Trypanosomatid mitochondrial RNA editing: dramatically complex transcript repertoires revealed with a dedicated mapping tool
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29220521
PubMed Central
PMC5778460
DOI
10.1093/nar/gkx1202
PII: 4695472
Knihovny.cz E-zdroje
- MeSH
- editace RNA * MeSH
- genom mitochondriální genetika MeSH
- genom protozoální genetika MeSH
- izoformy RNA genetika metabolismus MeSH
- mitochondrie genetika metabolismus MeSH
- RNA mitochondriální genetika metabolismus MeSH
- RNA protozoální genetika metabolismus MeSH
- sestřih RNA MeSH
- stanovení celkové genové exprese metody MeSH
- Trypanosoma brucei brucei genetika metabolismus MeSH
- Trypanosomatina genetika metabolismus MeSH
- výpočetní biologie metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- izoformy RNA MeSH
- RNA mitochondriální MeSH
- RNA protozoální MeSH
RNA editing by targeted insertion and deletion of uridine is crucial to generate translatable mRNAs from the cryptogenes of the mitochondrial genome of kinetoplastids. This type of editing consists of a stepwise cascade of reactions generally proceeding from 3' to 5' on a transcript, resulting in a population of partially edited as well as pre-edited and completely edited molecules for each mitochondrial cryptogene of these protozoans. Often, the number of uridines inserted and deleted exceed the number of nucleotides that are genome-encoded. Thus, analysis of kinetoplastid mitochondrial transcriptomes has proven frustratingly complex. Here we present our analysis of Leptomonas pyrrhocoris mitochondrial cDNA deep sequencing reads using T-Aligner, our new tool which allows comprehensive characterization of RNA editing, not relying on targeted transcript amplification and on prior knowledge of final edited products. T-Aligner implements a pipeline of read mapping, visualization of all editing states and their coverage, and assembly of canonical and alternative translatable mRNAs. We also assess T-Aligner functionality on a more challenging deep sequencing read input from Trypanosoma cruzi. The analysis reveals that transcripts of cryptogenes of both species undergo very complex editing that includes the formation of alternative open reading frames and whole categories of truncated editing products.
Central European Institute of Technology Masaryk University Brno 625 00 Czech Republic
Department of Biomedical Sciences University of Minnesota Medical School Duluth MN 55812 3031 USA
Faculty of Biology M 5 Lomonosov Moscow State University Moscow 119991 Russia
Faculty of Science University of South Bohemia České Budějovice 370 05 Czech Republic
Institute for Information Transmission Problems Russian Academy of Sciences Moscow 127051 Russia
Life Science Research Centre Faculty of Science University of Ostrava Ostrava 710 00 Czech Republic
Skolkovo Institute of Science and Technology Moscow 14326 Russia
Zobrazit více v PubMed
Gray M.W., Lukeš J., Archibald J.M., Keeling P.J., Doolittle W.F.. Cell biology. Irremediable complexity?. Science. 2010; 330:920–921. PubMed
Koonin E.V. Splendor and misery of adaptation, or the importance of neutral null for understanding evolution. BMC Biol. 2016; 14:114. PubMed PMC
Lukeš J., Archibald J.M., Keeling P.J., Doolittle W.F., Gray M.W.. How a neutral evolutionary ratchet can build cellular complexity. IUBMB Life. 2011; 63:528–537. PubMed
Stoltzfus A. Constructive neutral evolution: exploring evolutionary theory's curious disconnect. Biol Direct. 2012; 7:35. PubMed PMC
Smith D.R., Keeling P.J.. Protists and the Wild, Wild West of gene expression: new frontiers, Lawlessness, and Misfits. Annu. Rev. Microbiol. 2016; 70:161–178. PubMed
Burger G., Moreira S., Valach M.. Genes in Hiding. Trends Genet. 2016; 32:553–565. PubMed
Faktorová D., Dobáková E., Peña-Diaz P., Lukeš J.. From simple to supercomplex: mitochondrial genomes of euglenozoan protists. F1000Research. 2016; 5:392. PubMed PMC
Valach M., Moreira S., Faktorová D., Lukeš J., Burger G.. Post-transcriptional mending of gene sequences: looking under the hood of mitochondrial gene expression in diplonemids. RNA Biol. 2016; 13:1204–1211. PubMed PMC
Yabuki A., Tanifuji G., Kusaka C., Takishita K., Fujikura K.. Hyper-eccentric structural genes in the mitochondrial genome of the algal parasite Hemistasia phaeocysticola. Genome Biol Evol. 2016; 8:2870–2878. PubMed PMC
Aphasizheva I., Aphasizhev R.. U-insertion/deletion mRNA-editing holoenzyme: definition in sight. Trends Parasitol. 2016; 32:144–156. PubMed PMC
Read L.K., Lukeš J., Hashimi H.. Trypanosome RNA editing: the complexity of getting U in and taking U out. Wiley Interdiscip. Rev. RNA. 2016; 7:33–51. PubMed PMC
David V., Flegontov P., Gerasimov E., Tanifuji G., Hashimi H., Logacheva M.D., Maruyama S., Onodera N.T., Gray M.W., Archibald J.M. et al. . Gene loss and error-prone RNA editing in the mitochondrion of Perkinsela, an endosymbiotic kinetoplastid. mBio. 2015; 6:e01498–15. PubMed PMC
Simpson L., Thiemann O.H., Savill N.J., Alfonzo J.D., Maslov D.A.. Evolution of RNA editing in trypanosome mitochondria. Proc. Natl. Acad. Sci. U.S.A. 2000; 97:6986–6993. PubMed PMC
Simpson L., Maslov D.A.. Evolution of the U-insertion/deletion RNA editing in mitochondria of kinetoplastid protozoa. Ann. N. Y. Acad. Sci. 1999; 870:190–205. PubMed
Aravin A.A., Yurchenko V., Merzlyak E.M., Kolesnikov A.A.. The mitochondrial ND8 gene from Crithidia oncopelti is not pan-edited. FEBS Lett. 1998; 431:457–460. PubMed
Gerasimov E.S., Kostygov A.Y., Yan S., Kolesnikov A.A.. From cryptogene to gene? ND8 editing domain reduction in insect trypanosomatids. Eur. J. Protistol. 2012; 48:185–193. PubMed
McDermott S.M., Luo J., Carnes J., Ranish J.A., Stuart K.. The architecture of Trypanosoma brucei editosomes. Proc. Natl. Acad. Sci. U.S.A. 2016; 113:e6476–e6485. PubMed PMC
Simpson R.M., Bruno A.E., Chen R., Lott K., Tylec B.L., Bard J.E., Sun Y., Buck M.J., Read L.K.. Trypanosome RNA Editing Mediator Complex proteins have distinct functions in gRNA utilization. Nucleic Acids Res. 2017; 45:7965–7983. PubMed PMC
Kirby L.E., Sun Y., Judah D., Nowak S., Koslowsky D.. Analysis of the Trypanosoma brucei EATRO 164 bloodstream guide RNA transcriptome. PLoS Negl. Trop. Dis. 2016; 10:e0004793. PubMed PMC
Koslowsky D., Sun Y., Hindenach J., Theisen T., Lucas J.. The insect-phase gRNA transcriptome in Trypanosoma brucei. Nucleic Acids Res. 2014; 42:1873–1886. PubMed PMC
Simpson L., Douglass S.M., Lake J.A., Pellegrini M., Li F.. Comparison of the mitochondrial genomes and steady state transcriptomes of two strains of the trypanosomatid parasite, Leishmania tarentolae. PLoS Negl. Trop. Dis. 2015; 9:e0003841. PubMed PMC
Ammerman M.L., Presnyak V., Fisk J.C., Foda B.M., Read L.K.. TbRGG2 facilitates kinetoplastid RNA editing initiation and progression past intrinsic pause sites. RNA. 2010; 16:2239–2251. PubMed PMC
Koslowsky D.J., Bhat G.J., Read L.K., Stuart K.. Cycles of progressive realignment of gRNA with mRNA in RNA editing. Cell. 1991; 67:537–546. PubMed
Simpson R.M., Bruno A.E., Bard J.E., Buck M.J., Read L.K.. High-throughput sequencing of partially edited trypanosome mRNAs reveals barriers to editing progression and evidence for alternative editing. RNA. 2016; 22:677–695. PubMed PMC
Arts G.J., van der Spek H., Speijer D., van den Burg J., van Steeg H., Sloof P., Benne R.. Implications of novel guide RNA features for the mechanism of RNA editing in Crithidia fasciculata. EMBO J. 1993; 12:1523–1532. PubMed PMC
Maslov D.A., Simpson L.. The polarity of editing within a multiple gRNA-mediated domain is due to formation of anchors for upstream gRNAs by downstream editing. Cell. 1992; 70:459–467. PubMed
Maslov D.A., Thiemann O., Simpson L.. Editing and misediting of transcripts of the kinetoplast maxicircle G5 (ND3) cryptogene in an old laboratory strain of Leishmania tarentolae. Mol. Biochem. Parasitol. 1994; 68:155–159. PubMed
Sturm N.R., Maslov D.A., Blum B., Simpson L.. Generation of unexpected editing patterns in Leishmania tarentolae mitochondrial mRNAs: misediting produced by misguiding. Cell. 1992; 70:469–476. PubMed
Ochsenreiter T., Hajduk S.L.. Alternative editing of cytochrome c oxidase III mRNA in trypanosome mitochondria generates protein diversity. EMBO Rep. 2006; 7:1128–1133. PubMed PMC
Ochsenreiter T., Anderson S., Wood Z.A., Hajduk S.L.. Alternative RNA editing produces a novel protein involved in mitochondrial DNA maintenance in trypanosomes. Mol. Cell. Biol. 2008; 28:5595–5604. PubMed PMC
Ochsenreiter T., Cipriano M., Hajduk S.L.. Alternative mRNA editing in trypanosomes is extensive and may contribute to mitochondrial protein diversity. PLoS One. 2008; 3:e1566. PubMed PMC
Madina B.R., Kumar V., Metz R., Mooers B.H., Bundschuh R., Cruz-Reyes J.. Native mitochondrial RNA-binding complexes in kinetoplastid RNA editing differ in guide RNA composition. RNA. 2014; 20:1142–1152. PubMed PMC
Flegontov P., Gray M.W., Burger G., Lukeš J.. Gene fragmentation: a key to mitochondrial genome evolution in Euglenozoa?. Curr. Genet. 2011; 57:225–232. PubMed
Gray M.W. Evolutionary origin of RNA editing. Biochemistry. 2012; 51:5235–5242. PubMed
Speijer D. Is kinetoplastid pan-editing the result of an evolutionary balancing act?. IUBMB Life. 2006; 58:91–96. PubMed
Speijer D. Does constructive neutral evolution play an important role in the origin of cellular complexity? Making sense of the origins and uses of biological complexity. Bioessays. 2011; 33:344–349. PubMed
Kirby L.E., Koslowsky D.. Mitochondrial dual-coding genes in Trypanosome brucei. PLoS Negl. Trop. Dis. 2017; 11:e0005989. PubMed PMC
Maslov D.A., Sturm N.R., Niner B.M., Gruszynski E.S., Peris M., Simpson L.. An intergenic G-rich region in Leishmania tarentolae kinetoplast maxicircle DNA is a pan-edited cryptogene encoding ribosomal protein S12. Mol. Cell. Biol. 1992; 12:56–67. PubMed PMC
Feagin J.E., Abraham J.M., Stuart K.. Extensive editing of the cytochrome c oxidase III transcript in Trypanosoma brucei. Cell. 1988; 53:413–422. PubMed
Shaw J.M., Feagin J.E., Stuart K., Simpson L.. Editing of kinetoplastid mitochondrial mRNAs by uridine addition and deletion generates conserved amino acid sequences and AUG initiation codons. Cell. 1988; 53:401–411. PubMed
Feagin J.E., Shaw J.M., Simpson L., Stuart K.. Creation of AUG initiation codons by addition of uridines within cytochrome b transcripts of kinetoplastids. Proc. Natl. Acad. Sci. U.S.A. 1988; 85:539–543. PubMed PMC
Carnes J., McDermott S., Anupama A., Oliver B.G., Sather D.N., Stuart K.. In vivo cleavage specificity of Trypanosoma brucei editosome endonucleases. Nucleic Acids Res. 2017; 45:4667–4686. PubMed PMC
del Campo J., Sieracki M.E., Molestina R., Keeling P., Massana R., Ruiz-Trillo I.. The others: our biased perspective of eukaryotic genomes. Trends Ecol. Evol. 2014; 29:252–259. PubMed PMC
Votýpka J., Klepetková H., Yurchenko V.Y., Horák A., Lukeš J., Maslov D.A.. Cosmopolitan distribution of a trypanosomatid Leptomonas pyrrhocoris. Protist. 2012; 163:616–631. PubMed
Maslov D.A., Votýpka J., Yurchenko V., Lukeš J.. Diversity and phylogeny of insect trypanosomatids: all that is hidden shall be revealed. Trends Parasitol. 2013; 29:43–52. PubMed
Flegontov P., Butenko A., Firsov S., Kraeva N., Eliáš M., Field M.C., Filatov D., Flegontova O., Gerasimov E.S., Hlaváčová J. et al. . Genome of Leptomonas pyrrhocoris: a high-quality reference for monoxenous trypanosomatids and new insights into evolution of Leishmania. Sci. Rep. 2016; 6:23704. PubMed PMC
Castellani O., Ribeiro L.V., Fernandes J.F.. Differentiation of Trypanosoma cruzi in culture. J. Protozool. 1967; 14:447–451. PubMed
Pelletier M., Read L.K., Aphasizhev R.. Isolation of RNA binding proteins involved in insertion/deletion editing. Methods Enzymol. 2007; 424:75–105. PubMed
Horváth A., Horáková E., Dunajcíková P., Verner Z., Pravdová E., Slapetová I., Cuninková L., Lukes J.. Downregulation of the nuclear-encoded subunits of the complexes III and IV disrupts their respective complexes but not complex I in procyclic Trypanosoma brucei. Mol. Microbiol. 2005; 58:116–130. PubMed
Záhonová K., Hadariová L., Vacula R., Yurchenko V., Eliáš M., Krajčovič J., Vesteg M.. A small portion of plastid transcripts is polyadenylated in the flagellate Euglena gracilis. FEBS Lett. 2014; 588:783–788. PubMed
Zhang L., Sement F.M., Suematsu T., Yu T., Monti S., Huang L., Aphasizhev R., Aphasizheva I.. PPR polyadenylation factor defines mitochondrial mRNA identity and stability in trypanosomes. EMBO J. 2017; 36:2435–2454. PubMed PMC
Gazestani V.H., Hampton M., Shaw A.K., Liggett C., Salavati R., Zimmer S.L.. Tail characteristics of Trypanosoma brucei mitochondrial transcripts are developmentally altered in a transcript-specific manner. Int. J. Parasitol. 2017; doi:10.1016/j.ijpara.2017.08.012. PubMed
Aslett M., Aurrecoechea C., Berriman M., Brestelli J., Brunk B.P., Carrington M., Depledge D.P., Fischer S., Gajria B., Gao X. et al. . TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res. 2010; 38:D457–D462. PubMed PMC
Souza A.E., Myler P.J., Stuart K.. Maxicircle CR1 transcripts of Trypanosoma brucei are edited and developmentally regulated and encode a putative iron-sulfur protein homologous to an NADH dehydrogenase subunit. Mol. Cell. Biol. 1992; 12:2100–2107. PubMed PMC
Read L.K., Myler P.J., Stuart K.. Extensive editing of both processed and preprocessed maxicircle CR6 transcripts in Trypanosoma brucei. J. Biol. Chem. 1992; 267:1123–1128. PubMed
Ruvalcaba-Trejo L.I., Sturm N.R.. The Trypanosoma cruzi Sylvio X10 strain maxicircle sequence: the third musketeer. BMC Genomics. 2011; 12:58. PubMed PMC
Langmead B., Salzberg S.. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 2012; 9:357–359. PubMed PMC
Gazestani V.H., Hampton M., Abrahante J.E., Salavati R., Zimmer S.L.. circTAIL-seq, a targeted method for deep analysis of RNA 3′ tails, reveals transcript-specific differences by multiple metrics. RNA. 2016; 22:477–486. PubMed PMC
Jirků M., Yurchenko V.Y., Lukeš J., Maslov D.A.. New species of insect trypanosomatids from Costa Rica and the proposal for a new subfamily within the Trypanosomatidae. J. Eukaryot. Microbiol. 2012; 59:537–547. PubMed
Landweber L.F., Gilbert W.. RNA editing as a source of genetic variation. Nature. 1993; 363:179–182. PubMed
Yasuhira S., Simpson L.. Minicircle-encoded guide RNAs from Crithidia fasciculata. RNA. 1995; 1:634–643. PubMed PMC
Nebohácová M., Kim C.E., Simpson L., Maslov D.A.. RNA editing and mitochondrial activity in promastigotes and amastigotes of Leishmania donovani. Int. J. Parasitol. 2009; 39:635–644. PubMed PMC
Read L.K., Wilson K.D., Myler P.J., Stuart K.. Editing of Trypanosoma brucei maxicircle CR5 mRNA generates variable carboxy terminal predicted protein sequences. Nucleic Acids Res. 1994; 22:1489–1495. PubMed PMC
Maslov D.A. Complete set of mitochondrial pan-edited mRNAs in Leishmania mexicana amazonensis LV78. Mol. Biochem. Parasitol. 2010; 173:107–114. PubMed PMC
Westenberger S.J., Cerqueira G.C., El-Sayed N.M., Zingales B., Campbell D.A., Sturm N.R.. Trypanosoma cruzi mitochondrial maxicircles display species- and strain-specific variation and a conserved element in the non-coding region. BMC Genomics. 2006; 7:60. PubMed PMC
Thomas S., Martinez L.L., Westenberger S.J., Sturm N.R.. A population study of the minicircles in Trypanosoma cruzi: predicting guide RNAs in the absence of empirical RNA editing. BMC Genomics. 2007; 8:133. PubMed PMC
Greif G., Rodriguez M., Reyna-Bello A., Robello C., Alvarez-Valin F.. Kinetoplast adaptations in American strains from Trypanosoma vivax. Mutat. Res. 2015; 773:69–82. PubMed
Etheridge R.D., Aphasizheva I., Gershon P.D., Aphasizhev R.. 3′ adenylation determines mRNA abundance and monitors completion of RNA editing in T. brucei mitochondria. EMBO J. 2008; 27:1596–1608. PubMed PMC
Flegontova O., Flegontov P., Malviya S., Audic S., Wincker P., de Vargas C., Bowler C., Lukeš J., Horák A.. Extreme diversity of diplonemid eukaryotes in the ocean. Curr. Biol. 2016; 26:3060–3065. PubMed
Gawryluk R.M., Del Campo J., Okamoto N., Strassert J.F., Lukeš J., Richards T.A., Worden A.Z., Santoro A.E., Keeling P.J.. Morphological identification and single-cell genomics of marine diplonemids. Curr. Biol. 2016; 26:3053–3059. PubMed
de Vargas C., Audic S., Henry N., Decelle J., Mahé F., Logares R., Lara E., Berney C., Le Bescot N., Probert I. et al. . Ocean plankton. Eukaryotic plankton diversity in the sunlit ocean. Science. 2015; 348:1261605. PubMed
Lukeš J., Skalický T., Týč J., Votýpka J., Yurchenko V.. Evolution of parasitism in kinetoplastid flagellates. Mol. Biochem. Parasitol. 2014; 195:115–122. PubMed
Rodrigues J.C., Godinho J.L., de Souza W.. Biology of human pathogenic trypanosomatids: epidemiology, lifecycle and ultrastructure. Subcell. Biochem. 2014; 74:1–42. PubMed
Parsons M., Ramasamy G., Vasconcelos E.J., Jensen B.C., Myler P.J.. Advancing Trypanosoma brucei genome annotation through ribosome profiling and spliced leader mapping. Mol. Biochem. Parasitol. 2015; 202:1–10. PubMed PMC
Mitochondrial RNA editing in Trypanoplasma borreli: New tools, new revelations
Genomics of Trypanosomatidae: Where We Stand and What Needs to Be Done?
Lexis and Grammar of Mitochondrial RNA Processing in Trypanosomes
Common Structural Patterns in the Maxicircle Divergent Region of Trypanosomatidae
Combinatorial interplay of RNA-binding proteins tunes levels of mitochondrial mRNA in trypanosomes