Acetylsalicylic acid and vorapaxar are less active, while 4-methylcatechol is more active, in type 1 diabetic patients compared to healthy controls
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, srovnávací studie
Grantová podpora
NU21-02-00135 and NW25-01-00008
Agentura Pro Zdravotnický Výzkum České Republiky
NU21-02-00135 and NW25-01-00008
Agentura Pro Zdravotnický Výzkum České Republiky
NU21-02-00135 and NW25-01-00008
Agentura Pro Zdravotnický Výzkum České Republiky
NU21-02-00135 and NW25-01-00008
Agentura Pro Zdravotnický Výzkum České Republiky
NU21-02-00135 and NW25-01-00008
Agentura Pro Zdravotnický Výzkum České Republiky
NU21-02-00135 and NW25-01-00008
Agentura Pro Zdravotnický Výzkum České Republiky
260 663
Univerzita Karlova v Praze
MH CZ - DRO [UHHK, 00179906]
Ministerstvo Zdravotnictví Ceské Republiky
MH CZ - DRO [UHHK, 00179906]
Ministerstvo Zdravotnictví Ceské Republiky
CZ.02.01.01/00/22_008/0004607
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
40775339
PubMed Central
PMC12329942
DOI
10.1186/s12933-025-02891-6
PII: 10.1186/s12933-025-02891-6
Knihovny.cz E-zdroje
- Klíčová slova
- 4-methylcatechol, Aggregation, Diabetes mellitus, Platelets,
- MeSH
- agregace trombocytů * účinky léků MeSH
- Aspirin * terapeutické užití farmakologie škodlivé účinky MeSH
- diabetes mellitus 1. typu * krev diagnóza farmakoterapie MeSH
- dospělí MeSH
- inhibitory agregace trombocytů * terapeutické užití škodlivé účinky farmakologie MeSH
- katecholy * terapeutické užití farmakologie MeSH
- krevní glukóza metabolismus účinky léků MeSH
- laktony * terapeutické užití farmakologie MeSH
- léková rezistence MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- pyridiny * terapeutické užití farmakologie MeSH
- studie případů a kontrol MeSH
- ticagrelor terapeutické užití MeSH
- trombocyty * účinky léků metabolismus MeSH
- výsledek terapie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- Aspirin * MeSH
- inhibitory agregace trombocytů * MeSH
- katecholy * MeSH
- krevní glukóza MeSH
- laktony * MeSH
- pyridiny * MeSH
- ticagrelor MeSH
- vorapaxar MeSH Prohlížeč
INTRODUCTION: It is well known that platelets from diabetic patients can be resistant to clinically used antiplatelet drugs. METHODS: To assess the phenomenon in more detail, 50 adult patients suffering from type 1 diabetes mellitus (T1D) were recruited and their responses to 7 platelet aggregation inducers, as well as to 3 clinically used antiplatelet drugs (acetylsalicylic acid /ASA/, ticagrelor and vorapaxar) and one experimental compound, 4-methylcatechol, were assessed ex vivo. A control group of 50 generally healthy age-matched controls was also included for comparison. RESULTS: T1D patients exhibited a lower aggregation reaction to 3 inducers but were conversely more resistant to the effect of ASA and vorapaxar than controls. Ticagrelor tended to be less active in T1D as well. On the other hand, 4-methylcatechol was equally or even more potent in T1D than in healthy controls. Plasma glucose levels above 7 mM were associated with lower platelet aggregation responses to four aggregation inducers. In contrast, the effect of 4-methylcatechol, unlike that of ASA, did not appear to be strongly influenced by glycemia. Further subanalyses, excluding hypertensive patients and significantly more frequently administered drugs, did not substantially modify the results. CONCLUSION: Conclusively, 4-methylcatechol seems to be a prototypical antiplatelet compound with a strong effect even in diabetic patients.
Zobrazit více v PubMed
Fan J, Watanabe T. Atherosclerosis: known and unknown. Pathol Int. 2022;72(3):151–60. PubMed
Frostegård J. Immunity, atherosclerosis and cardiovascular disease. BMC Med. 2013;11:117. PubMed PMC
Vinik AI, Erbas T, Park TS, Nolan R, Pittenger GL. Platelet dysfunction in type 2 diabetes. Diabetes Care. 2001;24(8):1476–85. PubMed
Khodadi E. Platelet function in cardiovascular disease: activation of molecules and activation by molecules. Cardiovasc Toxicol. 2020;20(1):1–10. PubMed
Bluestone JA, Herold K, Eisenbarth G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature. 2010;464(7293):1293–300. PubMed PMC
Maahs DM, West NA, Lawrence JM, Mayer-Davis EJ. Epidemiology of type 1 diabetes. Endocrinol Metab Clin North Am. 2010;39(3):481–97. PubMed PMC
Haak T, Gölz S, Fritsche A, Füchtenbusch M, Siegmund T, Schnellbächer E, Klein HH, Uebel T, Droßel D. Therapy of type 1 diabetes. Exp Clin Endocrinol Diabetes. 2019;127(S 01):S27–38. PubMed
Trovati M, Anfossi G, Cavalot F, Massucco P, Mularoni E, Emanuelli G. Insulin directly reduces platelet sensitivity to aggregating agents: studies in vitro and in vivo. Diabetes. 1988;37(6):780–6. PubMed
Kakouros N, Rade JJ, Kourliouros A, Resar JR. Platelet function in patients with diabetes mellitus: from a theoretical to a practical perspective. Int J Endocrinol. 2011;2011:742719. PubMed PMC
Rauchfuss S, Geiger J, Walter U, Renne T, Gambaryan S. Insulin Inhibition of platelet-endothelial interaction is mediated by insulin effects on endothelial cells without direct effects on platelets. J Thromb Haemost. 2008;6(5):856–64. PubMed
Santilli F, Simeone P, Liani R, Davì G. Platelets and diabetes mellitus. Prostaglandins Other Lipid Mediat. 2015;120:28–39. PubMed
Bridges JM, Dalby A, Millar JHD, Weaver JA. An effect of D-glucose on platelet stickiness. Lancet. 1965;285(7376):75–7. PubMed
Hrubša M, Alva R, Parvin MS, Macáková K, Karlíčková J, Fadraersada J, Konečný L, Moravcová M, Carazo A, Mladěnka P. Comparison of antiplatelet effects of phenol derivatives in humans. Biomolecules. 2022;12(1):117. PubMed PMC
Konečný L, Hrubša M, Karlíčková J, Carazo A, Javorská L, Matoušová K, Krčmová LK, Šmahelová A, Blaha V, Bláha M, et al. The effect of 4-Methylcatechol on platelets in Familial hypercholesterolemic patients treated with lipid apheresis and/or proprotein convertase subtilisin kexin 9 monoclonal antibodies. Nutrients. 2023;15(8):1842. PubMed PMC
Ferri N, Corsini A, Bellosta S. Pharmacology of the new P2Y12 receptor inhibitors: insights on Pharmacokinetic and pharmacodynamic properties. Drugs. 2013;73(15):1681–709. PubMed
Butkus A, Skrinska VA, Peter Schumacher O. Thromboxane production and platelet aggregation in diabetic subjects with clinical complications. Thromb Res. 1980;19(1):211–23. PubMed
Applová L, Karlíčková J, Warncke P, Macáková K, Hrubša M, Macháček M, Tvrdý V, Fischer D, Mladěnka P. 4-Methylcatechol, a flavonoid metabolite with potent antiplatelet effects. Mol Nutr Food Res. 2019;63(20):1900261. PubMed
Hrubša M, Konečný L, Paclíková M, Parvin MS, Skořepa P, Musil F, Karlíčková J, Javorská L, Matoušová K, Krčmová LK et al. The Antiplatelet Effect of 4-Methylcatechol in a Real Population Sample and Determination of the Mechanism of Action. PubMed PMC
Carazo A, Hrubša M, Konečný L, Skořepa P, Paclíková M, Musil F, Karlíčková J, Javorská L, Matoušová K, Krčmová LK, et al. Sex-Related differences in platelet aggregation: A literature review supplemented with local data from a group of generally healthy individuals. Semin Thromb Hemost. 2022;49(05):488–506. PubMed
Krcmova L, Solichova D, Melichar B, Kasparova M, Plisek J, Sobotka L, Solich P. Determination of neopterin, kynurenine, Tryptophan and creatinine in human serum by high throuput HPLC. Talanta. 2011;85(3):1466–71. PubMed
Pedersen AK, FitzGerald GA. Dose-related kinetics of aspirin. Presystemic acetylation of platelet cyclooxygenase. N Engl J Med. 1984;311(19):1206–11. PubMed
Rosenkranz B, Frölich JC. Plasma concentrations and anti-platelet effects after low dose acetylsalicylic acid. Prostaglandins Leukot Med. 1985;19(3):289–300. PubMed
Colwell JA, Nair RM, Halushka PV, Rogers C, Whetsell A, Sagel J. Platelet adhesion and aggregation in diabetes mellitus. Metabolism. 1979;28(4 Suppl 1):394–400. PubMed
Kobbah AM, Ewald U, Tuvemo T. Platelet aggregability during the first two years of type 1 (insulin-dependent) diabetes mellitus in children. Diabetologia. 1989;32(10):729–35. PubMed
Turk Z, Flego I, Kerum G. Platelet aggregation in type 1 diabetes without microvascular disease during continuous subcutaneous insulin infusion. Horm Metab Res. 1996;28(2):95–100. PubMed
Trovati M, Anfossi G, Massucco P, Mattiello L, Costamagna C, Piretto V, Mularoni E, Cavalot F, Bosia A, Ghigo D. Insulin stimulates nitric oxide synthesis in human platelets and, through nitric oxide, increases platelet concentrations of both guanosine-3’, 5’-cyclic monophosphate and adenosine-3’, 5’-cyclic monophosphate. Diabetes. 1997;46(5):742–9. PubMed
Sudic D, Razmara M, Forslund M, Ji Q, Hjemdahl P, Li N. High glucose levels enhance platelet activation: involvement of multiple mechanisms. Br J Haematol. 2006;133(3):315–22. PubMed
Ferroni P, Basili S, Falco A, Davì G. Platelet activation in type 2 diabetes mellitus. J Thromb Haemost. 2004;2(8):1282–91. PubMed
Colwell JA, Nesto RW. The platelet in diabetes: focus on prevention of ischemic events. Diabetes Care. 2003;26(7):2181–8. PubMed
Tang WH, Stitham J, Jin Y, Liu R, Lee SH, Du J, Atteya G, Gleim S, Spollett G, Martin K, et al. Aldose reductase-mediated phosphorylation of p53 leads to mitochondrial dysfunction and damage in diabetic platelets. Circulation. 2014;129(15):1598–609. PubMed PMC
Winocour PD. Platelet abnormalities in diabetes mellitus. Diabetes. 1992;41(Suppl 2):26–31. PubMed
Lee EY, Kim SJ, Song YJ, Choi SJ, Song J. Immature platelet fraction in diabetes mellitus and metabolic syndrome. Thromb Res. 2013;132(6):692–5. PubMed
Wilder DM, Reid TJ, Bakaltcheva IB. Hypertonic resuscitation and blood coagulation: in vitro comparison of several hypertonic solutions for their action on platelets and plasma coagulation. Thromb Res. 2002;107(5):255–61. PubMed
Gende OA. Effect of hyperosmolarity on agonist-induced increases of intracellular calcium in human platelets. Thromb Res. 2003;110(1):33–7. PubMed
Green A, Johnson JL. Evidence for impaired coupling of receptors to Gi protein in adipocytes from streptozocin-induced diabetic rats. Diabetes. 1991;40(1):88–94. PubMed
Wang J, Yue X, Meng C, Wang Z, Jin X, Cui X, Yang J, Shan C, Gao Z, Yang Y, et al. Acute hyperglycemia May induce renal tubular injury through mitophagy Inhibition. Front Endocrinol (Lausanne). 2020;11:536213. PubMed PMC
Kawano H, Motoyama T, Hirashima O, Hirai N, Miyao Y, Sakamoto T, Kugiyama K, Ogawa H, Yasue H. Hyperglycemia rapidly suppresses flow-mediated endothelium-dependent vasodilation of brachial artery. J Am Coll Cardiol. 1999;34(1):146–54. PubMed
Chettab K, Zibara K, Belaiba SR, McGregor JL. Acute hyperglycaemia induces changes in the transcription levels of 4 major genes in human endothelial cells: macroarrays-based expression analysis. Thromb Haemost. 2002;87(1):141–8. PubMed
Mehta SS, Silver RJ, Aaronson A, Abrahamson M, Goldfine AB. Comparison of aspirin resistance in type 1 versus type 2 diabetes mellitus. Am J Cardiol. 2006;97(4):567–70. PubMed
Fateh-Moghadam S, Plöckinger U, Cabeza N, Htun P, Reuter T, Ersel S, Gawaz M, Dietz R, Bocksch W. Prevalence of aspirin resistance in patients with type 2 diabetes. Acta Diabetol. 2005;42(2):99–103. PubMed
Gasparyan AY, Watson T, Lip GY. The role of aspirin in cardiovascular prevention: implications of aspirin resistance. J Am Coll Cardiol. 2008;51(19):1829–43. PubMed
Tang WH, Stitham J, Gleim S, Di Febbo C, Porreca E, Fava C, Tacconelli S, Capone M, Evangelista V, Levantesi G, et al. Glucose and collagen regulate human platelet activity through aldose reductase induction of thromboxane. J Clin Invest. 2011;121(11):4462–76. PubMed PMC
Kim S, Kunapuli SP. P2Y12 receptor in platelet activation. Platelets. 2011;22(1):56–60. PubMed
Yang J, Qi G, Hu F, Zhang X, Xing Y, Wang P. Association between Ticagrelor plasma concentration and bleeding events in Chinese patients with acute coronary syndrome. Br J Clin Pharmacol. 2022;88(11):4870–80. PubMed
Chen X, Kosoglou T, Statkevich P, Kumar B, Li J, Dockendorf MF, Wang G, Lowe RS, Jiang J, Liu H, et al. Pharmacokinetics of vorapaxar and its metabolite following oral administration in healthy Chinese and American subjects. Int J Clin Pharmacol Ther. 2014;52(10):889–99. PubMed
Mehta JL. Modulation of arterial thrombosis by angiotensin-converting enzyme Inhibition and angiotensin II type 1-receptor Blockade. Am J Cardiol. 1998;82(10, Supplement 1):S53–6. PubMed
Kao DS, Zhang SW, Vap AR. A systematic review on the effect of common medications on platelet count and function: which medications should be stopped before getting a platelet-Rich plasma injection?? Orthop J Sports Med. 2022;10(4):23259671221088820. PubMed PMC
Pan CF, Shen MY, Wu CJ, Hsiao G, Chou DS, Sheu JR. Inhibitory mechanisms of gabapentin, an Antiseizure drug, on platelet aggregation. J Pharm Pharmacol. 2007;59(9):1255–61. PubMed
Yamamoto P, Benzi J, Dach F, de Moraes N. Therapeutic drug monitoring of gabapentin: the applicability in patients with neuropathic pain. Brazilian J Pharm Sci. 2022;58.
Carazo APM, Fadraersada J, et al. Type 1 diabetes mellitus patients had lower total vitamin K levels and increased sensitivity to direct anticoagulants. PLoS ONE. 2025;20(6):e0326580. PubMed PMC
Feliciano RP, Boeres A, Massacessi L, Istas G, Ventura MR, Nunes dos Santos C, Heiss C, Rodriguez-Mateos A. Identification and quantification of novel cranberry-derived plasma and urinary (poly)phenols. Arch Biochem Biophys. 2016;599:31–41. PubMed