Comparison of Antiplatelet Effects of Phenol Derivatives in Humans

. 2022 Jan 12 ; 12 (1) : . [epub] 20220112

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35053265

Flavonoids are associated with positive cardiovascular effects. However, due to their low bioavailability, metabolites are likely responsible for these properties. Recently, one of these metabolites, 4-methylcatechol, was described to be a very potent antiplatelet compound. This study aimed to compare its activity with its 22 close derivatives both of natural or synthetic origin in order to elucidate a potential structure-antiplatelet activity relationship. Blood from human volunteers was induced to aggregate by arachidonic acid (AA), collagen or thrombin, and plasma coagulation was also studied. Potential toxicity was tested on human erythrocytes as well as on a cancer cell line. Our results indicated that 17 out of the 22 compounds were very active at a concentration of 40 μM and, importantly, seven of them had an IC50 on AA-triggered aggregation below 3 μM. The effects of the most active compounds were confirmed on collagen-triggered aggregation too. None of the tested compounds was toxic toward erythrocytes at 50 μM and four compounds partly inhibited proliferation of breast cancer cell line at 100 μM but not at 10 μM. Additionally, none of the compounds had a significant effect on blood coagulation or thrombin-triggered aggregation. This study hence reports four phenol derivatives (4-ethylcatechol, 4-fluorocatechol, 2-methoxy-4-ethylphenol and 3-methylcatechol) suitable for future in vivo testing.

Zobrazit více v PubMed

Del Rio D., Rodriguez-Mateos A., Spencer J.P.E., Tognolini M., Borges G., Crozier A. Dietary (poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal. 2013;18:1818–1892. doi: 10.1089/ars.2012.4581. PubMed DOI PMC

Keli S.O., Hertog M.G., Feskens E.J., Kromhout D. Dietary flavonoids, antioxidant vitamins, and incidence of stroke: The Zutphen study. Arch. Intern. Med. 1996;156:637–642. doi: 10.1001/archinte.1996.00440060059007. PubMed DOI

Kokubo Y., Iso H., Ishihara J., Okada K., Inoue M., Tsugane S. Association of dietary intake of soy, beans, and isoflavones with risk of cerebral and myocardial infarctions in Japanese populations: The Japan Public Health Center-based (JPHC) study cohort I. Circulation. 2007;116:2553–2562. doi: 10.1161/CIRCULATIONAHA.106.683755. PubMed DOI

Mursu J., Voutilainen S., Nurmi T., Tuomainen T.P., Kurl S., Salonen J.T. Flavonoid intake and the risk of ischaemic stroke and CVD mortality in middle-aged Finnish men: The Kuopio Ischaemic Heart Disease Risk Factor Study. Br. J. Nutr. 2008;100:890–895. doi: 10.1017/S0007114508945694. PubMed DOI

Pimpão R.C., Ventura M.R., Ferreira R.B., Williamson G., Santos C.N. Phenolic sulfates as new and highly abundant metabolites in human plasma after ingestion of a mixed berry fruit purée. Br. J. Nutr. 2015;113:454–463. doi: 10.1017/S0007114514003511. PubMed DOI

Feliciano R.P., Boeres A., Massacessi L., Istas G., Ventura M.R., Nunes Dos Santos C., Heiss C., Rodriguez-Mateos A. Identification and quantification of novel cranberry-derived plasma and urinary (poly)phenols. Arch. Biochem. Biophys. 2016;599:31–41. doi: 10.1016/j.abb.2016.01.014. PubMed DOI

Applová L., Karlíčková J., Warncke P., Macáková K., Hrubša M., Macháček M., Tvrdý V., Fischer D., Mladěnka P. 4-Methylcatechol, a Flavonoid Metabolite with Potent Antiplatelet Effects. Mol. Nutr. Food Res. 2019;63:1900261. doi: 10.1002/mnfr.201900261. PubMed DOI

Ostertag L.M., O’Kennedy N., Horgan G.W., Kroon P.A., Duthie G.G., de Roos B. In vitro anti-platelet effects of simple plant-derived phenolic compounds are only found at high, non-physiological concentrations. Mol. Nutr. Food Res. 2011;55:1624–1636. doi: 10.1002/mnfr.201100135. PubMed DOI

Pourová J., Najmanová I., Vopršalová M., Migkos T., Pilařová V., Applová L., Nováková L., Mladěnka P. Two flavonoid metabolites, 3,4-dihydroxyphenylacetic acid and 4-methylcatechol, relax arteries ex vivo and decrease blood pressure in vivo. Vascul. Pharmacol. 2018;111:36–43. doi: 10.1016/j.vph.2018.08.008. PubMed DOI

Jiang X.-L., Samant S., Lesko L.J., Schmidt S. Clinical Pharmacokinetics and Pharmacodynamics of Clopidogrel. Clin. Pharmacokinet. 2015;54:147–166. doi: 10.1007/s40262-014-0230-6. PubMed DOI PMC

Mărginean A., Bănescu C., Scridon A., Dobreanu M. Anti-platelet Therapy Resistance—Concept, Mechanisms and Platelet Function Tests in Intensive Care Facilities. J. Crit. Care Med. 2016;2:6–15. doi: 10.1515/jccm-2015-0021. PubMed DOI PMC

De Maria E., Borghi A., Modonesi L., Cappelli S. Ticagrelor therapy and atrioventricular block: Do we need to worry? World J. Clin. Cases. 2017;5:178–182. doi: 10.12998/wjcc.v5.i5.178. PubMed DOI PMC

Kasmeridis C., Apostolakis S., Lip G.Y.H. Aspirin and aspirin resistance in coronary artery disease. Curr. Opin. Pharmacol. 2013;13:242–250. doi: 10.1016/j.coph.2012.12.004. PubMed DOI

Alexopoulos D., Xanthopoulou I., Mylona P., Perperis A., Panagiotou A., Dimitropoulos G., Tsigkas G., Hahalis G., Davlouros P. Prevalence of contraindications and conditions for precaution for prasugrel administration in a real world acute coronary syndrome population. J. Thromb. Thrombolysis. 2011;32:328–333. doi: 10.1007/s11239-011-0610-9. PubMed DOI

Cattaneo M. Response variability to clopidogrel: Is tailored treatment, based on laboratory testing, the right solution? J. Thromb. Haemost. 2012;10:327–336. doi: 10.1111/j.1538-7836.2011.04602.x. PubMed DOI

Chan C.-P., Yuan-Soon H., Wang Y.-J., Lan W.-H., Chen L.-I., Chen Y.-J., Lin B.-R., Chang M.-C., Jeng J.-H. Inhibition of cyclooxygenase activity, platelet aggregation and thromboxane B2 production by two environmental toxicants: M- and o-cresol. Toxicology. 2005;208:95–104. doi: 10.1016/j.tox.2004.11.010. PubMed DOI

Sanders J.M., Bucher J.R., Peckham J.C., Kissling G.E., Hejtmancik M.R., Chhabra R.S. Carcinogenesis studies of cresols in rats and mice. Toxicology. 2009;257:33–39. doi: 10.1016/j.tox.2008.12.005. PubMed DOI PMC

Dietz D. NTP technical report on the toxicity studies of Cresols (CAS Nos. 95-48-7, 108-39-4, 106-44-5) in F344/N Rats and B6C3F1 Mice (Feed Studies) Toxic. Rep. Ser. 1991;9:1–128. PubMed

Sirakanyan S.N., Hrubša M., Spinelli D., Dias P., Kartsev V., Carazo A., Hovakimyan A.A., Pourová J., Hakobyan E.K., Karlíčková J., et al. Synthesis of 3,3-dimethyl-6-oxopyrano [3, 4-c]pyridines and their antiplatelet and vasodilatory activity. J. Pharm. Pharmacol. 2021 doi: 10.1093/jpp/rgab075. PubMed DOI

Chan F.K., Moriwaki K., De Rosa M.J. Detection of necrosis by release of lactate dehydrogenase activity. Methods Mol. Biol. 2013;979:65–70. doi: 10.1007/978-1-62703-290-2_7. PubMed DOI PMC

De La Cruz J.P., Ruiz-Moreno M.I., Guerrero A., López-Villodres J.A., Reyes J.J., Espartero J.L., Labajos M.T., González-Correa J.A. Role of the catechol group in the antioxidant and neuroprotective effects of virgin olive oil components in rat brain. J. Nutr. Biochem. 2015;26:549–555. doi: 10.1016/j.jnutbio.2014.12.013. PubMed DOI

Jiang Y., Zhao D., Sun J., Luo X., Li H., Sun X., Zheng F. Analysis of antioxidant effect of two tripeptides isolated from fermented grains (Jiupei) and the antioxidative interaction with 4-methylguaiacol, 4-ethylguaiacol, and vanillin. Food Sci. Nutr. 2019;7:2391–2403. doi: 10.1002/fsn3.1100. PubMed DOI PMC

Li R., Narita R., Ouda R., Kimura C., Nishimura H., Yatagai M., Fujita T., Watanabe T. Structure-dependent antiviral activity of catechol derivatives in pyroligneous acid against the encephalomycarditis virus. RSC Adv. 2018;8:35888–35896. doi: 10.1039/C8RA07096B. PubMed DOI PMC

Schweigert N., Hunziker R.W., Escher B.I., Eggen R.I.L. Acute toxicity of (chloro-)catechols and (chloro-)catechol-copper combinations in Escherichia coli corresponds to their membrane toxicity in vitro. Environ. Toxicol. Chem. 2001;20:239–247. doi: 10.1897/1551-5028(2001)020<0239:ATOCCA>2.0.CO;2. PubMed DOI

Senger D.R., Li D., Jaminet S.-C., Cao S. Activation of the Nrf2 Cell Defense Pathway by Ancient Foods: Disease Prevention by Important Molecules and Microbes Lost from the Modern Western Diet. PLoS ONE. 2016;11:e0148042. doi: 10.1371/journal.pone.0148042. PubMed DOI PMC

Macáková K., Afonso R., Saso L., Mladěnka P. The influence of alkaloids on oxidative stress and related signaling pathways. Free Radic. Biol. Med. 2019;134:429–444. doi: 10.1016/j.freeradbiomed.2019.01.026. PubMed DOI

Zhao D., Shi D., Sun J., Li H., Zhao M., Sun B. Quantification and cytoprotection by vanillin, 4-methylguaiacol and 4-ethylguaiacol against AAPH-induced abnormal oxidative stress in HepG2 cells. RSC Adv. 2018;8:35474–35484. doi: 10.1039/C8RA06505E. PubMed DOI PMC

Zhao D.-R., Jiang Y.-S., Sun J.-Y., Li H.-H., Luo X.-L., Zhao M.-M. Anti-inflammatory Mechanism Involved in 4-Ethylguaiacol-Mediated Inhibition of LPS-Induced Inflammation in THP-1 Cells. J. Agric. Food Chem. 2019;67:1230–1243. doi: 10.1021/acs.jafc.8b06263. PubMed DOI

Zhao D.R., Jiang Y.S., Sun J.Y., Li H.H., Sun X.T., Zhao M.M. Amelioration of 4-methylguaiacol on LPS-induced inflammation in THP-1 cells through NF-κB/IκBα/AP-1 and Nrf2/HO-1 signaling pathway. J. Funct. Foods. 2019;55:95–103. doi: 10.1016/j.jff.2019.01.047. DOI

Bijak M., Saluk J., Tsirigotis-Maniecka M., Komorowska H., Wachowicz B., Zaczyńska E., Czarny A., Czechowski F., Nowak P., Pawlaczyk I. The influence of conjugates isolated from Matricaria chamomilla L. on platelets activity and cytotoxicity. Int. J. Biol. Macromol. 2013;61:218–229. doi: 10.1016/j.ijbiomac.2013.06.046. PubMed DOI

Sellers C., Markowitz S. Reevaluating the carcinogenicity of ortho-toluidine: A new conclusion and its implications. Regul. Toxicol. Pharmacol. 1992;16:301–317. doi: 10.1016/0273-2300(92)90010-7. PubMed DOI

Johnson J.D., Ryan M.J., Toft J.D., Graves S.W., Hejtmancik M.R., Cunningham M.L., Herbert R., Abdo K.M. Two-Year Toxicity and Carcinogenicity Study of Methyleugenol in F344/N Rats and B6C3F1 Mice. J. Agric. Food Chem. 2000;48:3620–3632. doi: 10.1021/jf000364a. PubMed DOI

Smith R.L., Adams T.B., Doull J., Feron V.J., Goodman J.I., Marnett L.J., Portoghese P.S., Waddell W.J., Wagner B.M., Rogers A.E., et al. Safety assessment of allylalkoxybenzene derivatives used as flavouring substances—methyl eugenol and estragole. Food Chem. Toxicol. 2002;40:851–870. doi: 10.1016/S0278-6915(02)00012-1. PubMed DOI

Hirose M., Fukushima S., Tanaka H., Asakawa E., Takahashi S., Ito N. Carcinogenicity of catechol in F344 rats and B6C3F1 mice. Carcinogenesis. 1993;14:525–529. doi: 10.1093/carcin/14.3.525. PubMed DOI

Schweigert N., Belkin S., Leong-Morgenthaler P., Zehnder A.J., Eggen R.I. Combinations of chlorocatechols and heavy metals cause DNA degradation in vitro but must not result in increased mutation rates in vivo. Environ. Mol. Mutagen. 1999;33:202–210. doi: 10.1002/(SICI)1098-2280(1999)33:3<202::AID-EM4>3.0.CO;2-C. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...