Massive mitochondrial DNA content in diplonemid and kinetoplastid protists
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
MOP-115141
CIHR - Canada
103261/Z/13/Z
Wellcome Trust - United Kingdom
Wellcome Trust - United Kingdom
PubMed
30291814
PubMed Central
PMC6334171
DOI
10.1002/iub.1894
Knihovny.cz E-zdroje
- Klíčová slova
- DNA content, kinetoplast DNA, mitochondrial DNA, protist,
- MeSH
- Euglenozoa genetika MeSH
- fylogeneze MeSH
- Kinetoplastida genetika MeSH
- mitochondriální DNA genetika izolace a purifikace ultrastruktura MeSH
- mitochondrie genetika MeSH
- trans-splicing genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mitochondriální DNA MeSH
The mitochondrial DNA of diplonemid and kinetoplastid protists is known for its suite of bizarre features, including the presence of concatenated circular molecules, extensive trans-splicing and various forms of RNA editing. Here we report on the existence of another remarkable characteristic: hyper-inflated DNA content. We estimated the total amount of mitochondrial DNA in four kinetoplastid species (Trypanosoma brucei, Trypanoplasma borreli, Cryptobia helicis, and Perkinsela sp.) and the diplonemid Diplonema papillatum. Staining with 4',6-diamidino-2-phenylindole and RedDot1 followed by color deconvolution and quantification revealed massive inflation in the total amount of DNA in their organelles. This was further confirmed by electron microscopy. The most extreme case is the ∼260 Mbp of DNA in the mitochondrion of Diplonema, which greatly exceeds that in its nucleus; this is, to our knowledge, the largest amount of DNA described in any organelle. Perkinsela sp. has a total mitochondrial DNA content ~6.6× greater than its nuclear genome. This mass of DNA occupies most of the volume of the Perkinsela cell, despite the fact that it contains only six protein-coding genes. Why so much DNA? We propose that these bloated mitochondrial DNAs accumulated by a ratchet-like process. Despite their excessive nature, the synthesis and maintenance of these mtDNAs must incur a relatively low cost, considering that diplonemids are one of the most ubiquitous and speciose protist groups in the ocean. © 2018 IUBMB Life, 70(12):1267-1274, 2018.
Department of Biochemistry and Molecular Biology Dalhousie University Halifax Canada
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
Sir William Dunn School of Pathology University of Oxford Oxford UK
Zobrazit více v PubMed
Smith, D. R. , and Keeling, P. J. (2015) Mitochondrial and plastid genome architecture: reoccurring themes, but significant differences at the extremes. Proc. Natl. Acad. Sci. U. S. A. 112, 10177–10184. PubMed PMC
Knoop, V. , Volkmar, U. , Hecht, J. , and Grewe, F. (2011) Mitochondrial genome evolution in the plant lineage In: Advances in Plant Biology (ed. Kempken F.), Springer, New York, pp. 3–29.
Sloan, D. B. , Alverson, A. J. , Chuckalovcak, J. P. , Wu, M. , McCauley, D. E. , et al. (2012) Rapid evolution of enormous, multichromosomal genomes in flowering plant mitochondria with exceptionally high mutation rates. PLoS Biol. 10, e1001241. PubMed PMC
Sloan, D. B. , Muller, K. , McCauley, D. E. , Taylor, D. R. , and Storchová, H. (2012) Intraspecific variation in mitochondrial genome sequence, structure, and gene content in Silene vulgaris, an angiosperm with pervasive cytoplasmic male sterility. New Phytol. 196, 1228–1239. PubMed
Rice, D. W. , Alverson, A. J. , Richardson, A. O. , Young, G. J. , Sanchez‐Puerta, M. V. , et al. (2013) Horizontal transfer of entire genomes via mitochondrial fusion in the angiosperm Amborella . Science. 342, 1468–1473. PubMed
Burger, G. , Gray, M. W. , Forget, L. , and Lang, B. F. (2013) Strikingly bacteria‐like and gene‐rich mitochondrial genomes throughout jakobid protists. Genome Biol. Evol. 5, 418–438. PubMed PMC
Jensen, R. E. , and Englund, P. T. (2012) Network news: the replication of kinetoplast DNA. Annu. Rev. Microbiol. 66, 473–491. PubMed
Benne, R. , Van den Burg, J. , Brakenhoff, J. P. J. , Sloof, P. , Van Boom, J. H. , et al. (1986) Major transcript of the frameshifted coxII gene from trypanosome mitochondria contains 4 nucleotides that are not encoded in the DNA. Cell. 46, 819–826. PubMed
Read, L. K. , Lukeš, J. , and Hashimi, H. (2016) Trypanosome RNA editing: the complexity of getting U in and taking U out. WIREs RNA. 7, 33–51. PubMed PMC
Aphasizhev, R. , and Aphasizheva, I. (2014) Mitochondrial RNA editing in trypanosomes: Small RNAs in control. Biochimie. 100, 125–131. PubMed PMC
Simpson, L. , and Maslov, D. A. (1994) RNA editing and the evolution of parasites. Science. 264, 1870–1871. PubMed
David, V. , Flegontov, P. , Gerasimov, E. , Tanifuji, G. , Hashimi, H. , et al. (2015) Gene loss and error‐prone RNA editing in the mitochondrion of Perkinsela, an endosymbiotic kinetoplastid. mBio. 6, e01498–e01515. PubMed PMC
Lai, D.‐H. , Hashimi, H. , Lun, Z.‐R. , Ayala, F. J. , and Lukeš, J. (2008) Adaptation of Trypanosoma brucei to gradual loss of kinetoplast DNA: T. equiperdum and T. evansi are petite mutants of T. brucei . Proc. Natl. Acad. Sci. U. S. A. 105, 1999–2004. PubMed PMC
Lukeš, J. , Guilbride, D. L. , Votýpka, J. , Zíková, A. , Benne, R. , et al. (2002) The kinetoplast DNA network: evolution of an improbable structure. Eukaryotic Cell. 1, 495–502. PubMed PMC
Blom, D. , de Haan, A. , van den Burg, J. , van den Berg, M. , Sloof, P. , et al. (2000) Mitochondrial minicircles in the free‐living bodonid Bodo saltans contain two gRNA gene cassettes and are not found in large networks. RNA. 6, 1–15. PubMed PMC
Lukeš, J. , Jirků, M. , Avliyakulov, N. , and Benada, O. (1998) Pankinetoplast DNA structure in a primitive bodonid flagellate, Cryptobia helicis . EMBO J. 17, 838–846. PubMed PMC
Tanifuji, G. , Kim, E. , Onodera, N. T. , Gibeault, R. , Dlutek, M. , et al. (2011) Genomic characterization of Neoparamoeba pemaquidensis (Amoebozoa) and its kinetoplastid endosymbiont. Eukaryotic Cell. 10, 1143–1146. PubMed PMC
Dobáková, E. , Flegontov, P. , Skalický, T. , and Lukeš, J. (2015) Unexpectedly streamlined mitochondrial genome of the euglenozoan Euglena gracilis . Genome Biol. Evol. 7, 3358–3367. PubMed PMC
Marande, W. , and Burger, G. (2007) Mitochondrial DNA as a genomic jigsaw puzzle. Science. 318, 415. PubMed
Moreira, S. , Valach, M. , Aoulad‐Aissa, M. , Otto, C. , and Burger, G. (2016) Novel modes of RNA editing in mitochondria. Nucleic Acids Res. 44, 4907–4919. PubMed PMC
Vlcek, Č. , Marande, W. , Teijeiro, S. , Lukeš, J. , and Burger, G. (2011) Gene fragments scattered across a multi‐partite mitochondrial genome. Nucleic Acids Res. 39, 979–988. PubMed PMC
Valach, M. , Moreira, S. , Hoffmann, S. , Stadler, P. F. , and Burger, G. (2017) Keeping it complicated: Mitochondrial genome plasticity across diplonemids. Sci. Rep. 7, 14166. PubMed PMC
Yabuki, A. , Tanifuji, G. , Kusaka, C. , Takishita, K. , and Fujicura, K. (2016) Hyper‐eccentric structural genes in the mitochondrial genome of the algal parasite Hemistasia phaeocysticola . Genome Biol. Evol. 8, 2870–2878. PubMed PMC
Marande, W. , Lukeš, J. , and Burger, G. (2005) Unique mitochondrial genome structure in diplonemids, the sister group of kinetoplastids. Eukaryotic Cell. 4, 1137–1146. PubMed PMC
Maslov, D. A. , and Simpson, L. (1994) RNA editing and mitochondrial genomic organization in the cryptobiid kinetoplastid protozoan Trypanoplasma borreli . Mol. Cell. Biol. 14, 8174–8182. PubMed PMC
Wheeler, R. J. , Gull, K. , and Gluenz, E. (2012) Detailed interrogation of trypanosome cell biology via differential organelle staining and automated image analysis. BMC Biol. 10, 1. PubMed PMC
Tanifuji, G. , Cenci, U. , Moog, D. , Dean, S. , Nakayama, T. , et al. (2017) Metabolic and cellular interdependence in a eukaryote‐eukaryote symbiosis. Sci. Rep. 7, e11688. PubMed PMC
Morales, J. , Hashimoto, M. , Williams, T. A. , Hirawake‐Mogi, H. , Makiuchi, T. , et al. (2016) Differential remodeling of peroxisome function underpins the environmental and metabolic adaptability of diplonemids and kinetoplastids. Proc. R. Soc. B. 283, 20160520. PubMed PMC
Marini, J. C. , Miller, K. G. , and Englund, P. T. (1980) Decatenation of kinetoplast DNA by topoisomerases. J. Biol. Chem. 255, 4976–4979. PubMed
Wickstead, B. , Ersfeld, K. , and Gull, K. (2004) The small chromosomes of Trypanosoma brucei involved in antigenic variation are constructed around repetitive palindromes. Genome Res. 14, 1014–1024. PubMed PMC
Borst, P. , van der Ploeg, M. , van Hoek, J. F. , Tas, J. , and James, J. (1982) On the DNA content and ploidy of trypanosomes. Mol. Biochem. Parasitol. 6, 13–23. PubMed
Lukeš, J. , Arts, G.‐J. , van den Burg, J. , de Haan, A. , Opperdoes, F. , et al. (1994) Novel pattern of editing regions in mitochondrial transcripts of the cryptobiid Trypanoplasma borreli . EMBO J. 13, 5086–5098. PubMed PMC
Carrington, M. , Dóró, E. , Forlenza, M. , Wiegertjes, G. F. , and Kelly, S. (2017) Transcriptome sequence of the bloodstream form of Trypanoplasma borreli, a hematozoic parasite of fish transmitted by leeches. Genome Announce. 5, e01712–e01716. PubMed PMC
Maslov, D. A. , Yasuhira, S. , and Simpson, L. (1999) Phylogenetic affinities of Diplonema within the Euglenozoa as inferred from the SSU rRNA gene and partial COI protein sequences. Protist. 150, 33–42. PubMed
Tashyreva, D. , Prokopchuk, G. , Yabuki, A. , Kaur, B. , Faktorová, D. , et al. (2018) Phylogeny and morphology of new diplonemids from Japan. Protist. 169, 158–179. PubMed
Burger, G. , Gray, M. W. , and Lang, B. F. (2003) Mitochondrial genomes: anything goes. Trends Genet. 19, 709–716. PubMed
Munoz‐Gómez, S. A. , Mejía‐Franco, F. G. , Durnin, K. , Colp, M. , Grisdale, C. J. , et al. (2017) The new red algal subphylum Proteorhodophytina comprises the largest and most divergent plastid genomes known. Curr. Biol. 27, 1–8. PubMed
Bauman, N. , Akella, S. , Hann, E. , Morey, R. , Schwartz, A. S. , et al. (2017) Next‐generation sequencing of Haematococcus lacustris reveals an extremely large 1.35‐megabase chloroplast genome. Genome Announce. 6, e00181–e00118. PubMed PMC
Valach, M. , Moreira, S. , Faktorová, D. , Lukeš, J. , and Burger, G. (2016) Post‐transcriptional remodeling of genes: a look under the hood of mitochondrial gene expression in diplonemids. RNA Biol. 13, 1204–1211. PubMed PMC
Campbell, M. A. , Lukasik, P. , Simon, C. , and McCutcheon, J. P. (2017) Idiosyncratic genome degradation in a bacterial endosymbiont of periodical cicadas. Curr. Biol. 27, 3568–3575. PubMed PMC
Joyon, L. , and Lom, J. (1969) Etude cytologique systématique et pathologique d’Ichthyobodo necator (Henneguy, 1883) Pinto 1928 (Zooflagellé). J. Protozool. 16, 703–720.
Lewin, B. (1997)Genes VI. Oxford University Press, Oxford, UK.
Gray, M. W. , Lukeš, J. , Archibald, J. M. , Keeling, P. J. , and Doolittle, W. F. (2010) Irremediable complexity? Science. 330, 920–921. PubMed
Koonin, E. V. (2016) Splendor and misery of adaptation, or the importance of neutral null for understanding evolution. BMC Biol. 14, 114. PubMed PMC
Stoltzfus, A. (1999) On the possibility of constructive neutral evolution. J. Mol. Evol. 49, 169–181. PubMed
Speijer, D. (2011) Does constructive neutral evolution play an important role in the origin of cellular complexity? BioEssays. 33, 344–349. PubMed
Huh, D. , and Paulsson, J. (2011) Random partitioning of molecules at cell division. Proc. Natl. Acad. Sci. U. S. A. 108, 15004–15009. PubMed PMC
Klingbeil, M. M. , Motyka, S. A. , and Englund, P. T. (2002) Multiple mitochondrial DNA polymerases in Trypanosoma brucei . Mol. Cell. 10, 175–186. PubMed
Lukeš, J. , Archibald, J. M. , Keeling, P. J. , Doolittle, W. F. , and Gray, M. W. (2011) How a neutral evolutionary ratchet can build cellular complexity. IUBMB Life. 63, 528–537. PubMed
McCutcheon, J. P. , and Moran, N. A. (2012) Extreme genome reduction in symbiotic bacteria. Nat. Rev. Microbiol. 10, 13–26. PubMed
Lukeš, J. , Skalický, T. , Týč, J. , Votýpka, J. , and Yurchenko, V. (2014) Evolution of parasitism in kinetoplastid flagellates. Mol. Biochem. Parasitol. 195, 115–122. PubMed
Todal, J. A. , Karlsbakk, E. , Isaksen, T. E. , Plarre, H. , Urawa, S. , et al. (2004) Ichthyobodo necator (Kinetoplastida)–a complex of sibling species. Dis. Aquat. Org. 58, 9–16. PubMed
Flegontova, O. , Flegontov, P. , Malviya, S. , Audic, S. , Wincker, P. , et al. (2016) Unexpected diversity and abundance of planktonic diplonemids in the world ocean. Curr. Biol. 26, 3060–3065. PubMed
Gawryluk, R. M. R. , del Campo, J. , Okamoto, N. , Strassert, J. F. H. , Lukeš, J. , et al. (2016) Morphological identification and single‐cell genomics of marine diplonemids. Curr. Biol. 26, 3053–3059. PubMed
Speijer, D. (2006) Is kinetoplastid pan‐editing the result of an evolutionary balancing act? IUBMB Life. 58, 91–96. PubMed
Gago, S. , Elena, S. F. , Flores, R. , and Sanjuán, R. (2009) Extremely high mutation rate of a hammerhead viroid. Science. 323, 1308–1308. PubMed
Mitochondrial RNA editing in Trypanoplasma borreli: New tools, new revelations
Trophic flexibility of marine diplonemids - switching from osmotrophy to bacterivory
Highly flexible metabolism of the marine euglenozoan protist Diplonema papillatum
Vestiges of the Bacterial Signal Recognition Particle-Based Protein Targeting in Mitochondria
Single-cell genomics unveils a canonical origin of the diverse mitochondrial genomes of euglenozoans
Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses
Gene fragmentation and RNA editing without borders: eccentric mitochondrial genomes of diplonemids