Small phenolic compounds as potential endocrine disruptors interacting with estrogen receptor alpha
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39512757
PubMed Central
PMC11540614
DOI
10.3389/fendo.2024.1440654
Knihovny.cz E-zdroje
- Klíčová slova
- catechol, cytotoxicity, endocrine disruptor, estrogenicity, xenobiotic,
- MeSH
- alfa receptor estrogenů * metabolismus genetika MeSH
- endokrinní disruptory * farmakologie toxicita MeSH
- faktor TFF1 metabolismus genetika MeSH
- fenoly * farmakologie chemie MeSH
- lidé MeSH
- MFC-7 buňky MeSH
- nádory prsu metabolismus MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- alfa receptor estrogenů * MeSH
- endokrinní disruptory * MeSH
- ESR1 protein, human MeSH Prohlížeč
- faktor TFF1 MeSH
- fenoly * MeSH
- TFF1 protein, human MeSH Prohlížeč
The human body is regularly exposed to simple catechols and small phenols originating from our diet or as a consequence of exposure to various industrial products. Several biological properties have been associated with these compounds such as antioxidant, anti-inflammatory, or antiplatelet activity. Less explored is their potential impact on the endocrine system, in particular through interaction with the alpha isoform of the estrogen receptor (ERα). In this study, human breast cancer cell line MCF-7/S0.5 was employed to investigate the effects on ERα of 22 closely chemically related compounds (15 catechols and 7 phenols and their methoxy derivatives), to which humans are widely exposed. ERα targets genes ESR1 (ERα) and TFF1, both on mRNA and protein level, were chosen to study the effect of the tested compounds on the mentioned receptor. A total of 7 compounds seemed to impact mRNA and protein expression similarly to estradiol (E2). The direct interaction of the most active compounds with the ERα ligand binding domain (LBD) was further tested in cell-free experiments using the recombinant form of the LBD, and 4-chloropyrocatechol was shown to behave like E2 with about 1/3 of the potency of E2. Our results provide evidence that some of these compounds can be considered potential endocrine disruptors interacting with ERα.
Zobrazit více v PubMed
Fuentes N, Silveyra P. Estrogen receptor signaling mechanisms. Adv Protein Chem Struct Biol. (2019) 116:135–70. doi: 10.1016/bs.apcsb.2019.01.001 PubMed DOI PMC
Arnal JF, Fontaine C, Abot A, Valera MC, Laurell H, Gourdy P, et al. . Lessons from the dissection of the activation functions (AF-1 and AF-2) of the estrogen receptor alpha in vivo. Steroids. (2013) 78:576–82. doi: 10.1016/j.steroids.2012.11.011 PubMed DOI
Anbalagan M, Rowan BG. Estrogen receptor alpha phosphorylation and its functional impact in human breast cancer. Mol Cell Endocrinol. (2015) 418:264–72. doi: 10.1016/j.mce.2015.01.016 PubMed DOI
Frigo DE, Bondesson M, Williams C. Nuclear receptors: from molecular mechanisms to therapeutics. Essays Biochem. (2021) 65:847–56. doi: 10.1042/EBC20210020 PubMed DOI PMC
Bourdeau V, Deschenes J, Metivier R, Nagai Y, Nguyen D, Bretschneider N, et al. . Genome-wide identification of high-affinity estrogen response elements in human and mouse. Mol Endocrinol. (2004) 18:1411–27. doi: 10.1210/me.2003-0441 PubMed DOI
Heldring N, Pike A, Andersson S, Matthews J, Cheng G, Hartman J, et al. . Estrogen receptors: how do they signal and what are their targets. Physiol Rev. (2007) 87:905–31. doi: 10.1152/physrev.00026.2006 PubMed DOI
Bocchinfuso WP, Lindzey JK, Hewitt SC, Clark JA, Myers PH, Cooper R, et al. . Induction of mammary gland development in estrogen receptor-alpha knockout mice. Endocrinology. (2000) 141:2982–94. doi: 10.1210/endo.141.8.7609 PubMed DOI
Alva-Gallegos R, Carazo A, Mladenka P. Toxicity overview of endocrine disrupting chemicals interacting in vitro with the oestrogen receptor. Environ Toxicol Pharmacol. (2023) 99:104089. doi: 10.1016/j.etap.2023.104089 PubMed DOI
Diamanti-Kandarakis E BJ, Giudice LC, Hauser R, Prins GS, Soto AM, Zoeller RT, et al. . Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev. (2009) 30:293–342. doi: 10.1210/er.2009-0002 PubMed DOI PMC
Dziewirska E, Hanke W, Jurewicz J. Environmental non-persistent endocrine-disrupting chemicals exposure and reproductive hormones levels in adult men. Int J Occup Med Environ Health. (2018) 31:551–73. doi: 10.13075/ijomeh.1896.01183 PubMed DOI
Encarnacao T, Pais AA, Campos MG, Burrows HD. Endocrine disrupting chemicals: Impact on human health, wildlife and the environment. Sci Prog. (2019) 102:3–42. doi: 10.1177/0036850419826802 PubMed DOI PMC
Monneret C. What is an endocrine disruptor? C R Biol. (2017) 340:403–5. doi: 10.1016/j.crvi.2017.07.004 PubMed DOI
Cladis DP, Weaver CM, Ferruzzi MG. (Poly)phenol toxicity in vivo following oral administration: A targeted narrative review of (poly)phenols from green tea, grape, and anthocyanin-rich extracts. Phytother Res. (2022) 36:323–35. doi: 10.1002/ptr.7323 PubMed DOI
Milheiro J, Filipe-Ribeiro L, Vilela A, Cosme F, Nunes FM. 4-Ethylphenol, 4-ethylguaiacol and 4-ethylcatechol in red wines: Microbial formation, prevention, remediation and overview of analytical approaches. Crit Rev Food Sci Nutr. (2019) 59:1367–91. doi: 10.1080/10408398.2017.1408563 PubMed DOI
Scholtes C, Nizet S, Collin S. Guaiacol and 4-methylphenol as specific markers of torrefied malts. Fate of volatile phenols in special beers through aging. J Agric Food Chem. (2014) 62:9522–8. doi: 10.1021/jf5015654 PubMed DOI
Pimpao RC, Ventura MR, Ferreira RB, Williamson G, Santos CN. Phenolic sulfates as new and highly abundant metabolites in human plasma after ingestion of a mixed berry fruit puree. Br J Nutr. (2015) 113:454–63. doi: 10.1017/S0007114514003511 PubMed DOI
Applova L, Karlickova J, Warncke P, Macakova K, Hrubsa M, Machacek M, et al. . 4-methylcatechol, a flavonoid metabolite with potent antiplatelet effects. Mol Nutr Food Res. (2019) 63:e1900261. doi: 10.1002/mnfr.201900261 PubMed DOI
Duffy SJ, Vita JA. Effects of phenolics on vascular endothelial function. Curr Opin Lipidol. (2003) 14:21–7. doi: 10.1097/01.mol.0000052857.26236.f2 PubMed DOI
Ho K, Ferruzzi MG, Wightman JD. Potential health benefits of (poly)phenols derived from fruit and 100% fruit juice. Nutr Rev. (2020) 78:145–74. doi: 10.1093/nutrit/nuz041 PubMed DOI
Hrubsa M, Alva R, Parvin MS, Macakova K, Karlickova J, Fadraersada J, et al. . Comparison of antiplatelet effects of phenol derivatives in humans. Biomolecules. (2022) 12. doi: 10.3390/biom12010117 PubMed DOI PMC
Lin C, Ström A, Vega VB, Kong SL, Yeo AL, Thomsen JS, et al. . Discovery of estrogen receptor a target genes and response elements in breast tumor cells. Genome Biol. (2004) 5. doi: 10.1186/gb-2004-5-9-r66 PubMed DOI PMC
Wang DY, Fulthorpe R, Liss SN, Edwards EA. Identification of estrogen-responsive genes by complementary deoxyribonucleic acid microarray and characterization of a novel early estrogen-induced gene: EEIG1. Mol Endocrinol. (2004) 18:402–11. doi: 10.1210/me.2003-0202 PubMed DOI
Abbasi F, De-la-Torre GE, KalantarHormozi MR, Schmidt TC, Dobaradaran S. A review of endocrine disrupting chemicals migration from food contact materials into beverages. Chemosphere. (2024) 355:141760. doi: 10.1016/j.chemosphere.2024.141760 PubMed DOI
Konecny L, Hrubsa M, Karlickova J, Carazo A, Javorska L, Matousova K, et al. . The effect of 4-methylcatechol on platelets in familial hypercholesterolemic patients treated with lipid apheresis and/or proprotein convertase subtilisin kexin 9 monoclonal antibodies. Nutrients. (2023) 15. doi: 10.3390/nu15081842 PubMed DOI PMC
Feliciano RP, Boeres A, Massacessi L, Istas G, Ventura MR, Nunes Dos Santos C, et al. . Identification and quantification of novel cranberry-derived plasma and urinary (poly)phenols. Arch Biochem Biophys. (2016) 599:31–41. doi: 10.1016/j.abb.2016.01.014 PubMed DOI
Fernandes I, Faria A, Azevedo J, Soares S, Calhau C, De Freitas V, et al. . Influence of anthocyanins, derivative pigments and other catechol and pyrogallol-type phenolics on breast cancer cell proliferation. J Agric Food Chem. (2010) 58:3785–92. doi: 10.1021/jf903714z PubMed DOI
Li C, Li W, Chen S, Kang Z, Sun L, Li H, et al. . 4-Methylcatechol-induced cell damage in TM4 Sertoli cells. Cell Biol Int. (2015) 39:770–4. doi: 10.1002/cbin.10420 PubMed DOI
Li CJ, Jiang YW, Chen SX, Li HJ, Chen L, Liu YT, et al. . 4-Methylcatechol inhibits cell growth and testosterone production in TM3 Leydig cells by reducing mitochondrial activity. Andrologia. (2017) 49. doi: 10.1111/and.12581 PubMed DOI
Borrás M, Hardy L, Lempereur F, el Khissiin A, Legros N, Gol-Winkler R, et al. . Estradiol-induced down-regulation of estrogen receptor. Effect of various modulators of protein synthesis and expression. J Steroid Biochem Mol Biol. (1994) 48:325–36. doi: 10.1016/0960-0760(94)90072-8 PubMed DOI
Brzezinski A, Debi A. Phytoestrogens: the ‘‘natural’’ selective estrogen receptor modulators? Eur J Obstetrics Gynecology Reprod Biol. (1999) 85: 47–51. doi: 10.1016/s0301-2115(98)00281-4 PubMed DOI
Thent ZC, Froemming GRA, Ismail ABM, Fuad S, Muid S. Phytoestrogens by inhibiting the non-classical oestrogen receptor, overcome the adverse effect of bisphenol A on hFOB 1.19 cells. Iran J Basic Med Sci. (2020) 23:1155–63. doi: 10.22038/ijbms.2020.45296.10545 PubMed DOI PMC
Yang J, Wen L, Jiang Y, Yang B. Natural estrogen receptor modulators and their heterologous biosynthesis. Trends Endocrinol Metab. (2019) 30:66–76. doi: 10.1016/j.tem.2018.11.002 PubMed DOI
Yu L, Rios E, Castro L, Liu J, Yan Y, Dixon D. Genistein: dual role in women’s health. Nutrients. (2021) 13. doi: 10.3390/nu13093048 PubMed DOI PMC
Jiang Q, Payton-Stewart F, Elliott S, Driver J, Rhodes LV, Zhang Q, et al. . Effects of 7-O substitutions on estrogenic and anti-estrogenic activities of daidzein analogues in MCF-7 breast cancer cells. J Med Chem. (2010) 53:6153–63. doi: 10.1021/jm100610w PubMed DOI PMC
Kuiper GG, Lemmen JG, Carlsson B, Corton JC, Safe SH, van der Saag PT, et al. . Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor b. Endocrinology. (1998) 139:4252–63. doi: 10.1210/endo.139.10.6216 PubMed DOI
Comşa Ş, Cimpean AM, Marius R. The story of MCF 7 breast cancer cell line: 40 years of experience in research. Anticancer Res. (2015) 35:3147–54. PubMed
European Chemical A, European Food Safety Authority with the technical support of the Joint Research C. Andersson N, Arena M, Auteri D, Barmaz S, et al. . Guidance for the identification of endocrine disruptors in the context of Regulations (EU) No 528/2012 and (EC) No 1107/2009. EFSA J. (2018) 16:e05311. doi: 10.2903/j.efsa.2018.5311 PubMed DOI PMC