Massive mitochondrial DNA content in diplonemid and kinetoplastid protists

. 2018 Dec ; 70 (12) : 1267-1274. [epub] 20181006

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30291814

Grantová podpora
MOP-115141 CIHR - Canada
103261/Z/13/Z Wellcome Trust - United Kingdom
Wellcome Trust - United Kingdom

The mitochondrial DNA of diplonemid and kinetoplastid protists is known for its suite of bizarre features, including the presence of concatenated circular molecules, extensive trans-splicing and various forms of RNA editing. Here we report on the existence of another remarkable characteristic: hyper-inflated DNA content. We estimated the total amount of mitochondrial DNA in four kinetoplastid species (Trypanosoma brucei, Trypanoplasma borreli, Cryptobia helicis, and Perkinsela sp.) and the diplonemid Diplonema papillatum. Staining with 4',6-diamidino-2-phenylindole and RedDot1 followed by color deconvolution and quantification revealed massive inflation in the total amount of DNA in their organelles. This was further confirmed by electron microscopy. The most extreme case is the ∼260 Mbp of DNA in the mitochondrion of Diplonema, which greatly exceeds that in its nucleus; this is, to our knowledge, the largest amount of DNA described in any organelle. Perkinsela sp. has a total mitochondrial DNA content ~6.6× greater than its nuclear genome. This mass of DNA occupies most of the volume of the Perkinsela cell, despite the fact that it contains only six protein-coding genes. Why so much DNA? We propose that these bloated mitochondrial DNAs accumulated by a ratchet-like process. Despite their excessive nature, the synthesis and maintenance of these mtDNAs must incur a relatively low cost, considering that diplonemids are one of the most ubiquitous and speciose protist groups in the ocean. © 2018 IUBMB Life, 70(12):1267-1274, 2018.

Zobrazit více v PubMed

Smith, D. R. , and Keeling, P. J. (2015) Mitochondrial and plastid genome architecture: reoccurring themes, but significant differences at the extremes. Proc. Natl. Acad. Sci. U. S. A. 112, 10177–10184. PubMed PMC

Knoop, V. , Volkmar, U. , Hecht, J. , and Grewe, F. (2011) Mitochondrial genome evolution in the plant lineage In: Advances in Plant Biology (ed. Kempken F.), Springer, New York, pp. 3–29.

Sloan, D. B. , Alverson, A. J. , Chuckalovcak, J. P. , Wu, M. , McCauley, D. E. , et al. (2012) Rapid evolution of enormous, multichromosomal genomes in flowering plant mitochondria with exceptionally high mutation rates. PLoS Biol. 10, e1001241. PubMed PMC

Sloan, D. B. , Muller, K. , McCauley, D. E. , Taylor, D. R. , and Storchová, H. (2012) Intraspecific variation in mitochondrial genome sequence, structure, and gene content in Silene vulgaris, an angiosperm with pervasive cytoplasmic male sterility. New Phytol. 196, 1228–1239. PubMed

Rice, D. W. , Alverson, A. J. , Richardson, A. O. , Young, G. J. , Sanchez‐Puerta, M. V. , et al. (2013) Horizontal transfer of entire genomes via mitochondrial fusion in the angiosperm Amborella . Science. 342, 1468–1473. PubMed

Burger, G. , Gray, M. W. , Forget, L. , and Lang, B. F. (2013) Strikingly bacteria‐like and gene‐rich mitochondrial genomes throughout jakobid protists. Genome Biol. Evol. 5, 418–438. PubMed PMC

Jensen, R. E. , and Englund, P. T. (2012) Network news: the replication of kinetoplast DNA. Annu. Rev. Microbiol. 66, 473–491. PubMed

Benne, R. , Van den Burg, J. , Brakenhoff, J. P. J. , Sloof, P. , Van Boom, J. H. , et al. (1986) Major transcript of the frameshifted coxII gene from trypanosome mitochondria contains 4 nucleotides that are not encoded in the DNA. Cell. 46, 819–826. PubMed

Read, L. K. , Lukeš, J. , and Hashimi, H. (2016) Trypanosome RNA editing: the complexity of getting U in and taking U out. WIREs RNA. 7, 33–51. PubMed PMC

Aphasizhev, R. , and Aphasizheva, I. (2014) Mitochondrial RNA editing in trypanosomes: Small RNAs in control. Biochimie. 100, 125–131. PubMed PMC

Simpson, L. , and Maslov, D. A. (1994) RNA editing and the evolution of parasites. Science. 264, 1870–1871. PubMed

David, V. , Flegontov, P. , Gerasimov, E. , Tanifuji, G. , Hashimi, H. , et al. (2015) Gene loss and error‐prone RNA editing in the mitochondrion of Perkinsela, an endosymbiotic kinetoplastid. mBio. 6, e01498–e01515. PubMed PMC

Lai, D.‐H. , Hashimi, H. , Lun, Z.‐R. , Ayala, F. J. , and Lukeš, J. (2008) Adaptation of Trypanosoma brucei to gradual loss of kinetoplast DNA: T. equiperdum and T. evansi are petite mutants of T. brucei . Proc. Natl. Acad. Sci. U. S. A. 105, 1999–2004. PubMed PMC

Lukeš, J. , Guilbride, D. L. , Votýpka, J. , Zíková, A. , Benne, R. , et al. (2002) The kinetoplast DNA network: evolution of an improbable structure. Eukaryotic Cell. 1, 495–502. PubMed PMC

Blom, D. , de Haan, A. , van den Burg, J. , van den Berg, M. , Sloof, P. , et al. (2000) Mitochondrial minicircles in the free‐living bodonid Bodo saltans contain two gRNA gene cassettes and are not found in large networks. RNA. 6, 1–15. PubMed PMC

Lukeš, J. , Jirků, M. , Avliyakulov, N. , and Benada, O. (1998) Pankinetoplast DNA structure in a primitive bodonid flagellate, Cryptobia helicis . EMBO J. 17, 838–846. PubMed PMC

Tanifuji, G. , Kim, E. , Onodera, N. T. , Gibeault, R. , Dlutek, M. , et al. (2011) Genomic characterization of Neoparamoeba pemaquidensis (Amoebozoa) and its kinetoplastid endosymbiont. Eukaryotic Cell. 10, 1143–1146. PubMed PMC

Dobáková, E. , Flegontov, P. , Skalický, T. , and Lukeš, J. (2015) Unexpectedly streamlined mitochondrial genome of the euglenozoan Euglena gracilis . Genome Biol. Evol. 7, 3358–3367. PubMed PMC

Marande, W. , and Burger, G. (2007) Mitochondrial DNA as a genomic jigsaw puzzle. Science. 318, 415. PubMed

Moreira, S. , Valach, M. , Aoulad‐Aissa, M. , Otto, C. , and Burger, G. (2016) Novel modes of RNA editing in mitochondria. Nucleic Acids Res. 44, 4907–4919. PubMed PMC

Vlcek, Č. , Marande, W. , Teijeiro, S. , Lukeš, J. , and Burger, G. (2011) Gene fragments scattered across a multi‐partite mitochondrial genome. Nucleic Acids Res. 39, 979–988. PubMed PMC

Valach, M. , Moreira, S. , Hoffmann, S. , Stadler, P. F. , and Burger, G. (2017) Keeping it complicated: Mitochondrial genome plasticity across diplonemids. Sci. Rep. 7, 14166. PubMed PMC

Yabuki, A. , Tanifuji, G. , Kusaka, C. , Takishita, K. , and Fujicura, K. (2016) Hyper‐eccentric structural genes in the mitochondrial genome of the algal parasite Hemistasia phaeocysticola . Genome Biol. Evol. 8, 2870–2878. PubMed PMC

Marande, W. , Lukeš, J. , and Burger, G. (2005) Unique mitochondrial genome structure in diplonemids, the sister group of kinetoplastids. Eukaryotic Cell. 4, 1137–1146. PubMed PMC

Maslov, D. A. , and Simpson, L. (1994) RNA editing and mitochondrial genomic organization in the cryptobiid kinetoplastid protozoan Trypanoplasma borreli . Mol. Cell. Biol. 14, 8174–8182. PubMed PMC

Wheeler, R. J. , Gull, K. , and Gluenz, E. (2012) Detailed interrogation of trypanosome cell biology via differential organelle staining and automated image analysis. BMC Biol. 10, 1. PubMed PMC

Tanifuji, G. , Cenci, U. , Moog, D. , Dean, S. , Nakayama, T. , et al. (2017) Metabolic and cellular interdependence in a eukaryote‐eukaryote symbiosis. Sci. Rep. 7, e11688. PubMed PMC

Morales, J. , Hashimoto, M. , Williams, T. A. , Hirawake‐Mogi, H. , Makiuchi, T. , et al. (2016) Differential remodeling of peroxisome function underpins the environmental and metabolic adaptability of diplonemids and kinetoplastids. Proc. R. Soc. B. 283, 20160520. PubMed PMC

Marini, J. C. , Miller, K. G. , and Englund, P. T. (1980) Decatenation of kinetoplast DNA by topoisomerases. J. Biol. Chem. 255, 4976–4979. PubMed

Wickstead, B. , Ersfeld, K. , and Gull, K. (2004) The small chromosomes of Trypanosoma brucei involved in antigenic variation are constructed around repetitive palindromes. Genome Res. 14, 1014–1024. PubMed PMC

Borst, P. , van der Ploeg, M. , van Hoek, J. F. , Tas, J. , and James, J. (1982) On the DNA content and ploidy of trypanosomes. Mol. Biochem. Parasitol. 6, 13–23. PubMed

Lukeš, J. , Arts, G.‐J. , van den Burg, J. , de Haan, A. , Opperdoes, F. , et al. (1994) Novel pattern of editing regions in mitochondrial transcripts of the cryptobiid Trypanoplasma borreli . EMBO J. 13, 5086–5098. PubMed PMC

Carrington, M. , Dóró, E. , Forlenza, M. , Wiegertjes, G. F. , and Kelly, S. (2017) Transcriptome sequence of the bloodstream form of Trypanoplasma borreli, a hematozoic parasite of fish transmitted by leeches. Genome Announce. 5, e01712–e01716. PubMed PMC

Maslov, D. A. , Yasuhira, S. , and Simpson, L. (1999) Phylogenetic affinities of Diplonema within the Euglenozoa as inferred from the SSU rRNA gene and partial COI protein sequences. Protist. 150, 33–42. PubMed

Tashyreva, D. , Prokopchuk, G. , Yabuki, A. , Kaur, B. , Faktorová, D. , et al. (2018) Phylogeny and morphology of new diplonemids from Japan. Protist. 169, 158–179. PubMed

Burger, G. , Gray, M. W. , and Lang, B. F. (2003) Mitochondrial genomes: anything goes. Trends Genet. 19, 709–716. PubMed

Munoz‐Gómez, S. A. , Mejía‐Franco, F. G. , Durnin, K. , Colp, M. , Grisdale, C. J. , et al. (2017) The new red algal subphylum Proteorhodophytina comprises the largest and most divergent plastid genomes known. Curr. Biol. 27, 1–8. PubMed

Bauman, N. , Akella, S. , Hann, E. , Morey, R. , Schwartz, A. S. , et al. (2017) Next‐generation sequencing of Haematococcus lacustris reveals an extremely large 1.35‐megabase chloroplast genome. Genome Announce. 6, e00181–e00118. PubMed PMC

Valach, M. , Moreira, S. , Faktorová, D. , Lukeš, J. , and Burger, G. (2016) Post‐transcriptional remodeling of genes: a look under the hood of mitochondrial gene expression in diplonemids. RNA Biol. 13, 1204–1211. PubMed PMC

Campbell, M. A. , Lukasik, P. , Simon, C. , and McCutcheon, J. P. (2017) Idiosyncratic genome degradation in a bacterial endosymbiont of periodical cicadas. Curr. Biol. 27, 3568–3575. PubMed PMC

Joyon, L. , and Lom, J. (1969) Etude cytologique systématique et pathologique d’Ichthyobodo necator (Henneguy, 1883) Pinto 1928 (Zooflagellé). J. Protozool. 16, 703–720.

Lewin, B. (1997)Genes VI. Oxford University Press, Oxford, UK.

Gray, M. W. , Lukeš, J. , Archibald, J. M. , Keeling, P. J. , and Doolittle, W. F. (2010) Irremediable complexity? Science. 330, 920–921. PubMed

Koonin, E. V. (2016) Splendor and misery of adaptation, or the importance of neutral null for understanding evolution. BMC Biol. 14, 114. PubMed PMC

Stoltzfus, A. (1999) On the possibility of constructive neutral evolution. J. Mol. Evol. 49, 169–181. PubMed

Speijer, D. (2011) Does constructive neutral evolution play an important role in the origin of cellular complexity? BioEssays. 33, 344–349. PubMed

Huh, D. , and Paulsson, J. (2011) Random partitioning of molecules at cell division. Proc. Natl. Acad. Sci. U. S. A. 108, 15004–15009. PubMed PMC

Klingbeil, M. M. , Motyka, S. A. , and Englund, P. T. (2002) Multiple mitochondrial DNA polymerases in Trypanosoma brucei . Mol. Cell. 10, 175–186. PubMed

Lukeš, J. , Archibald, J. M. , Keeling, P. J. , Doolittle, W. F. , and Gray, M. W. (2011) How a neutral evolutionary ratchet can build cellular complexity. IUBMB Life. 63, 528–537. PubMed

McCutcheon, J. P. , and Moran, N. A. (2012) Extreme genome reduction in symbiotic bacteria. Nat. Rev. Microbiol. 10, 13–26. PubMed

Lukeš, J. , Skalický, T. , Týč, J. , Votýpka, J. , and Yurchenko, V. (2014) Evolution of parasitism in kinetoplastid flagellates. Mol. Biochem. Parasitol. 195, 115–122. PubMed

Todal, J. A. , Karlsbakk, E. , Isaksen, T. E. , Plarre, H. , Urawa, S. , et al. (2004) Ichthyobodo necator (Kinetoplastida)–a complex of sibling species. Dis. Aquat. Org. 58, 9–16. PubMed

Flegontova, O. , Flegontov, P. , Malviya, S. , Audic, S. , Wincker, P. , et al. (2016) Unexpected diversity and abundance of planktonic diplonemids in the world ocean. Curr. Biol. 26, 3060–3065. PubMed

Gawryluk, R. M. R. , del Campo, J. , Okamoto, N. , Strassert, J. F. H. , Lukeš, J. , et al. (2016) Morphological identification and single‐cell genomics of marine diplonemids. Curr. Biol. 26, 3053–3059. PubMed

Speijer, D. (2006) Is kinetoplastid pan‐editing the result of an evolutionary balancing act? IUBMB Life. 58, 91–96. PubMed

Gago, S. , Elena, S. F. , Flores, R. , and Sanjuán, R. (2009) Extremely high mutation rate of a hammerhead viroid. Science. 323, 1308–1308. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Probing mechanical selection in diverse eukaryotic genomes through accurate prediction of 3D DNA mechanics

. 2024 Dec 23 ; () : . [epub] 20241223

Miniature RNAs are embedded in an exceptionally protein-rich mitoribosome via an elaborate assembly pathway

. 2023 Jul 07 ; 51 (12) : 6443-6460.

Recent expansion of metabolic versatility in Diplonema papillatum, the model species of a highly speciose group of marine eukaryotes

. 2023 May 04 ; 21 (1) : 99. [epub] 20230504

Mitochondrial RNA editing in Trypanoplasma borreli: New tools, new revelations

. 2022 ; 20 () : 6388-6402. [epub] 20221114

Trophic flexibility of marine diplonemids - switching from osmotrophy to bacterivory

. 2022 May ; 16 (5) : 1409-1419. [epub] 20220118

Highly flexible metabolism of the marine euglenozoan protist Diplonema papillatum

. 2021 Nov 24 ; 19 (1) : 251. [epub] 20211124

Vestiges of the Bacterial Signal Recognition Particle-Based Protein Targeting in Mitochondria

. 2021 Jul 29 ; 38 (8) : 3170-3187.

Single-cell genomics unveils a canonical origin of the diverse mitochondrial genomes of euglenozoans

. 2021 May 17 ; 19 (1) : 103. [epub] 20210517

Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses

. 2021 Mar ; 11 (3) : 200407. [epub] 20210310

Novel organization of mitochondrial minicircles and guide RNAs in the zoonotic pathogen Trypanosoma lewisi

. 2020 Sep 25 ; 48 (17) : 9747-9761.

Gene fragmentation and RNA editing without borders: eccentric mitochondrial genomes of diplonemids

. 2020 Mar 18 ; 48 (5) : 2694-2708.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace