characterizing the interaction between pyrogallol and human serum albumin by spectroscopic and molecular docking methods. J. Biomol. Struct. Dyn. 2019;37:2766–2775. doi: 10.1080/07391102.2018.1496854. PubMed DOI

Honda S., Fukuyama Y., Nishiwaki H., Masuda A., Masuda T. Conversion to purpurogallin, a key step in the mechanism of the potent xanthine oxidase inhibitory activity of pyrogallol. Free Radic. Biol. Med. 2017;106:228–235. doi: 10.1016/j.freeradbiomed.2017.02.037. PubMed DOI

Mohos V., Pánovics A., Fliszár-Nyúl E., Schilli G., Hetényi C., Mladěnka P., Needs P.W., Kroon P.A., Pethő G., Poór M. Inhibitory Effects of Quercetin and Its Human and Microbial Metabolites on Xanthine Oxidase Enzyme. Int. J. Mol. Sci. 2019;20:2681. doi: 10.3390/ijms20112681. PubMed DOI PMC

Fanali G., Di Masi A., Trezza V., Marino M., Fasano M., Ascenzi P. Human serum albumin: from bench to bedside. Mol. Asp. Med. 2012;33:209–290. doi: 10.1016/j.mam.2011.12.002. PubMed DOI

Schmidt S., Gonzalez D., Derendorf H. Significance of protein binding in pharmacokinetics and pharmacodynamics. J. Pharm. Sci. 2010;99:1107–1122. doi: 10.1002/jps.21916. PubMed DOI

McDonnell A.M., Dang C.H. Basic Review of the Cytochrome P450 System. J. Adv. Pract. Oncol. 2013;4:263–268. PubMed PMC

Zanger U.M., Turpeinen M., Kathrin K., Schwab M. Functional pharmacogenetics/genomics of human cytochromes P450 involved in drug biotransformation. Anal. Bioanal. Chem. 2008;392:1093–1108. doi: 10.1007/s00216-008-2291-6. PubMed DOI

Furge L.L., Guengerich F.P. Cytochrome P450 enzymes in drug metabolism and chemical toxicology: An introduction. Biochem. Mol. Biol. Educ. 2006;34:66–74. doi: 10.1002/bmb.2006.49403402066. PubMed DOI

Van der Pijl P.C., Foltz M., Glube N.D., Peters S., Duchateau G.S.M.J.E. Pharmacokinetics of black tea-derived phenolic acids in plasma. J. Funct. Food. 2015;17:667–675. doi: 10.1016/j.jff.2015.06.020. DOI

Feliciano R.P., Boeres A., Massacessi L., Istas G., Ventura M.R., Nunes D.S.C., Heiss C., Rodriguez-Mateos A. Identification and quantification of novel cranberry-derived plasma and urinary (poly)phenols. Arch. Biochem. Biophys. 2016;599:31–41. doi: 10.1016/j.abb.2016.01.014. PubMed DOI

Migkos T., Applová L., Horký P., Tvrdý V., Karlíčková J., Macáková K., Hrubša M., Catapano M.C., Tomanek M., Pour M., et al. The influence of microbial isoflavonoid specific metabolites on platelets and transition metals iron and copper. Phytomedicine. 2019;62:152974. doi: 10.1016/j.phymed.2019.152974. PubMed DOI

Larsson T., Wedborg M., Turner D. Correction of inner-filter effect in fluorescence excitation-emission matrix spectrometry using Raman scatter. Anal. Chim. Acta. 2007;583:357–363. doi: 10.1016/j.aca.2006.09.067. PubMed DOI

Sueck F., Poór M., Faisal Z., Gertzen C.G.W., Cramer B., Lemli B., Kunsági-Máté S., Gohlke H., Humpf H.U. Interaction of Ochratoxin A and Its Thermal Degradation Product 2’R-Ochratoxin A with Human Serum Albumin. Toxins. 2018;10:256. doi: 10.3390/toxins10070256. PubMed DOI PMC

Faisal Z., Lemli B., Szerencsés D., Kunsági-Máté S., Bálint M., Hetényi C., Kuzma M., Mayer M., Poór M. Interactions of zearalenone and its reduced metabolites α-zearalenol and β-zearalenol with serum albumins: species differences, binding sites, and thermodynamics. Mycotoxin Res. 2018;34:269–278. doi: 10.1007/s12550-018-0321-6. PubMed DOI

Mohos V., Bencsik T., Boda G., Fliszlár-Nyúl E., Lemli B., Kunsági-Máté S., Poór M. Interactions of casticin, ipriflavone, and resveratrol with serum albumin and their inhibitory effects on CYP2C9 and CYP3A4 enzymes. Biomed. Pharmacother. 2018;107:777–784. doi: 10.1016/j.biopha.2018.08.068. PubMed DOI

Fliszár-Nyúl E., Mohos V., Bencsik T., Lemli B., Kunsági-Máté S., Poór M. Interactions of 7,8-Dihydroxyflavone with Serum Albumin as well as with CYP2C9, CYP2C19, CYP3A4, and Xanthine Oxidase Biotransformation Enzymes. Biomolecules. 2019;9:655. doi: 10.3390/biom9110655. PubMed DOI PMC

LLC . Schrödinger Release 2019-3: Maestro, Schrödinger. LLC; New York, NY, USA: 2019. [(accessed on 13 January 2020)]. Available online: https://www.schrodinger.com/maestro.

Stewart J.J. MOPAC: a semiempirical molecular orbital program. J. Comput. Aided Mol. Des. 1990;4:1–105. doi: 10.1007/BF00128336. PubMed DOI

Stewart J.J.P. Optimization of parameters for semiempirical methods VI: More modifications to the NDDO approximations and re-optimization of parameters. J. Mol. Model. 2013;19:1–32. doi: 10.1007/s00894-012-1667-x. PubMed DOI PMC

Morris G.M., Huey R., Lindstrom W., Sanner M.F., Belew R.K., Goodsell D.S., Olson A.J. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 2009;30:2785–2791. doi: 10.1002/jcc.21256. PubMed DOI PMC

Gardana C., Canzi E., Simonetti P. R(-)-O-desmethylangolensin is the main enantiomeric form of daidzein metabolite produced by human in vitro and in vivo. J. Chromatogr. B. 2014;953-954:30–37. doi: 10.1016/j.jchromb.2014.01.048. PubMed DOI

Niwa T., Yokoyama S., Matsugasaki N., Inomata E., Taira A., Osawa T. Stereochemical determination of O-desmethylangolensin produced from daidzein. Food Chem. 2015;171:153–156. doi: 10.1016/j.foodchem.2014.08.122. PubMed DOI

Murota K., Nakamura Y., Uehara M. Flavonoid metabolism: The interaction of metabolites and gut microbiota. Biosci. Biotechnol. Biochem. 2018;82:600–610. doi: 10.1080/09168451.2018.1444467. PubMed DOI

Shahrokh K., Orendt A., Yost G.S., Cheatham T.E. Quantum mechanically derived AMBER-compatible heme parameters for various states of the cytochrome P450 catalytic cycle. J. Comput. Chem. 2012;33:119–133. doi: 10.1002/jcc.21922. PubMed DOI PMC

Zsidó B.Z., Balog M., Erős N., Poór M., Mohos V., Fliszár-Nyúl E., Hetényi C., Nagane M., Hideg K., Kálai T., et al. Synthesis of Spin-Labelled Bergamottin: A Potent CYP3A4 Inhibitor with Antiproliferative Activity. Int. J. Mol. Sci. 2020;21:508. doi: 10.3390/ijms21020508. PubMed DOI PMC

Sengupta B., Sengupta P.K. The interaction of quercetin with human serum albumin: a fluorescence spectroscopic study. Biochem. Biophys. Res. Commun. 2002;299:400–403. doi: 10.1016/S0006-291X(02)02667-0. PubMed DOI

Xiao J., Cao H., Wang Y., Yamamoto K., Wei X. Structure–affinity relationship of flavones on binding to serum albumins: Effect of hydroxyl groups on ring A. Mol. Nutr. Food Res. 2010;54:S253–S260. doi: 10.1002/mnfr.200900454. PubMed DOI

Kimura Y., Ito H., Ohnishi R., Hatano T. Inhibitory effects of polyphenols on human cytochrome P450 3A4 and 2C9 activity. Food and Chem. Toxicol. 2010;48:429–435. doi: 10.1016/j.fct.2009.10.041. PubMed DOI

Shimada T., Tanaka K., Takenaka S., Murayama N., Martin M.V., Foroozesh M.K., Yamazaki H., Guengerich P., Komori M. Structure−Function Relationships of Inhibition of Human Cytochromes P450 1A1, 1A2, 1B1, 2C9, and 3A4 by 33 Flavonoid Derivatives. Chem. Res. Toxicol. 2010;23:1921–1935. doi: 10.1021/tx100286d. PubMed DOI PMC

Bedada K., Neerati P. Evaluation of the effect of quercetin treatment on CYP2C9 enzyme activity of diclofenac in healthy human volunteers. Phytother. Res. 2018;32:305–311. doi: 10.1002/ptr.5978. PubMed DOI

Poór M., Boda G., Needs P.W., Kroon P.A., Lemli B., Bencsik T. Interaction of quercetin and its metabolites with warfarin: Displacement of warfarin from serum albumin and inhibition of CYP2C9 enzyme. Biomed. Pharmacother. 2017;88:574–581. doi: 10.1016/j.biopha.2017.01.092. PubMed DOI

Rothwell J.A., Urpi-Sarda M., Boto-Ordoñez M., Llorach R., Farran-Codina A., Barupal D.K., Neveu V., Manach C., Andres-Lacueva C., Scalbert A. Systematic analysis of the polyphenol metabolome using the Phenol-Explorer database. Mol. Nutr. Food Res. 2016;60:203–211. doi: 10.1002/mnfr.201500435. PubMed DOI PMC

Xiao J., Zhao Y., Wang H., Yuan Y., Yang F., Zhang C., Yamamoto K. Noncovalent Interaction of Dietary Polyphenols with Common Human Plasma Proteins. J. Agric. Food Chem. 2011;59:10747–10754. doi: 10.1021/jf2029829. PubMed DOI

Dobretsov G.E., Syrejschikova T.I., Smolina N.V. On Mechanisms of Fluorescence Quenching by Water. Biophysics. 2014;59:231–237. doi: 10.1134/S0006350914020079. PubMed DOI

Poór M., Li Y., Kunsági-Máté S., Petrik J., Vladimir-Knežević S., Kőszegi T. Molecular displacement of warfarin from human serum albumin by flavonoid aglycones. J. Lumin. 2013;142:122–127. doi: 10.1016/j.jlumin.2013.03.056. DOI

Okabe N., Sagimori Y., Hokaze M. Binding Characteristics of DOPA (3,4-Dihydroxyphenylalanine) and Its Metabolites to Bovine Serum Albumin as Measured by Ultrafiltration Technique. Chem. Pharm. Bull. 1991;39:2115–2116. doi: 10.1248/cpb.39.2115. PubMed DOI

Zaidi N., Ajmal M.R., Rabbani G., Ahmad E., Khan R.H. A Comprehensive Insight into Binding of Hippuric Acid to Human Serum Albumin: A Study to Uncover Its Impaired Elimination through Hemodialysis. PLOS ONE. 2013;8:e71422. doi: 10.1371/journal.pone.0071422. PubMed DOI PMC

Zhang Y., Wu S., Qin Y., Liu J., Liu J., Liu J., Wang Q., Ren F., Zhang H. Interaction of phenolic acids and their derivatives with human serum albumin: Structure-affinity relationships and effects on antioxidant activity. Food Chem. 2018;240:1072–1080. doi: 10.1016/j.foodchem.2017.07.100. PubMed DOI

Jin X.L., Wei X., Qi F.M., Yu S.S., Zhou B., Bai S. Characterization of hydroxycinnamic acid derivatives binding to bovine serum albumin. Org. Biomol. Chem. 2012;10:3424–3431. doi: 10.1039/c2ob25237f. PubMed DOI

Saldanha J.F., Dan Y., Stockler-Pinto M.B., Soula H.A., Chambert S., Fouque D., Mafra D., Soulage C.O. Determination of the binding properties of the uremic toxin phenylacetic acid to human serum albumin. Biochimie. 2016;125:53–58. doi: 10.1016/j.biochi.2016.03.002. PubMed DOI

Yu S., Schuchardt M., Tölle M., Van der Giet M., Zidek W., Dzubiella J., Ballauff M. Interaction of human serum albumin with uremic toxins: a thermodynamic study. RSC Adv. 2017;7:27913–27922. doi: 10.1039/C7RA02838E. DOI

Zhang N., Li L., Wang P., Sun H., Wu Z., Piao C., Wang X. Pharmacokinetics of the main compounds absorbed into blood after oral administration of Liu Wei Di Huang Wan, a typical combinatorial intervention of Chinese medical formula. J. Nat. Med. 2013;67:36–41. doi: 10.1007/s11418-012-0641-3. PubMed DOI

Pimpao R.C., Ventura M.R., Ferreira R.B., Williamson G., Santos C.N. Phenolic sulfates as new highly abundant metabolites in human plasma after ingestion of a mixed berry fruit purée. Br. J. N. 2015;113:454–463. doi: 10.1017/S0007114514003511. PubMed DOI

Watanabe S., Yamaguchi M., Sobue T., Takahashi T., Miura T., Arai Y., Mazur W., Wähälä K., Adlercreutz H. Pharmacokinetics of soybean isoflavones in plasma, urine and feces of men after ingestion of 60 g baked soybean powder (kinako) J. Nutr. 1998;128:1710–1715. doi: 10.1093/jn/128.10.1710. PubMed DOI

Nandakumar S.N., Mhatre M., Menon S., Shailajan S. A validated HPLC-ESI–MS/MS method for quantification of 2-hydroxy-4-methoxy benzoic acid from rat plasma and its application to pharmacokinetic study using sparse sampling methodology. J. Pharm. Biomed. Anal. 2014;100:190–198. PubMed

Qiao X., Ji S., Yu S.W., Lin X.H., Jin H.W., Duan Y.K., Zhang L.R., Guo D.A., Ye M. Identification of Key Licorice Constituents Which Interact with Cytochrome P450: Evaluation by LC/MS/MS Cocktail Assay and Metabolic Profiling. AAPS. J. 2014;16:101–113. doi: 10.1208/s12248-013-9544-9. PubMed DOI PMC

Barnes K.J., Rowland A., Polasek T.M., Miners J.O. Inhibition of human drug-metabolising cytochrome P450 and UDP-glucuronosyltransferase enzyme activities in vitro by uremic toxins. Eur. J. Clin. Pharmacol. 2014;70:1097–1106. doi: 10.1007/s00228-014-1709-7. PubMed DOI

Kopečná-Zapletalová M., Krasulová K., Anzenbacher P., Hodek P., Anzenbacherová E. Interaction of isoflavonoids with human liver microsomal cytochromes P450: inhibition of CYP enzyme activities. Xenobiotica. 2017;47:324–331. doi: 10.1080/00498254.2016.1195028. PubMed DOI

Atkinson C., Frankenfeld C.L., Lampe J.W. Gut bacterial metabolism of the soy isoflavone daidzein: exploring the relevance to human health. Exp. Biol. Med. 2005;230:155–170. doi: 10.1177/153537020523000302. PubMed DOI

Volpe D.A., Tobin G.A., Tavakkoli F., Dowling T.C., Light P.D., Parker R.J. Effect of uremic serum and uremic toxins on drug metabolism in human microsomes. Regul. Toxicol. Pharmacol. 2014;68:297–303. doi: 10.1016/j.yrtph.2013.10.006. PubMed DOI

Auw L., Subehan, Sukrasno, Kadota S., Tezuka Y. Constituents of Indonesian Medicinal Plant Averrhoa bilimbi and Their Cytochrome P450 3A4 and 2D6 Inhibitory Activities. Nat. Prod. Commun. 2015;10:57–62. PubMed

Ozaki H., Sugihara K., Watanabe Y., Ohta S., Kitamura S. Cytochrome P450-inhibitory activity of parabens and phthalates used in consumer products. J. Toxicol. Sci. 2016;41:551–560. doi: 10.2131/jts.41.551. PubMed DOI

Ekstrand B., Rasmussen M.K., Woll F., Zlabek V., Zamaratskaia G. In vitro gender-dependent inhibition of porcine cytochrome p450 activity by selected flavonoids and phenolic acids. Biomed Res. Int. 2015;2015:387918. doi: 10.1155/2015/387918. PubMed DOI PMC

Kim H., Roh H., Lee H.J., Chung S.Y., Choi S.O., Lee K.R., Han S.B. Determination of phloroglucinol in human plasma by high-performance liquid chromatography–mass spectrometry. J. Chromatogr. B. 2003;792:307–312. doi: 10.1016/S1570-0232(03)00316-7. PubMed DOI

Li X.Q., Wang R.T., Wang Q.H., Tang X.L., Lu C.T., Gong H.G., Wen A.D. Determination of phloroglucinol by HPLC-MS/MS and its application to a bioequivalence study in healthy volunteers. Eur. Rev. Med. Pharmacol. Sci. 2017;21:1990–1998. PubMed

Najmanová I., Pourová J., Vopršalová M., Pilařová V., Semecký V., Nováková L., Mladěnka P. Flavonoid metabolite 3-(3-hydroxyphenyl)propionic acid formed by human microflora decreases arterial blood pressure in rats. Mol. Nutr. Food Res. 2016;60:981–991. doi: 10.1002/mnfr.201500761. PubMed DOI

Pourová J., Najmanová I., Vopršalová M., Migkos T., Pilařová V., Applová L., Nováková L., Mladěnka P. Two flavonoid metabolites, 3,4-dihydroxyphenylacetic acid and 4-methylcatechol, relax arteries ex vivo and decrease blood pressure in vivo. Vascul. Pharmacol. 2018;111:36–43. doi: 10.1016/j.vph.2018.08.008. PubMed DOI

Applová L., Karlíčková J., Warncke P., Macáková K., Hrubša M., Macháček M., Tvrdý V., Fischer D., Mladěnka P. ; Methylcatechol, a Flavonoid Metabolite with Potent Antiplatelet Effects. Mol. Nutr. Food Res. 2019;63:e1900261. doi: 10.1002/mnfr.201900261. PubMed DOI

Singh I.P., Bharate S.B. Phloroglucinol compounds of natural origin. Nat. Prod. Rep. 2006;23:558–591. doi: 10.1039/b600518g. PubMed DOI

Clifford M.N. Miscellaneous phenols in foods and beverages – nature, occurrence and dietary burden. J. Sci. Food Agric. 2000;80:1126–1137. doi: 10.1002/(SICI)1097-0010(20000515)80:7<1126::AID-JSFA604>3.0.CO;2-0. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...