Acetylsalicylic acid and vorapaxar are less active, while 4-methylcatechol is more active, in type 1 diabetic patients compared to healthy controls

. 2025 Aug 07 ; 24 (1) : 323. [epub] 20250807

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, srovnávací studie

Perzistentní odkaz   https://www.medvik.cz/link/pmid40775339

Grantová podpora
NU21-02-00135 and NW25-01-00008 Agentura Pro Zdravotnický Výzkum České Republiky
NU21-02-00135 and NW25-01-00008 Agentura Pro Zdravotnický Výzkum České Republiky
NU21-02-00135 and NW25-01-00008 Agentura Pro Zdravotnický Výzkum České Republiky
NU21-02-00135 and NW25-01-00008 Agentura Pro Zdravotnický Výzkum České Republiky
NU21-02-00135 and NW25-01-00008 Agentura Pro Zdravotnický Výzkum České Republiky
NU21-02-00135 and NW25-01-00008 Agentura Pro Zdravotnický Výzkum České Republiky
260 663 Univerzita Karlova v Praze
MH CZ - DRO [UHHK, 00179906] Ministerstvo Zdravotnictví Ceské Republiky
MH CZ - DRO [UHHK, 00179906] Ministerstvo Zdravotnictví Ceské Republiky
CZ.02.01.01/00/22_008/0004607 Ministerstvo Školství, Mládeže a Tělovýchovy

Odkazy

PubMed 40775339
PubMed Central PMC12329942
DOI 10.1186/s12933-025-02891-6
PII: 10.1186/s12933-025-02891-6
Knihovny.cz E-zdroje

INTRODUCTION: It is well known that platelets from diabetic patients can be resistant to clinically used antiplatelet drugs. METHODS: To assess the phenomenon in more detail, 50 adult patients suffering from type 1 diabetes mellitus (T1D) were recruited and their responses to 7 platelet aggregation inducers, as well as to 3 clinically used antiplatelet drugs (acetylsalicylic acid /ASA/, ticagrelor and vorapaxar) and one experimental compound, 4-methylcatechol, were assessed ex vivo. A control group of 50 generally healthy age-matched controls was also included for comparison. RESULTS: T1D patients exhibited a lower aggregation reaction to 3 inducers but were conversely more resistant to the effect of ASA and vorapaxar than controls. Ticagrelor tended to be less active in T1D as well. On the other hand, 4-methylcatechol was equally or even more potent in T1D than in healthy controls. Plasma glucose levels above 7 mM were associated with lower platelet aggregation responses to four aggregation inducers. In contrast, the effect of 4-methylcatechol, unlike that of ASA, did not appear to be strongly influenced by glycemia. Further subanalyses, excluding hypertensive patients and significantly more frequently administered drugs, did not substantially modify the results. CONCLUSION: Conclusively, 4-methylcatechol seems to be a prototypical antiplatelet compound with a strong effect even in diabetic patients.

Zobrazit více v PubMed

Fan J, Watanabe T. Atherosclerosis: known and unknown. Pathol Int. 2022;72(3):151–60. PubMed

Frostegård J. Immunity, atherosclerosis and cardiovascular disease. BMC Med. 2013;11:117. PubMed PMC

Vinik AI, Erbas T, Park TS, Nolan R, Pittenger GL. Platelet dysfunction in type 2 diabetes. Diabetes Care. 2001;24(8):1476–85. PubMed

Khodadi E. Platelet function in cardiovascular disease: activation of molecules and activation by molecules. Cardiovasc Toxicol. 2020;20(1):1–10. PubMed

Bluestone JA, Herold K, Eisenbarth G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature. 2010;464(7293):1293–300. PubMed PMC

Maahs DM, West NA, Lawrence JM, Mayer-Davis EJ. Epidemiology of type 1 diabetes. Endocrinol Metab Clin North Am. 2010;39(3):481–97. PubMed PMC

Haak T, Gölz S, Fritsche A, Füchtenbusch M, Siegmund T, Schnellbächer E, Klein HH, Uebel T, Droßel D. Therapy of type 1 diabetes. Exp Clin Endocrinol Diabetes. 2019;127(S 01):S27–38. PubMed

Trovati M, Anfossi G, Cavalot F, Massucco P, Mularoni E, Emanuelli G. Insulin directly reduces platelet sensitivity to aggregating agents: studies in vitro and in vivo. Diabetes. 1988;37(6):780–6. PubMed

Kakouros N, Rade JJ, Kourliouros A, Resar JR. Platelet function in patients with diabetes mellitus: from a theoretical to a practical perspective. Int J Endocrinol. 2011;2011:742719. PubMed PMC

Rauchfuss S, Geiger J, Walter U, Renne T, Gambaryan S. Insulin Inhibition of platelet-endothelial interaction is mediated by insulin effects on endothelial cells without direct effects on platelets. J Thromb Haemost. 2008;6(5):856–64. PubMed

Santilli F, Simeone P, Liani R, Davì G. Platelets and diabetes mellitus. Prostaglandins Other Lipid Mediat. 2015;120:28–39. PubMed

Bridges JM, Dalby A, Millar JHD, Weaver JA. An effect of D-glucose on platelet stickiness. Lancet. 1965;285(7376):75–7. PubMed

Hrubša M, Alva R, Parvin MS, Macáková K, Karlíčková J, Fadraersada J, Konečný L, Moravcová M, Carazo A, Mladěnka P. Comparison of antiplatelet effects of phenol derivatives in humans. Biomolecules. 2022;12(1):117. PubMed PMC

Konečný L, Hrubša M, Karlíčková J, Carazo A, Javorská L, Matoušová K, Krčmová LK, Šmahelová A, Blaha V, Bláha M, et al. The effect of 4-Methylcatechol on platelets in Familial hypercholesterolemic patients treated with lipid apheresis and/or proprotein convertase subtilisin kexin 9 monoclonal antibodies. Nutrients. 2023;15(8):1842. PubMed PMC

Ferri N, Corsini A, Bellosta S. Pharmacology of the new P2Y12 receptor inhibitors: insights on Pharmacokinetic and pharmacodynamic properties. Drugs. 2013;73(15):1681–709. PubMed

Butkus A, Skrinska VA, Peter Schumacher O. Thromboxane production and platelet aggregation in diabetic subjects with clinical complications. Thromb Res. 1980;19(1):211–23. PubMed

Applová L, Karlíčková J, Warncke P, Macáková K, Hrubša M, Macháček M, Tvrdý V, Fischer D, Mladěnka P. 4-Methylcatechol, a flavonoid metabolite with potent antiplatelet effects. Mol Nutr Food Res. 2019;63(20):1900261. PubMed

Hrubša M, Konečný L, Paclíková M, Parvin MS, Skořepa P, Musil F, Karlíčková J, Javorská L, Matoušová K, Krčmová LK et al. The Antiplatelet Effect of 4-Methylcatechol in a Real Population Sample and Determination of the Mechanism of Action. PubMed PMC

Carazo A, Hrubša M, Konečný L, Skořepa P, Paclíková M, Musil F, Karlíčková J, Javorská L, Matoušová K, Krčmová LK, et al. Sex-Related differences in platelet aggregation: A literature review supplemented with local data from a group of generally healthy individuals. Semin Thromb Hemost. 2022;49(05):488–506. PubMed

Krcmova L, Solichova D, Melichar B, Kasparova M, Plisek J, Sobotka L, Solich P. Determination of neopterin, kynurenine, Tryptophan and creatinine in human serum by high throuput HPLC. Talanta. 2011;85(3):1466–71. PubMed

Pedersen AK, FitzGerald GA. Dose-related kinetics of aspirin. Presystemic acetylation of platelet cyclooxygenase. N Engl J Med. 1984;311(19):1206–11. PubMed

Rosenkranz B, Frölich JC. Plasma concentrations and anti-platelet effects after low dose acetylsalicylic acid. Prostaglandins Leukot Med. 1985;19(3):289–300. PubMed

Colwell JA, Nair RM, Halushka PV, Rogers C, Whetsell A, Sagel J. Platelet adhesion and aggregation in diabetes mellitus. Metabolism. 1979;28(4 Suppl 1):394–400. PubMed

Kobbah AM, Ewald U, Tuvemo T. Platelet aggregability during the first two years of type 1 (insulin-dependent) diabetes mellitus in children. Diabetologia. 1989;32(10):729–35. PubMed

Turk Z, Flego I, Kerum G. Platelet aggregation in type 1 diabetes without microvascular disease during continuous subcutaneous insulin infusion. Horm Metab Res. 1996;28(2):95–100. PubMed

Trovati M, Anfossi G, Massucco P, Mattiello L, Costamagna C, Piretto V, Mularoni E, Cavalot F, Bosia A, Ghigo D. Insulin stimulates nitric oxide synthesis in human platelets and, through nitric oxide, increases platelet concentrations of both guanosine-3’, 5’-cyclic monophosphate and adenosine-3’, 5’-cyclic monophosphate. Diabetes. 1997;46(5):742–9. PubMed

Sudic D, Razmara M, Forslund M, Ji Q, Hjemdahl P, Li N. High glucose levels enhance platelet activation: involvement of multiple mechanisms. Br J Haematol. 2006;133(3):315–22. PubMed

Ferroni P, Basili S, Falco A, Davì G. Platelet activation in type 2 diabetes mellitus. J Thromb Haemost. 2004;2(8):1282–91. PubMed

Colwell JA, Nesto RW. The platelet in diabetes: focus on prevention of ischemic events. Diabetes Care. 2003;26(7):2181–8. PubMed

Tang WH, Stitham J, Jin Y, Liu R, Lee SH, Du J, Atteya G, Gleim S, Spollett G, Martin K, et al. Aldose reductase-mediated phosphorylation of p53 leads to mitochondrial dysfunction and damage in diabetic platelets. Circulation. 2014;129(15):1598–609. PubMed PMC

Winocour PD. Platelet abnormalities in diabetes mellitus. Diabetes. 1992;41(Suppl 2):26–31. PubMed

Lee EY, Kim SJ, Song YJ, Choi SJ, Song J. Immature platelet fraction in diabetes mellitus and metabolic syndrome. Thromb Res. 2013;132(6):692–5. PubMed

Wilder DM, Reid TJ, Bakaltcheva IB. Hypertonic resuscitation and blood coagulation: in vitro comparison of several hypertonic solutions for their action on platelets and plasma coagulation. Thromb Res. 2002;107(5):255–61. PubMed

Gende OA. Effect of hyperosmolarity on agonist-induced increases of intracellular calcium in human platelets. Thromb Res. 2003;110(1):33–7. PubMed

Green A, Johnson JL. Evidence for impaired coupling of receptors to Gi protein in adipocytes from streptozocin-induced diabetic rats. Diabetes. 1991;40(1):88–94. PubMed

Wang J, Yue X, Meng C, Wang Z, Jin X, Cui X, Yang J, Shan C, Gao Z, Yang Y, et al. Acute hyperglycemia May induce renal tubular injury through mitophagy Inhibition. Front Endocrinol (Lausanne). 2020;11:536213. PubMed PMC

Kawano H, Motoyama T, Hirashima O, Hirai N, Miyao Y, Sakamoto T, Kugiyama K, Ogawa H, Yasue H. Hyperglycemia rapidly suppresses flow-mediated endothelium-dependent vasodilation of brachial artery. J Am Coll Cardiol. 1999;34(1):146–54. PubMed

Chettab K, Zibara K, Belaiba SR, McGregor JL. Acute hyperglycaemia induces changes in the transcription levels of 4 major genes in human endothelial cells: macroarrays-based expression analysis. Thromb Haemost. 2002;87(1):141–8. PubMed

Mehta SS, Silver RJ, Aaronson A, Abrahamson M, Goldfine AB. Comparison of aspirin resistance in type 1 versus type 2 diabetes mellitus. Am J Cardiol. 2006;97(4):567–70. PubMed

Fateh-Moghadam S, Plöckinger U, Cabeza N, Htun P, Reuter T, Ersel S, Gawaz M, Dietz R, Bocksch W. Prevalence of aspirin resistance in patients with type 2 diabetes. Acta Diabetol. 2005;42(2):99–103. PubMed

Gasparyan AY, Watson T, Lip GY. The role of aspirin in cardiovascular prevention: implications of aspirin resistance. J Am Coll Cardiol. 2008;51(19):1829–43. PubMed

Tang WH, Stitham J, Gleim S, Di Febbo C, Porreca E, Fava C, Tacconelli S, Capone M, Evangelista V, Levantesi G, et al. Glucose and collagen regulate human platelet activity through aldose reductase induction of thromboxane. J Clin Invest. 2011;121(11):4462–76. PubMed PMC

Kim S, Kunapuli SP. P2Y12 receptor in platelet activation. Platelets. 2011;22(1):56–60. PubMed

Yang J, Qi G, Hu F, Zhang X, Xing Y, Wang P. Association between Ticagrelor plasma concentration and bleeding events in Chinese patients with acute coronary syndrome. Br J Clin Pharmacol. 2022;88(11):4870–80. PubMed

Chen X, Kosoglou T, Statkevich P, Kumar B, Li J, Dockendorf MF, Wang G, Lowe RS, Jiang J, Liu H, et al. Pharmacokinetics of vorapaxar and its metabolite following oral administration in healthy Chinese and American subjects. Int J Clin Pharmacol Ther. 2014;52(10):889–99. PubMed

Mehta JL. Modulation of arterial thrombosis by angiotensin-converting enzyme Inhibition and angiotensin II type 1-receptor Blockade. Am J Cardiol. 1998;82(10, Supplement 1):S53–6. PubMed

Kao DS, Zhang SW, Vap AR. A systematic review on the effect of common medications on platelet count and function: which medications should be stopped before getting a platelet-Rich plasma injection?? Orthop J Sports Med. 2022;10(4):23259671221088820. PubMed PMC

Pan CF, Shen MY, Wu CJ, Hsiao G, Chou DS, Sheu JR. Inhibitory mechanisms of gabapentin, an Antiseizure drug, on platelet aggregation. J Pharm Pharmacol. 2007;59(9):1255–61. PubMed

Yamamoto P, Benzi J, Dach F, de Moraes N. Therapeutic drug monitoring of gabapentin: the applicability in patients with neuropathic pain. Brazilian J Pharm Sci. 2022;58.

Carazo APM, Fadraersada J, et al. Type 1 diabetes mellitus patients had lower total vitamin K levels and increased sensitivity to direct anticoagulants. PLoS ONE. 2025;20(6):e0326580. PubMed PMC

Feliciano RP, Boeres A, Massacessi L, Istas G, Ventura MR, Nunes dos Santos C, Heiss C, Rodriguez-Mateos A. Identification and quantification of novel cranberry-derived plasma and urinary (poly)phenols. Arch Biochem Biophys. 2016;599:31–41. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...