4-Methylcatechol, a Flavonoid Metabolite with Potent Antiplatelet Effects
Jazyk angličtina Země Německo Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31343835
DOI
10.1002/mnfr.201900261
Knihovny.cz E-zdroje
- Klíčová slova
- 4-methylcatechol, aggregation, flavonoids, metabolites, platelets, pyrogallol,
- MeSH
- agregace trombocytů účinky léků MeSH
- inhibitory agregace trombocytů farmakologie MeSH
- inhibitory cyklooxygenasy farmakologie MeSH
- inhibitory enzymů farmakologie MeSH
- katecholy farmakologie MeSH
- kuřecí embryo MeSH
- kyselina arachidonová farmakologie MeSH
- lidé MeSH
- preklinické hodnocení léčiv metody MeSH
- pyrogalol farmakologie MeSH
- serotonin metabolismus MeSH
- thromboxan-A-synthasa antagonisté a inhibitory MeSH
- trombóza farmakoterapie MeSH
- zvířata MeSH
- Check Tag
- kuřecí embryo MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 4-methylcatechol MeSH Prohlížeč
- inhibitory agregace trombocytů MeSH
- inhibitory cyklooxygenasy MeSH
- inhibitory enzymů MeSH
- katecholy MeSH
- kyselina arachidonová MeSH
- pyrogalol MeSH
- serotonin MeSH
- thromboxan-A-synthasa MeSH
SCOPE: Intake of flavonoids from the diet can be substantial, and epidemiological studies suggest that these compounds can decrease the incidence of cardiovascular diseases by involvement with increased platelet aggregation. Although parent flavonoids possess antiplatelet effects, the clinical importance is disputable due to their very low bioavailability. Most of them are metabolized by human colon bacteria to smaller phenolic compounds, which reach higher plasma concentrations than the parent flavonoids. In this study, a series of 29 known flavonoid metabolites is tested for antiplatelet potential. METHODS AND RESULTS: Four compounds appear to have a biologically relevant antiplatelet effect using whole human blood. 4-Methylcatechol (4-MC) is clearly the most efficient being about 10× times more active than clinically used acetylsalicylic acid. This ex vivo effect is also confirmed using a potentially novel in-vivo-like ex ovo hen's egg model of thrombosis, where 4-MC significantly increases the survival of the eggs. The mechanism of action is studied and it seems that it is mainly based on the influence on intracellular calcium signaling. CONCLUSION: This study shows that some flavonoid metabolites formed by human microflora have a strong antiplatelet effect. This information can help to explain the antiplatelet potential of orally given flavonoids.
Zobrazit více v PubMed
K. B. Pandey, S. I. Rizvi, Oxid. Med. Cell. Longevity 2009, 2, 270.
M. Gorzynik-Debicka, P. Przychodzen, F. Cappello, A. Kuban-Jankowska, A. M. Gammazza, N. Knap, M. Wozniak, M. Gorska-Ponikowska, Int. J. Mol. Sci. 2018, 19, 686.
J. Mursu, S. Voutilainen, T. Nurmi, T. P. Tuomainen, S. Kurl, J. T. Salonen, Br. J. Nutr. 2008, 100, 890.
S. O. Keli, M. G. Hertog, E. J. Feskens, D. Kromhout, Arch. Intern. Med. 1996, 156, 637.
P. C. Elwood, S. Renaud, D. S. Sharp, A. D. Beswick, J. R. Obrien, J. W. G. Yarnell, Circulation 1991, 83, 38.
L. Applova, J. Karlickova, M. Riha, T. Filipsky, K. Macakova, J. Spilkova, P. Mladenka, Phytomedicine 2017, 35, 11.
G. P. Hubbard, S. Wolffram, J. A. Lovegrove, J. M. Gibbins, Proc. Nutr. Soc. 2003, 62, 469.
T. Walle, Free Radical Biol. Med. 2004, 36, 829.
D. M. Gott, L. A. Griffiths, Xenobiotica 1987, 17, 423.
L. A. Griffiths, A. Barrow, Biochem. J. 1972, 130, 1161.
D. H. Kim, E. A. Jung, I. S. Sohng, J. A. Han, T. H. Kim, M. J. Han, Arch. Pharmacal Res. 1998, 21, 17.
D. D. Rio, A. Rodriguez-Mateos, J. P. Spencer, M. Tognolini, G. Borges, A. Crozier, Antioxid. Redox Signaling 2013, 18, 1818.
S. M. Henning, P. Wang, N. Abgaryan, R. Vicinanza, D. M. de Oliveira, Y. Zhang, R. P. Lee, C. L. Carpenter, W. J. Aronson, D. Heber, Mol. Nutr. Food Res. 2013, 57, 483.
M. R. Olthof, P. C. Hollman, M. N. Buijsman, J. M. van Amelsvoort, M. B. Katan, J. Nutr. 2003, 133, 1806.
A. Crozier, D. D. Rio, M. N. Clifford, Mol. Aspects Med. 2010, 31, 446.
R. C. Pimpao, M. R. Ventura, R. B. Ferreira, G. Williamson, C. N. Santos, Br. J. Nutr. 2015, 113, 454.
R. P. Feliciano, A. Boeres, L. Massacessi, G. Istas, M. R. Ventura, C. N. D. Santos, C. Heiss, A. Rodriguez-Mateos, Arch. Biochem. Biophys. 2016, 599, 31.
P. C. Karlsson, U. Huss, A. Jenner, B. Halliwell, L. Bohlin, J. J. Rafter, J. Nutr. 2005, 135, 2343.
I. Najmanova, J. Pourova, M. Voprsalova, V. Pilarova, V. Semecky, L. Novakova, P. Mladenka, Mol. Nutr. Food Res. 2016, 60, 981.
M. C. Chang, H. H. Chang, C. P. Chan, H. Y. Chou, B. E. Chang, S. Y. Yeung, T. M. Wang, J. H. Jeng, Toxicol. Appl. Pharmacol. 2012, 263, 287.
L. M. Ostertag, N. O'Kennedy, G. W. Horgan, P. A. Kroon, G. G. Duthie, B. de Roos, Mol. Nutr. Food Res. 2011, 55, 1624.
O. Toth, A. Calatzis, S. Penz, H. Losonczy, W. Siess, Thromb. Haemostasis 2006, 96, 781.
Cayman Chemical Company, COX inhibitor screening assay kit, https://www.caymanchem.com/app/template/Product.vm/catalog/560131 (accessed: March 2019).
T. S. Chang, H. M. Kim, K. S. Lee, L. Y. Khil, W. C. Mar, C. K. Ryu, C. K. Moon, Biochem. Pharmacol. 1997, 54, 259.
Cayman Chemical Company, Thromboxane B2 ELISA kit, https://www.caymanchem.com/product/501020 (accessed: March 2019).
J. Karlickova, M. Riha, T. Filipsky, K. Macakova, R. Hrdina, P. Mladenka, Planta Med. 2016, 82, 76.
F. Schlenk, S. Werner, M. Rabel, F. Jacobs, C. Bergemann, J. H. Clement, D. Fischer, Arch. Toxicol. 2017, 91, 3271.
A. Tesch, C. Wenisch, K. H. Herrmann, J. R. Reichenbach, P. Warncke, D. Fischer, F. A. Muller, Mater. Sci. Eng., C 2017, 81, 422.
V. Hamburger, H. L. Hamilton, J. Morphol. 1951, 88, 49.
J. A. Rothwell, M. Urpi-Sarda, M. Boto-Ordonez, R. Llorach, A. Farran-Codina, D. K. Barupal, V. Neveu, C. Manach, C. Andres-Lacueva, A. Scalbert, Mol. Nutr. Food Res. 2016, 60, 203.
Z. D. Liu, R. C. Hider, Med. Res. Rev. 2002, 22, 26.
J. G. White, G. H. Rao, J. M. Gerrard, Am. J. Pathol. 1974, 77, 135.
T. Cornwell, W. Cohick, I. Raskin, Phytochemistry 2004, 65, 995.
P. Mladenka, L. Zatloukalova, T. Filipsky, R. Hrdina, Free Radical Biol. Med. 2010, 49, 963.
M. Sagara, T. Kanda, M. NJelekera, T. Teramoto, L. Armitage, N. Birt, C. Birt, Y. Yamori, J. Am. Coll. Nutr. 2004, 23, 85.
G. Williamson, C. Manach, Am. J. Clin. Nutr. 2005, 81, 243S.
L. Hooper, P. A. Kroon, E. B. Rimm, J. S. Cohn, I. Harvey, K. A. Le Cornu, J. J. Ryder, W. L. Hall, A. Cassidy, Am. J. Clin. Nutr. 2008, 88, 38.
M. Erat, H. Sakiroglu, O. I. Kufrevioglu, Food Chem. 2006, 95, 503.
H. Schneider, A. Schwiertz, M. D. Collins, M. Blaut, Arch. Microbiol. 1999, 171, 81.
S. Chirumbolo, Can. J. Physiol. Pharmacol. 2012, 90, 1652.
J. A. Guerrero, L. Navarro-Nunez, M. L. Lozano, C. Martinez, V. Vicente, J. M. Gibbins, J. Rivera, Br. J. Clin. Pharmacol. 2007, 64, 133.
J. Pourova, I. Najmanova, M. Voprsalova, T. Migkos, V. Pilarova, L. Applova, L. Novakova, P. Mladenka, Vasc. Pharmacol. 2018, 111, 36.
H. Schneider, A. Schwiertz, M. D. Collins, M. Blaut, Arch. Microbiol. 1999, 171, 81.
J. S. Bae, Food Chem. Toxicol. 2011, 49, 1572.
T. T. Li, Y. S. Zhang, L. He, N. S. Li, J. Peng, Y. J. Li, Clin. Exp. Pharmacol. Physiol. 2011, 38, 27.
I. S. Kim, M. Yang, O. H. Lee, S. N. Kang, LWT Food Sci. Technol. 2011, 44, 1328.
S. De, S. Mondal, S. Banerjee, Stevioside: Technology, Applications and Health, Wiley-Blackwell, Chichester, UK 2013.
B. Dahlen, L. O. Boreus, P. Anderson, R. Andersson, O. Zetterstrom, Allergy 1994, 49, 43.
N. P. Luepke, Food Chem. Toxicol. 1985, 23, 287.
M. Rosenbruch, Altex 1994, 11, 199.
Y. Tahara, S. Omori, A. Hashimoto, Dev., Growth Differ. 1983, 25, 75.
G. Hsiao, F. N. Ko, T. T. Jong, C. M. Teng, Biol. Pharm. Bull. 1998, 21, 688.
C. Faggio, A. Sureda, S. Morabito, A. Sanches-Silva, A. Mocan, S. F. Nabavi, S. M. Nabavi, Eur. J. Pharmacol. 2017, 807, 91.