Post-transcriptional mending of gene sequences: Looking under the hood of mitochondrial gene expression in diplonemids
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
Grantová podpora
MOP-79309
CIHR - Canada
PubMed
27715490
PubMed Central
PMC5207376
DOI
10.1080/15476286.2016.1240143
Knihovny.cz E-zdroje
- Klíčová slova
- Cryptic genes, RNA editing, diplonemids, gene fragmentation, multipartite mtDNA, trans-splicing,
- MeSH
- editace RNA MeSH
- Euglenozoa genetika MeSH
- mitochondriální proteiny genetika MeSH
- mitochondrie genetika MeSH
- posttranskripční úpravy RNA MeSH
- protozoální proteiny genetika MeSH
- regulace genové exprese MeSH
- RNA transferová metabolismus MeSH
- sekvence nukleotidů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- mitochondriální proteiny MeSH
- protozoální proteiny MeSH
- RNA transferová MeSH
The instructions to make proteins and structural RNAs are laid down in gene sequences. Yet, in certain instances, these primary instructions need to be modified considerably during gene expression, most often at the transcript level. Here we review a case of massive post-transcriptional revisions via trans-splicing and RNA editing, a phenomenon occurring in mitochondria of a recently recognized protist group, the diplonemids. As of now, the various post-transcriptional steps have been cataloged in detail, but how these processes function is still unknown. Since genetic manipulation techniques such as gene replacement and RNA interference have not yet been established for these organisms, alternative strategies have to be deployed. Here, we discuss the experimental and bioinformatics approaches that promise to unravel the molecular machineries of trans-splicing and RNA editing in Diplonema mitochondria.
Zobrazit více v PubMed
Burger G, Moreira S, Valach M. Genes in hiding. Trends Genet 2016; 32:553-65; PMID:27460648; http://dx.doi.org/10.1016/j.tig.2016.06.005 PubMed DOI
Knoop V. When you can't trust the DNA: RNA editing changes transcript sequences. Cell Mol Life Sci 2010; 68:567-86; PMID:20938709; http://dx.doi.org/10.1007/s00018-010-0538-9 PubMed DOI PMC
Maslov DA, Yasuhira S, Simpson L. Phylogenetic affinities of Diplonema within the Euglenozoa as inferred from the SSU rRNA gene and partial COI protein sequences. Protist 1999; 150:33-42; PMID:10724517; http://dx.doi.org/10.1016/S1434-4610(99)70007-6 PubMed DOI
Simpson AGB, Roger AJ. Protein phylogenies robustly resolve the deep-level relationships within Euglenozoa. Mol Phylogenet Evol 2004; 30:201-12; PMID:15022770; http://dx.doi.org/10.1016/S1055-7903(03)00177-5 PubMed DOI
Lara E, Moreira D, Vereshchaka A, López-García P. Pan-oceanic distribution of new highly diverse clades of deep-sea diplonemids. Environ Microbiol 2009; 11:47-55; PMID:18803646; http://dx.doi.org/10.1111/j.1462-2920.2008.01737.x PubMed DOI
de Vargas C, Audic S, Henry N, Decelle J, Mahé F, Logares R, Lara E, Berney C, Le Bescot N, Probert I, et al.. Ocean plankton. Eukaryotic plankton diversity in the sunlit ocean. Science 2015; 348:1261605; PMID:25999516; http://dx.doi.org/10.1126/science.1261605 PubMed DOI
Lukeš J, Flegontova O, Horák A. Diplonemids. Curr Biol 2015; 25:R702-4; http://dx.doi.org/10.1016/j.cub.2015.04.052 PubMed DOI
Flegontova O, Flegontov P, Malviya S, Audic S, Wincker P, de Vargas C, Bowler C, Lukeš J, Horák A. (2016) Unexpected diversity and abundance of planktonic diplonemids in the world ocean. Curr. Biol; http://dx.doi.org/10.1016/j.cub.2016.09.031 PubMed DOI
Gawryluk RMR, del Campo J, Okamoto N, Strassert JFH, Lukeš J, Richards TA, Worden AZ, Santoro AE, Keeling PJ. (2016) Morphological identification and single-cell genomics of marine diplonemids. Curr. Biol; http://dx.doi.org/10.1016/j.cub.2016.09.013. PubMed DOI
Vlcek C, Marande W, Teijeiro S, Lukeš J, Burger G. Systematically fragmented genes in a multipartite mitochondrial genome. Nucleic Acids Res 2011; 39:979-88; PMID:20935050; http://dx.doi.org/10.1093/nar/gkq883 PubMed DOI PMC
Moreira S, Valach M, Aoulad-Aissa M, Otto C, Burger G. Novel modes of RNA editing in mitochondria. Nucleic Acids Res 2016; 44:4907-19; PMID:27001515; http://dx.doi.org/10.1093/nar/gkw188 PubMed DOI PMC
Marande W, Lukeš J, Burger G. Unique mitochondrial genome structure in diplonemids, the sister group of kinetoplastids. Eukaryot Cell 2005; 4:1137-46; PMID:15947205; http://dx.doi.org/10.1128/EC.4.6.1137-1146.2005 PubMed DOI PMC
Marande W, Burger G. Mitochondrial DNA as a genomic jigsaw puzzle. Science 2007; 318:415; PMID:17947575; http://dx.doi.org/10.1126/science.1148033 PubMed DOI
Kiethega GN, Yan Y, Turcotte M, Burger G. RNA-level unscrambling of fragmented genes in Diplonema mitochondria. RNA Biol 2013; 10:301-13; PMID:23324603; http://dx.doi.org/10.4161/rna.23340 PubMed DOI PMC
Kiethega GN, Turcotte M, Burger G. Evolutionarily conserved cox1 trans-splicing without cis-motifs. Mol Biol Evol 2011; 28:2425-8; PMID:21436119; http://dx.doi.org/10.1093/molbev/msr075 PubMed DOI
Moreira S, Breton S, Burger G. Unscrambling genetic information at the RNA level. Wiley Interdiscip Rev RNA 2012; 3:213-28; PMID:22275292; http://dx.doi.org/10.1002/wrna.1106 PubMed DOI
Valach M, Moreira S, Kiethega GN, Burger G. Trans-splicing and RNA editing of LSU rRNA in Diplonema mitochondria. Nucleic Acids Res 2014; 42:2660-72; PMID:24259427; http://dx.doi.org/10.1093/nar/gkt1152 PubMed DOI PMC
Feagin JE, Abraham JM, Stuart K. Extensive editing of the cytochrome c oxidase III transcript in Trypanosoma brucei. Cell 1988; 53:413-22; PMID:2452697; http://dx.doi.org/10.1016/0092-8674(88)90161-4 PubMed DOI
Read LK, Lukeš J, Hashimi H. Trypanosome RNA editing: the complexity of getting U in and taking U out. Wiley Interdiscip Rev RNA 2016; 7:33-51; PMID:26522170; http://dx.doi.org/10.1002/wrna.1313 PubMed DOI PMC
Roy J, Faktorová D, Benada O, Lukeš J, Burger G. Description of Rhynchopus euleeides n. sp. (Diplonemea), a free-living marine euglenozoan. J Eukaryot Microbiol 2007; 54:137-45; PMID:17403154; http://dx.doi.org/10.1111/j.1550-7408.2007.00244.x PubMed DOI
Roy J, Faktorová D, Lukeš J, Burger G. Unusual mitochondrial genome structures throughout the Euglenozoa. Protist 2007; 158:385-96; PMID:17499547; http://dx.doi.org/10.1016/j.protis.2007.03.002 PubMed DOI
Flegontov P, Gray MW, Burger G, Lukeš J. Gene fragmentation: a key to mitochondrial genome evolution in Euglenozoa? Curr Genet 2011; 57:225-32; PMID:21544620; http://dx.doi.org/10.1007/s00294-011-0340-8 PubMed DOI
Yabuki A, Tanifuji G, Kusaka C, Takishita K, Fujikura K. Hyper-eccentric structural genes in the mitochondrial genome of the algal parasite Hemistasia phaeocysticola. Genome Biol Evol 2016; evw207; http://dx.doi.org/10.1093/gbe/evw207 PubMed DOI PMC
Yabuki A, Tame A. Phylogeny and reclassification of Hemistasia phaeocysticola (Scherffel) Elbrächter & Schnepf, 1996. J Eukaryot Microbiol 2015; 62:426-9; PMID:25377132; http://dx.doi.org/10.1111/jeu.12191 PubMed DOI
Wallach DFH, Kamat VB. Plasma and cytoplasmic membrane fragments from Ehrlich ascites carcinoma. Proc Natl Acad Sci USA 1964; 52:721-8; PMID:14212548; http://dx.doi.org/10.1073/pnas.52.3.721 PubMed DOI PMC
Hauser R, Pypaert M, Häusler T, Horn EK, Schneider A. In vitro import of proteins into mitochondria of Trypanosoma brucei and Leishmania tarentolae. J Cell Sci 1996; 109:517-23; PMID:8838675 PubMed
Schneider A, Charrière F, Pusnik M, Horn EK. Isolation of mitochondria from procyclic Trypanosoma brucei. Methods Mol Biol 2007; 372:67-80; PMID:18314718; http://dx.doi.org/10.1007/978-1-59745-365-3_5 PubMed DOI
Burger G, Lavrov DV, Forget L, Lang BF. Sequencing complete mitochondrial and plastid genomes. Nat Protoc 2007; 2:603-14; PMID:17406621; http://dx.doi.org/10.1038/nprot.2007.59 PubMed DOI
Xie Y, Wu G, Tang J, Luo R, Patterson J, Liu S, Huang W, He G, Gu S, Li S, et al.. SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads. Bioinformatics 2014; 30:1660-6; PMID:24532719; http://dx.doi.org/10.1093/bioinformatics/btu077 PubMed DOI
Schulz MH, Zerbino DR, Vingron M, Birney E. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 2012; 28:1086-92; PMID:22368243; http://dx.doi.org/10.1093/bioinformatics/bts094 PubMed DOI PMC
Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol 2011; 7:e1002195; PMID:22039361; http://dx.doi.org/10.1371/journal.pcbi.1002195 PubMed DOI PMC
Gautheret D, Lambert A. Direct RNA motif definition and identification from multiple sequence alignments using secondary structure profiles. J Mol Biol 2001; 313:1003-11; PMID:11700055; http://dx.doi.org/10.1006/jmbi.2001.5102 PubMed DOI
Nawrocki EP, Eddy SR. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 2013; 29:2933-5; PMID:24008419; http://dx.doi.org/10.1093/bioinformatics/btt509 PubMed DOI PMC
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012; 9:357-9; PMID:22388286; http://dx.doi.org/10.1038/nmeth.1923 PubMed DOI PMC
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013; 29:15-21; PMID:23104886; http://dx.doi.org/10.1093/bioinformatics/bts635 PubMed DOI PMC
Otto C, Stadler PF, Hoffmann S. Fast and sensitive mapping of bisulfite-treated sequencing data. Bioinformatics 2012; 28:1698-704; PMID:22581174; http://dx.doi.org/10.1093/bioinformatics/bts254 PubMed DOI
Neupert W, Herrmann JM. Translocation of proteins into mitochondria. Annu Rev Biochem 2007; 76:723-49; PMID:17263664; http://dx.doi.org/10.1146/annurev.biochem.76.052705.163409 PubMed DOI
Gerber AP, Keller W. RNA editing by base deamination: more enzymes, more targets, new mysteries. Trends Biochem Sci 2001; 26:376-84; PMID:11406411; http://dx.doi.org/10.1016/S0968-0004(01)01827-8 PubMed DOI
Kwak JE, Wickens M. A family of poly(U) polymerases. RNA 2007; 13:860-7; PMID:17449726; http://dx.doi.org/10.1261/rna.514007 PubMed DOI PMC
Tanaka N, Meineke B, Shuman S. RtcB, a novel RNA ligase, can catalyze tRNA splicing and HAC1 mRNA splicing in vivo. J Biol Chem 2011; 286:30253-7; PMID:21757685; http://dx.doi.org/10.1074/jbc.C111.274597 PubMed DOI PMC
Sun T, Bentolila S, Hanson MR. The unexpected diversity of plant organelle RNA editosomes. Trends Plant Sci 2016; S1360-1385; http://dx.doi.org/10.1016/j.tplants.2016.07.005 PubMed DOI
Moreira S, Noutahi E, Lamoureux G, Burger G. Three-dimensional structure model and predicted ATP interaction rewiring of a deviant RNA ligase 2. BMC Struct Biol 2015; 15:20. PubMed PMC
Wittig I, Braun HP, Schägger H. Blue native PAGE. Nat Protoc 2006; 1:418-28; PMID:17406264; http://dx.doi.org/10.1038/nprot.2006.62 PubMed DOI
Petrov A, Wu T, Puglisi EV, Puglisi JD. RNA purification by preparative polyacrylamide gel electrophoresis. Meth Enzymol 2013; 530:315-30; PMID:24034329; http://dx.doi.org/10.1016/B978-0-12-420037-1.00017-8 PubMed DOI
Greber BJ, Ban N. Structure and function of the mitochondrial ribosome. Annu Rev Biochem 2016; 85:103-32; PMID:27023846; http://dx.doi.org/10.1146/annurev-biochem-060815-014343 PubMed DOI
Göringer HU. “Gestalt,” composition and function of the Trypanosoma brucei editosome. Annu Rev Microbiol 2012; 66:65-82; PMID:22994488; http://dx.doi.org/10.1146/annurev-micro-092611-150150 PubMed DOI
Papasaikas P, Valcárcel J. The spliceosome: the ultimate RNA chaperone and sculptor. Trends Biochem Sci 2016; 41:33-45; PMID:26682498; http://dx.doi.org/10.1016/j.tibs.2015.11.003 PubMed DOI
Engreitz JM, Sirokman K, McDonel P, Shishkin AA, Surka C, Russell P, Grossman SR, Chow AY, Guttman M, Lander ES. RNA-RNA interactions enable specific targeting of noncoding RNAs to nascent pre-mRNAs and chromatin sites. Cell 2014; 159:188-99; PMID:25259926; http://dx.doi.org/10.1016/j.cell.2014.08.018 PubMed DOI PMC
McHugh CA, Chen CK, Chow A, Surka CF, Tran C, McDonel P, Pandya-Jones A, Blanco M, Burghard C, Moradian A, et al.. The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature 2015; 521:232-6; PMID:25915022; http://dx.doi.org/10.1038/nature14443 PubMed DOI PMC
Chu C, Zhang QC, da Rocha ST, Flynn RA, Bharadwaj M, Calabrese JM, Magnuson T, Heard E, Chang HY. Systematic discovery of Xist RNA binding proteins. Cell 2015; 161:404-16; PMID:25843628; http://dx.doi.org/10.1016/j.cell.2015.03.025 PubMed DOI PMC
Ho CK, Wang LK, Lima CD, Shuman S. Structure and mechanism of RNA ligase. Structure 2004; 12:327-39; PMID:14962393; http://dx.doi.org/10.1016/j.str.2004.01.011 PubMed DOI
Tanaka N, Chakravarty AK, Maughan B, Shuman S. Novel mechanism of RNA repair by RtcB via sequential 2′,3′-cyclic phosphodiesterase and 3′-phosphate/5′-hydroxyl ligation reactions. J Biol Chem 2011; 286:43134-43; PMID:22045815; http://dx.doi.org/10.1074/jbc.M111.302133 PubMed DOI PMC
Popow J, Schleiffer A, Martinez J. Diversity and roles of (t)RNA ligases. Cell Mol Life Sci 2012; 69:2657-70; PMID:22426497; http://dx.doi.org/10.1007/s00018-012-0944-2 PubMed DOI PMC
Aphasizheva I, Aphasizhev R. U-insertion/deletion mRNA-editing holoenzyme: definition in sight. Trends Parasitol 2016; 32:144-56; PMID:26572691; http://dx.doi.org/10.1016/j.pt.2015.10.004 PubMed DOI PMC
Gene fragmentation and RNA editing without borders: eccentric mitochondrial genomes of diplonemids
Massive mitochondrial DNA content in diplonemid and kinetoplastid protists