Evolutionary divergent kinetoplast genome structure and RNA editing patterns in the trypanosomatid Vickermania
Language English Country United States Media print-electronic
Document type Journal Article
Grant support
22-01026S
Czech Science Foundation
23-07695S
Czech Science Foundation
PubMed
40203041
PubMed Central
PMC12012515
DOI
10.1073/pnas.2426887122
Knihovny.cz E-resources
- Keywords
- ATP synthase, RNA editing, Vickermania, kinetoplast DNA, trypanosomatids,
- MeSH
- RNA Editing * genetics MeSH
- Genome, Mitochondrial MeSH
- Genome, Protozoan * MeSH
- DNA, Kinetoplast * genetics MeSH
- Evolution, Molecular * MeSH
- Trypanosomatina * genetics MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- DNA, Kinetoplast * MeSH
The trypanosomatid flagellates possess in their single mitochondrion a highly complex kinetoplast (k)DNA, which is composed of interlocked circular molecules of two types. Dozens of maxicircles represent a classical mitochondrial genome, and thousands of minicircles encode guide (g)RNAs, which direct the processive and essential uridine insertion/deletion messenger RNA (mRNA) editing of maxicircle transcripts. While the details of kDNA structure and this type of RNA editing are well established, our knowledge mostly relies on a narrow foray of intensely studied human parasites of the genera Leishmania and Trypanosoma. Here, we analyzed kDNA, its expression, and RNA editing of two members of the poorly characterized genus Vickermania with very different cultivation histories. In both Vickermania species, the gRNA-containing heterogeneous large (HL)-circles are atypically large with multiple gRNAs each. Examination of Vickermania spadyakhi HL-circle loci revealed a massive redundancy of gRNAs relative to the editing needs. In comparison, the HL-circle repertoire of extensively cultivated Vickermania ingenoplastis is greatly reduced. It correlates with V. ingenoplastis-specific loss of productive editing of transcripts encoding subunits of respiratory chain complex I and corresponding lack of complex I activity. This loss in a parasite already lacking genes for subunits of complexes III and IV suggests an apparent requirement for its mitochondrial adenosine triphosphate (ATP) synthase to work in reverse to maintain membrane potential. In contrast, V. spadyakhi retains a functional complex I that allows ATP synthase to work in its standard direction.
Department of Biomedical Sciences University of Minnesota Medical School Duluth MN 55812
e Duve Institute Université Catholique de Louvain Brussels 1200 Belgium
Faculty of Biology M 5 Lomonosov Moscow State University Moscow 119991 Russia
Faculty of Science University of South Bohemia 370 05 České Budějovice Czechia
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice 370 05 Czechia
Life Science Research Centre Faculty of Science University of Ostrava Ostrava 710 00 Czechia
See more in PubMed
Jensen R. E., Englund P. T., Network news: The replication of kinetoplast DNA. Annu. Rev. Microbiol. 66, 473–491 (2012). PubMed
Aphasizheva I., et al. , Lexis and grammar of mitochondrial RNA processing in trypanosomes. Trends Parasitol. 36, 337–355 (2020). PubMed PMC
Stuart K., Trypanosomatids: Mitochondrial RNA editing. Exp. Parasitol. 68, 486–490 (1989). PubMed
Lukeš J., Archibald J. M., Keeling P. J., Doolittle W. F., Gray M. W., How a neutral evolutionary ratchet can build cellular complexity. IUBMB Life 63, 528–537 (2011). PubMed
Gray M. W., Evolutionary origin of RNA editing. Biochemistry 51, 5235–5242 (2012). PubMed
Lukeš J., et al. , Trypanosomatids are much more than just trypanosomes: Clues from the expanded family tree. Trends Parasitol. 34, 466–480 (2018). PubMed
David V., et al. , Gene loss and error-prone RNA editing in the mitochondrion of Perkinsela, an endosymbiotic kinetoplastid. mBio 6, e01498-15 (2015). PubMed PMC
Butenko A., et al. , Reductionist pathways for parasitism in euglenozoans? Expanded datasets provide new insights. Trends Parasitol. 37, 100–116 (2021). PubMed
Simpson L., The mitochondrial genome of kinetoplastid protozoa: Genomic organization, transcription, replication, and evolution. Annu. Rev. Microbiol. 41, 363–382 (1987). PubMed
Zimmer S. L., Simpson R. M., Read L. K., High throughput sequencing revolution reveals conserved fundamentals of U-indel editing. Wiley Interdiscip. Rev. RNA 9, e1487 (2018). PubMed PMC
Tylec B. L., et al. , Intrinsic and regulated properties of minimally edited trypanosome mRNAs. Nucleic Acids Res. 47, 3640–3657 (2019). PubMed PMC
Gerasimov E. S., et al. , Trypanosomatid mitochondrial RNA editing: Dramatically complex transcript repertoires revealed with a dedicated mapping tool. Nucleic Acids Res. 46, 765–781 (2018). PubMed PMC
Simpson R. M., Bruno A. E., Bard J. E., Buck M. J., Read L. K., High-throughput sequencing of partially edited trypanosome mRNAs reveals barriers to editing progression and evidence for alternative editing. RNA 22, 677–695 (2016). PubMed PMC
Carnes J., et al. , In vivo cleavage specificity of Trypanosoma brucei editosome endonucleases. Nucleic Acids Res. 45, 4667–4686 (2017). PubMed PMC
Maslov D. A., et al. , Recent advances in trypanosomatid research: Genome organization, expression, metabolism, taxonomy and evolution. Parasitology 146, 1–27 (2019). PubMed
Afonin D. A., et al. , Blastocrithidia nonstop mitochondrial genome and its expression are remarkably insulated from nuclear codon reassignment. Nucleic Acids Res. 52, 3870–3885 (2024). PubMed PMC
Cooper S., et al. , Assembly and annotation of the mitochondrial minicircle genome of a differentiation-competent strain of Trypanosoma brucei. Nucleic Acids Res. 47, 11304–11325 (2019). PubMed PMC
Kostygov A., et al. , Vickermania gen. nov., trypanosomatids that use two joined flagella to resist midgut peristaltic flow within the fly host. BMC Biol. 18, 187 (2020). PubMed PMC
Hajduk S., “Studies of trypanosomatid flagellates with special reference to antigenic variation and kinetoplast DNA,” Ph.D. thesis, Department of Zoology University of Glasgow, Glasgow, 1980), p. 229.
Aeschlimann S., Stettler P., Schneider A., DNA segregation in mitochondria and beyond: Insights from the trypanosomal tripartite attachment complex. Trends Biochem. Sci. 48, 1058–1070 (2023). PubMed
Kaurov I., et al. , The diverged trypanosome MICOS complex as a hub for mitochondrial cristae shaping and protein import. Curr. Biol. 28, 3393–3407.e95 (2018). PubMed
Wallace F. G., Wagner M., Rogers W. E., Varying kinetoplast ultrastructure in two subspecies of Herpetomonas muscarum (Leidy). J. Protozool. 20, 218–222 (1973). PubMed
Coombs G. H., “Herpetomonas muscarum ingenoplastis: An anaerobic kinetoplastid flagellate?” in Biochemistry and Molecular Biology of “Anaerobic” Protozoa, Lloyd D., Coombs G. H., Paget T. A., Eds. (Harwood Academic Publishers, London, 1989), pp. 254–266.
d’Avila-Levy C. M., et al. , First draft genome of the trypanosomatid Herpetomonas muscarum ingenoplastis through MinION Oxford Nanopore technology and Illumina sequencing. Trop. Med. Infect. Dis. 5, 25 (2020). PubMed PMC
Opperdoes F. R., et al. , The remarkable metabolism of Vickermania ingenoplastis: Genomic predictions. Pathogens 10, 68 (2021). PubMed PMC
Rogers W. E., Wallace F. G., Two new subspecies of Herpetomonas muscarum (Leidy, 1856) Kent, 1880. J. Protozool. 18, 645–654 (1971). PubMed
Borst P., Hoeijmakers J. H., Hajduk S., Structure, function and evolution of kinetoplast DNA. Parasitology 82, 81–93 (1981). PubMed
Porcel B. M., et al. , The streamlined genome of Phytomonas spp. relative to human pathogenic kinetoplastids reveals a parasite tailored for plants. PLoS Genet. 10, e1004007 (2014). PubMed PMC
Gerasimov E. S., et al. , Complete minicircle genome of Leptomonas pyrrhocoris reveals sources of its non-canonical mitochondrial RNA editing events. Nucleic Acids Res. 49, 3354–3370 (2021). PubMed PMC
Ray D. S., Conserved sequence blocks in kinetoplast minicircles from diverse species of trypanosomes. Mol. Cell Biol. 9, 1365–1367 (1989). PubMed PMC
Simpson L., Douglass S. M., Lake J. A., Pellegrini M., Li F., Comparison of the mitochondrial genomes and steady state transcriptomes of two strains of the trypanosomatid parasite, Leishmania tarentolae. PLoS Negl. Trop. Dis. 9, e0003841 (2015). PubMed PMC
Gerasimov E. S., et al. , Mitochondrial RNA editing in Trypanoplasma borreli: New tools, new revelations. Comput. Struct. Biotechnol. J. 20, 6388–6402 (2022). PubMed PMC
Cooper S., Wadsworth E. S., Schnaufer A., Savill N. J., Organization of minicircle cassettes and guide RNA genes in Trypanosoma brucei. RNA 28, 972–992 (2022). PubMed PMC
Čermáková P., Verner Z., Man P., Lukeš J., Horváth A., Characterization of the NADH:Ubiquinone oxidoreductase (complex I) in the trypanosomatid Phytomonas serpens (Kinetoplastida). FEBS J. 274, 3150–3158 (2007). PubMed
Schnaufer A., Clark-Walker G. D., Steinberg A. G., Stuart K., The F1-ATP synthase complex in bloodstream stage trypanosomes has an unusual and essential function. EMBO J. 24, 4029–4040 (2005). PubMed PMC
Brown S. V., Hosking P., Li J., Williams N., ATP synthase is responsible for maintaining mitochondrial membrane potential in bloodstream form Trypanosoma brucei. Eukaryot. Cell 5, 45–53 (2006). PubMed PMC
Zíková A., Schnaufer A., Dalley R. A., Panigrahi A. K., Stuart K. D., The FoF1-ATP synthase complex contains novel subunits and is essential for procyclic Trypanosoma brucei. PLoS Pathog. 5, e1000436 (2009). PubMed PMC
Gahura O., et al. , An ancestral interaction module promotes oligomerization in divergent mitochondrial ATP synthases. Nat. Commun. 13, 5989 (2022). PubMed PMC
Hierro-Yap C., et al. , Bioenergetic consequences of FoF1-ATP synthase/ATPase deficiency in two life cycle stages of Trypanosoma brucei. J. Biol. Chem. 296, 100357 (2021). PubMed PMC
Panicucci B., Gahura O., Zíková A., Trypanosoma brucei TbIF1 inhibits the essential F1-ATPase in the infectious form of the parasite. PLoS Negl. Trop. Dis. 11, e0005552 (2017). PubMed PMC
Gahura O., Panicucci B., Váchová H., Walker J. E., Zíková A., Inhibition of F1 -ATPase from Trypanosoma brucei by its regulatory protein inhibitor TbIF1. FEBS J. 285, 4413–4423 (2018). PubMed
Kachale A., et al. , Short tRNA anticodon stem and mutant eRF1 allow stop codon reassignment. Nature 613, 751–758 (2023). PubMed
Guilbride D. L., Englund P. T., The replication mechanism of kinetoplast DNA networks in several trypanosomatid species. J. Cell Sci. 111, 675–679 (1998). PubMed
Cadena L. R., Gahura O., Panicucci B., Zíková A., Hashimi H., Mitochondrial contact site and cristae organization system and F1Fo-ATP synthase crosstalk is a fundamental property of mitochondrial cristae. mSphere 6, e0032721 (2021). PubMed PMC
Kuhlbrandt W., Structure and mechanisms of F-Type ATP synthases. Annu. Rev. Biochem. 88, 515–549 (2019). PubMed
Davies K. M., Anselmi C., Wittig I., Faraldo-Gomez J. D., Kuhlbrandt W., Structure of the yeast F1Fo-ATP synthase dimer and its role in shaping the mitochondrial cristae. Proc. Natl. Acad. Sci. U.S.A. 109, 13602–13607 (2012). PubMed PMC
Opperdoes F. R., Butenko A., Flegontov P., Yurchenko V., Lukeš J., Comparative metabolism of free-living Bodo saltans and parasitic trypanosomatids. J. Eukaryot. Microbiol. 63, 657–678 (2016). PubMed