Miniature RNAs are embedded in an exceptionally protein-rich mitoribosome via an elaborate assembly pathway
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37207340
PubMed Central
PMC10325924
DOI
10.1093/nar/gkad422
PII: 7173778
Knihovny.cz E-zdroje
- MeSH
- Euglenozoa * klasifikace cytologie genetika MeSH
- Eukaryota cytologie genetika MeSH
- mitochondriální ribozomy * metabolismus MeSH
- ribozomální proteiny metabolismus MeSH
- RNA ribozomální metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ribozomální proteiny MeSH
- RNA ribozomální MeSH
The mitochondrial ribosome (mitoribosome) has diverged drastically from its evolutionary progenitor, the bacterial ribosome. Structural and compositional diversity is particularly striking in the phylum Euglenozoa, with an extraordinary protein gain in the mitoribosome of kinetoplastid protists. Here we report an even more complex mitoribosome in diplonemids, the sister-group of kinetoplastids. Affinity pulldown of mitoribosomal complexes from Diplonema papillatum, the diplonemid type species, demonstrates that they have a mass of > 5 MDa, contain as many as 130 integral proteins, and exhibit a protein-to-RNA ratio of 11:1. This unusual composition reflects unprecedented structural reduction of ribosomal RNAs, increased size of canonical mitoribosomal proteins, and accretion of three dozen lineage-specific components. In addition, we identified >50 candidate assembly factors, around half of which contribute to early mitoribosome maturation steps. Because little is known about early assembly stages even in model organisms, our investigation of the diplonemid mitoribosome illuminates this process. Together, our results provide a foundation for understanding how runaway evolutionary divergence shapes both biogenesis and function of a complex molecular machine.
Division of Experimental Medicine McGill University Montréal Quebec Canada
Faculty of Sciences University of South Bohemia České Budějovice Czech Republic
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
Zobrazit více v PubMed
Kořený L., Oborník M., Horáková E., Waller R.F., Lukeš J.. The convoluted history of haem biosynthesis. Biol. Rev. 2021; 97:141–162. PubMed
Lill R., Diekert K., Kaut A., Lange H., Pelzer W., Prohl C., Kispal G.. The essential role of mitochondria in the biogenesis of cellular iron-sulfur proteins. Biol. Chem. 1999; 380:1157–1166. PubMed
Spinelli J., Haigis M.. The multifaceted contributions of mitochondria to cellular metabolism. Nat. Cell Biol. 2018; 20:745–754. PubMed PMC
Gray M. Mosaic nature of the mitochondrial proteome: implications for the origin and evolution of mitochondria. Proc. Natl. Acad. Sci. U.S.A. 2015; 112:10133–10138. PubMed PMC
Burger G., Gray M., Forget L., Lang B.. Strikingly bacteria-like and gene-rich mitochondrial genomes throughout jakobid protists. Genome Biol. Evol. 2013; 5:418–438. PubMed PMC
Flegontov P., Michálek J., Janouškovec J., Lai D.-H., Jirků M., Hajdušková E., Tomčala A., Otto T.D., Keeling P.J., Pain A.et al. .. Divergent mitochondrial respiratory chains in phototrophic relatives of apicomplexan parasites. Mol. Biol. Evol. 2015; 32:1115–1131. PubMed
Ott M., Amunts A., Brown A.. Organization and regulation of mitochondrial protein synthesis. Annu. Rev. Biochem. 2016; 85:77–101. PubMed
Desmond E., Brochier-Armanet C., Forterre P., Gribaldo S.. On the last common ancestor and early evolution of eukaryotes: reconstructing the history of mitochondrial ribosomes. Res. Microbiol. 2011; 162:53–70. PubMed
Gray M.W., Burger G., Derelle R., Klimeš V., Leger M.M., Sarrasin M., Vlček Č., Roger A.J., Eliáš M., Lang B.F.. The draft nuclear genome sequence and predicted mitochondrial proteome of Andalucia godoyi, a protist with the most gene-rich and bacteria-like mitochondrial genome. BMC Biol. 2020; 18:22. PubMed PMC
Desai N., Brown A., Amunts A., Ramakrishnan V.. The structure of the yeast mitochondrial ribosome. Science. 2017; 355:528–531. PubMed PMC
Greber B.J., Bieri P., Leibundgut M., Leitner A., Aebersold R., Boehringer D., Ban N.. The complete structure of the 55S mammalian mitochondrial ribosome. Science. 2015; 348:303–308. PubMed
Itoh Y., Naschberger A., Mortezaei N., Herrmann J.M., Amunts A.. Analysis of translating mitoribosome reveals functional characteristics of translation in mitochondria of fungi. Nat. Commun. 2020; 11:5187. PubMed PMC
Ramrath D., Niemann M., Leibundgut M., Bieri P., Prange C., Horn E., Leitner A., Boehringer D., Schneider A., Ban N.. Evolutionary shift toward protein-based architecture in trypanosomal mitochondrial ribosomes. Science. 2018; 362:eaau7735. PubMed
Soufari H., Waltz F., Parrot C., Durrieu-Gaillard S., Bochler A., Kuhnb L., Sissler M., Hashem Y.. Structure of the mature kinetoplastids mitoribosome and insights into its large subunit biogenesis. Proc. Natl. Acad. Sci. U.S.A. 2020; 117:29851–29861. PubMed PMC
Tobiasson V., Berzina I., Amunts A.. Structure of a mitochondrial ribosome with fragmented rRNA in complex with membrane-targeting elements. Nat. Commun. 2022; 13:6132. PubMed PMC
Tobiasson V., Amunts A.. Ciliate mitoribosome illuminates evolutionary steps of mitochondrial translation. Elife. 2020; 9:59264. PubMed PMC
Waltz F., Soufari H., Bochler A., Giegé P., Hashem Y.. Cryo-EM structure of the RNA-rich plant mitochondrial ribosome. Nat. Plants. 2020; 6:377–383. PubMed
Waltz F., Salinas-Giegé T., Englmeier R., Meichel H., Soufari H., Kuhn L., Pfeffer S., Förster F., Engel B.D., Giegé P.et al. .. How to build a ribosome from RNA fragments in Chlamydomonas mitochondria. Nat. Commun. 2021; 12:7176. PubMed PMC
Waltz F., Giegé P.. Striking diversity of mitochondria-specific translation processes across eukaryotes. Trends Biochem. Sci. 2020; 45:149–162. PubMed
O’Brien T. Evolution of a protein-rich mitochondrial ribosome: implications for human genetic disease. Gene. 2002; 286:73–79. PubMed
Valach M., Gonzalez Alcazar J.A., Sarrasin M., Lang B.F., Gray M.W., Burger G.. An unexpectedly complex mitoribosome in Andalucia godoyi, a protist with the most bacteria-like mitochondrial genome. Mol. Biol. Evol. 2021; 38:788–804. PubMed PMC
Valach M., Burger G., Gray M., Lang B.F.. Widespread occurrence of organelle genome-encoded 5S rRNAs including permuted molecules. Nucleic Acids Res. 2014; 42:13764–13777. PubMed PMC
Brown A., Amunts A., Bai X.C., Sugimoto Y., Edwards P.C., Murshudov G., Scheres S.H.W., Ramakrishnan V.. Structure of the large ribosomal subunit from human mitochondria. Science. 2014; 346:718–722. PubMed PMC
Amunts A., Brown A., Bai X., Llácer J., Hussain T., Emsley P., Long F., Murshudov G., Scheres S., Ramakrishnan V.. Structure of the yeast mitochondrial large ribosomal subunit. Science. 2014; 343:1485–1489. PubMed PMC
Feagin J.E., Harrell M.I., Lee J.C., Coe K.J., Sands B.H., Cannone J.J., Tami G., Schnare M.N., Gutell R.R.. The fragmented mitochondrial ribosomal RNAs of Plasmodium falciparum. PLoS One. 2012; 7:e38320. PubMed PMC
Heinonen T.Y., Schnare M.N., Young P.G., Gray M.W.. Rearranged coding segments, separated by a transfer RNA gene, specify the two parts of a discontinuous large subunit ribosomal RNA in Tetrahymena pyriformis mitochondria. J. Biol. Chem. 1987; 262:2879–2887. PubMed
Boer P.H., Gray M.W.. Scrambled ribosomal RNA gene pieces in Chlamydomonas reinhardtii mitochondrial DNA. Cell. 1988; 55:399–411. PubMed
Tashyreva D., Simpson A.G.B., Prokopchuk G., Škodová-Sveráková I., Butenko A., Hammond M., George E.E., Flegontova O., Záhonová K., Faktorová D.et al. .. Diplonemids – a review on ‘new’ flagellates on the oceanic block. Protist. 2022; 173:125868. PubMed
Kaur B., Záhonová K., Valach M., Faktorová D., Prokopchuk G., Burger G., Lukeš J.. Gene fragmentation and RNA editing without borders: eccentric mitochondrial genomes of diplonemids. Nucleic Acids Res. 2020; 48:2694–2708. PubMed PMC
Valach M., Moreira S., Kiethega G., Burger G.. Trans-splicing and RNA editing of LSU rRNA in Diplonema mitochondria. Nucleic Acids Res. 2014; 42:2660–2672. PubMed PMC
Moreira S., Valach M., Aoulad-Aissa M., Otto C., Burger G.. Novel modes of RNA editing in mitochondria. Nucleic Acids Res. 2016; 44:4907–4919. PubMed PMC
Valach M., Moreira S., Petitjean C., Benz C., Butenko A., Flegontova O., Nenarokova A., Prokopchuk G., Batstone T., Lapébie P.et al. .. Recent expansion of metabolic versatility in Diplonema papillatum, the model species of a highly speciose group of marine eukaryotes. BMC Biol. 2023; 21:99. PubMed PMC
Faktorová D., Kaur B., Valach M., Graf L., Benz C., Burger G., Lukeš J.. Targeted integration by homologous recombination enables in situ tagging and replacement of genes in the marine microeukaryote Diplonema papillatum. Environ. Microbiol. 2020; 22:3660–3670. PubMed
Kaur B., Valach M., Peña-Diaz P., Moreira S., Keeling P.J., Burger G., Lukeš J., Faktorová D.. Transformation of Diplonema papillatum, the type species of the highly diverse and abundant marine microeukaryotes Diplonemida (Euglenozoa). Environ. Microbiol. 2018; 20:1030–1040. PubMed
Valach M., Léveillé-Kunst A., Gray M.W., Burger G.. Respiratory chain complex I of unparalleled divergence in diplonemids. J. Biol. Chem. 2018; 293:16043–16056. PubMed PMC
Rodríguez-Ezpeleta N., Teijeiro S., Forget L., Burger G., Lang B.F.. Construction of cDNA libraries: focus on protists and fungi. Methods Mol. Biol. 2009; 533:33–47. PubMed
Sambrook J., Russell D.W.. Isolation of DNA fragments from polyacrylamide gels by the crush and soak method. Cold Spring Harb. Protoc. 2019; 2019:10.1101/pdb.prot100479. PubMed DOI
Schägger H. Tricine–SDS-PAGE. Nat. Protoc. 2006; 1:16–22. PubMed
Scott D.D., Trahan C., Zindy P.J., Aguilar L.C., Delubac M.Y., van Nostrand E.L., Adivarahan S., Wei K.E., Yeo G.W., Zenklusen D.et al. .. Nol12 is a multifunctional RNA binding protein at the nexus of RNA and DNA metabolism. Nucleic Acids Res. 2017; 45:12509–12528. PubMed PMC
Oeffinger M., Wei K.E., Rogers R., DeGrasse J.A., Chait B.T., Aitchison J.D., Rout M.P.. Comprehensive analysis of diverse ribonucleoprotein complexes. Nat, Methods. 2007; 4:951–956. PubMed
Puig O., Caspary F., Rigaut G., Rutz B., Bouveret E., Bragado-Nilsson E., Wilm M., Séraphin B.. The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods. 2001; 24:218–229. PubMed
Hulstaert N., Shofstahl J., Sachsenberg T., Walzer M., Barsnes H., Martens L., Perez-Riverol Y.. ThermoRawFileParser: modular, scalable, and cross-platform RAW file conversion. J. Proteome Res. 2019; 19:537–542. PubMed PMC
Kong A.T., Leprevost F.v., Avtonomov D.M., Mellacheruvu D., Nesvizhskii A.I.. MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry–based proteomics. Nat. Methods. 2017; 14:513–520. PubMed PMC
da Veiga Leprevost F., Haynes S.E., Avtonomov D.M., Chang H.Y., Shanmugam A.K., Mellacheruvu D., Kong A.T., Nesvizhskii A.I.. Philosopher: a versatile toolkit for shotgun proteomics data analysis. Nat. Methods. 2020; 17:869. PubMed PMC
Yu F., Haynes S.E., Teo G.C., Avtonomov D.M., Polasky D.A., Nesvizhskii A.I.. Fast quantitative analysis of timsTOF PASEF data with MSFragger and IonQuant. Mol. Cell. Proteomics. 2020; 19:1575–1585. PubMed PMC
Schwanhüusser B., Busse D., Li N., Dittmar G., Schuchhardt J., Wolf J., Chen W., Selbach M.. Global quantification of mammalian gene expression control. Nature. 2011; 473:337–342. PubMed
Teo G., Liu G., Zhang J., Nesvizhskii A.I., Gingras A.C., Choi H.. SAINTexpress: improvements and additional features in Significance Analysis of INTeractome software. J. Proteomics. 2014; 100:37–43. PubMed PMC
Mellacheruvu D., Wright Z., Couzens A.L., Lambert J.P., St-Denis N.A., Li T., Miteva Y.v., Hauri S., Sardiu M.E., Low T.Y.et al. .. The CRAPome: a contaminant repository for affinity purification–mass spectrometry data. Nat. Methods. 2013; 10:730–736. PubMed PMC
Knight J.D.R., Choi H., Gupta G.D., Pelletier L., Raught B., Nesvizhskii A.I., Gingras A.C.. ProHits-viz: a suite of web tools for visualizing interaction proteomics data. Nat. Methods. 2017; 14:645–646. PubMed PMC
Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A.et al. .. Highly accurate protein structure prediction with AlphaFold. Nature. 2021; 596:583–589. PubMed PMC
Wheeler R.J. A resource for improved predictions of Trypanosoma and Leishmania protein three-dimensional structure. PLoS One. 2021; 16:e0259871. PubMed PMC
Richter D.J., Berney C., Strassert J.F.H., Poh Y.-P., Herman E.K., Muñoz-Gómez S.A., Wideman J.G., Burki F., de Vargas C.. EukProt: a database of genome-scale predicted proteins across the diversity of eukaryotes. Peer Community Journal. 2022; 2:e56.
Eddy S.R. Accelerated Profile HMM Searches. PLoS Comput. Biol. 2011; 7:e1002195. PubMed PMC
Sievers F., Wilm A., Dineen D., Gibson T.J., Karplus K., Li W., Lopez R., McWilliam H., Remmert M., Söding J.et al. .. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011; 7:539. PubMed PMC
Katoh K., Standley D.M.. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 2013; 30:772–780. PubMed PMC
Crooks G.E., Hon G., Chandonia J.M., Brenner S.E.. WebLogo: a sequence logo generator. Genome Res. 2004; 14:1188–1190. PubMed PMC
Price M.N., Dehal P.S., Arkin A.P.. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One. 2010; 5:e9490. PubMed PMC
Minh B.Q., Schmidt H.A., Chernomor O., Schrempf D., Woodhams M.D., Haeseler A., Lanfear R., Teeling E.. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 2020; 37:1530–1534. PubMed PMC
Lorenz R., Bernhart S.H., Höner zu Siederdissen C., Tafer H., Flamm C., Stadler P.F., Hofacker I.L.. ViennaRNA Package 2.0. Algorith. Mol. Biol. 2011; 6:26. PubMed PMC
Reuter J.S., Mathews D.H.. RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinf. 2010; 11:129. PubMed PMC
Rodrigues J.P.G.L.M., Teixeira J.M.C., Trellet M., Bonvin A.M.J.J.. pdb-tools: a swiss army knife for molecular structures. F1000Research. 2018; 7:1961. PubMed PMC
Pettersen E.F., Goddard T.D., Huang C.C., Meng E.C., Couch G.S., Croll T.I., Morris J.H., Ferrin T.E.. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 2021; 30:70–82. PubMed PMC
Letunic I., Bork P.. 20 years of the SMART protein domain annotation resource. Nucleic Acids Res. 2018; 46:D493–D496. PubMed PMC
Finn R.D., Coggill P., Eberhardt R.Y., Eddy S.R., Mistry J., Mitchell A.L., Potter S.C., Punta M., Qureshi M., Sangrador-Vegas A.et al. .. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 2016; 44:D279–D285. PubMed PMC
Marchler-Bauer A., Derbyshire M.K., Gonzales N.R., Lu S., Chitsaz F., Geer L.Y., Geer R.C., He J., Gwadz M., Hurwitz D.I.et al. .. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 2015; 43:D222–D226. PubMed PMC
The UniProt Consortium UniProt: the Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2022; 51:D523–D531. PubMed PMC
Armstrong D.R., Berrisford J.M., Conroy M.J., Gutmanas A., Anyango S., Choudhary P., Clark A.R., Dana J.M., Deshpande M., Dunlop R.et al. .. PDBe: improved findability of macromolecular structure data in the PDB. Nucleic Acids Res. 2020; 48:D335–D343. PubMed PMC
Lukeš J., Wheeler R., Jirsová D., David V., Archibald J.M.. Massive mitochondrial DNA content in diplonemid and kinetoplastid protists. IUBMB Life. 2018; 70:1267–1274. PubMed PMC
Marande W., Lukeš J., Burger G.. Unique mitochondrial genome structure in diplonemids, the sister group of kinetoplastids. Eukaryot. Cell. 2005; 4:1137–1146. PubMed PMC
Maslov D.A., Spremulli L.L., Sharma M.R., Bhargava K., Grasso D., Falick A.M., Agrawal R.K., Parker C.E., Simpson L.. Proteomics and electron microscopic characterization of the unusual mitochondrial ribosome-related 45S complex in Leishmania tarentolae. Mol. Biochem. Parasitol. 2007; 152:203–212. PubMed PMC
Trahan C., Aguilar L.C., Oeffinger M.. Single-step affinity purification (ssAP) and mass spectrometry of macromolecular complexes in the yeast S. cerevisiae. Methods Mol. Biol. 2016; 1361:265–287. PubMed
Jaskolowski M., Ramrath D.J.F., Bieri P., Niemann M., Mattei S., Calderaro S., Leibundgut M., Horn E.K., Boehringer D., Schneider A.et al. .. Structural insights into the mechanism of mitoribosomal large subunit biogenesis. Mol. Cell. 2020; 79:629–644. PubMed
Saurer M., Ramrath D.J.F., Niemann M., Calderaro S., Prange C., Mattei S., Scaiola A., Leitner A., Bieri P., Horn E.K.et al. .. Mitoribosomal small subunit biogenesis in trypanosomes involves an extensive assembly machinery. Science. 2019; 365:1144–1149. PubMed
Tobiasson V., Gahura O., Aibara S., Baradaran R., Zíková A., Amunts A.. Interconnected assembly factors regulate the biogenesis of mitoribosomal large subunit. EMBO J. 2021; 40:e106292. PubMed PMC
Gahura O., Chauhan P., Zíková A.. Mechanisms and players of mitoribosomal biogenesis revealed in trypanosomatids. Trends Parasitol. 2022; 38:1053–1067. PubMed
Lenarčič T., Niemann M., Ramrath D.J.F., Calderaro S., Flügel T., Saurer M., Leibundgut M., Boehringer D., Prange C., Horn E.K.et al. .. Mitoribosomal small subunit maturation involves formation of initiation-like complexes. Proc. Natl. Acad. Sci. U.S.A. 2022; 119:e2114710118. PubMed PMC
Rozanska A., Richter-Dennerlein R., Rorbach J., Gao F., Lewis R.J., Chrzanowska-Lightowlers Z.M., Lightowlers R.N.. The human RNA-binding protein RBFA promotes the maturation of the mitochondrial ribosome. Biochem. Journal. 2017; 474:2145–2158. PubMed PMC
Schedlbauer A., Iturrioz I., Ochoa-Lizarralde B., Diercks T., Lopez-Alonso J.P., Lavin J.L., Kaminishi T., Capuni R., Dhimole N., de Astigarraga E.et al. .. A conserved rRNA switch is central to decoding site maturation on the small ribosomal subunit. Sci. Adv. 2021; 7:eabf7547. PubMed PMC
Harper N.J., Burnside C., Klinge S.. Principles of mitoribosomal small subunit assembly in eukaryotes. Nature. 2022; 614:175–181. PubMed PMC
Itoh Y., Khawaja A., Laptev I., Cipullo M., Atanassov I., Sergiev P., Rorbach J., Amunts A.. Mechanism of mitoribosomal small subunit biogenesis and preinitiation. Nature. 2022; 606:603–608. PubMed PMC
Guja K.E., Venkataraman K., Yakubovskaya E., Shi H., Mejia E., Hambardjieva E., Karzai A.W., Garcia-Diaz M.. Structural basis for S-adenosylmethionine binding and methyltransferase activity by mitochondrial transcription factor B1. Nucleic Acids Res. 2013; 41:7947–7959. PubMed PMC
Liu X., Shen S., Wu P., Li F., Liu X., Wang C., Gong Q., Wu J., Yao X., Zhang H.et al. .. Structural insights into dimethylation of 12S rRNA by TFB1M: indispensable role in translation of mitochondrial genes and mitochondrial function. Nucleic Acids Res. 2019; 47:7648–7665. PubMed PMC
Brown A., Rathore S., Kimanius D., Aibara S., Bai X.C., Rorbach J., Amunts A., Ramakrishnan V.. Structures of the human mitochondrial ribosome in native states of assembly. Nat. Struct. Mol. Biol. 2017; 24:866–869. PubMed PMC
Lavdovskaia E., Hillen H.S., Richter-Dennerlein R.. Hierarchical folding of the catalytic core during mitochondrial ribosome biogenesis. Trends Cell. Biol. 2022; 32:182–185. PubMed
Feng B., Mandava C.S., Guo Q., Wang J., Cao W., Li N., Zhang Y., Zhang Y., Wang Z., Wu J.et al. .. Structural and functional insights into the mode of action of a universally conserved Obg GTPase. PLoS Biol. 2014; 12:e1001866. PubMed PMC
Maiti P., Lavdovskaia E., Barrientos A., Richter-Dennerlein R.. Role of GTPases in driving mitoribosome assembly. Trends Cell. Biol. 2021; 31:284–297. PubMed PMC
Nikolay R., Hilal T., Schmidt S., Qin B., Schwefel D., Vieira-Vieira C.H., Mielke T., Bürger J., Loerke J., Amikura K.et al. .. Snapshots of native pre-50S ribosomes reveal a biogenesis factor network and evolutionary specialization. Mol. Cell. 2021; 81:1200–1215. PubMed
Chandrasekaran V., Desai N., Burton N.O., Yang H., Price J., Miska E.A., Ramakrishnan V.. Visualizing formation of the active site in the mitochondrial ribosome. Elife. 2021; 10:e68806. PubMed PMC
Cipullo M., Gesé G.V., Khawaja A., Hällberg B.M., Rorbach J.. Structural basis for late maturation steps of the human mitoribosomal large subunit. Nat. Commun. 2021; 12:3673. PubMed PMC
Hillen H.S., Lavdovskaia E., Nadler F., Hanitsch E., Linden A., Bohnsack K.E., Urlaub H., Richter-Dennerlein R.. Structural basis of GTPase-mediated mitochondrial ribosome biogenesis and recycling. Nat. Commun. 2021; 12:3672. PubMed PMC
Seidman D., Johnson D., Gerbasi V., Golden D., Orlando R., Hajduk S.. Mitochondrial membrane complex that contains proteins necessary for tRNA import in Trypanosoma brucei. J. Biol. Chem. 2012; 287:8892–8903. PubMed PMC
Noller H.F., Donohue J.P., Gutell R.R.. The universally conserved nucleotides of the small subunit ribosomal RNAs. RNA. 2022; 28:623–644. PubMed PMC
Demeshkina N., Jenner L., Westhof E., Yusupov M., Yusupova G.. A new understanding of the decoding principle on the ribosome. Nature. 2012; 484:256–259. PubMed
Loveland A.B., Demo G., Grigorieff N., Korostelev A.A.. Ensemble cryo-EM elucidates the mechanism of translation fidelity. Nature. 2017; 546:113–117. PubMed PMC
Burger G., Valach M.. Perfection of eccentricity: mitochondrial genomes of diplonemids. IUBMB Life. 2018; 70:1197–1206. PubMed
Burger G., Moreira S., Valach M.. Genes in hiding. Trends Genet. 2016; 32:553–565. PubMed
Santos B., Zeng R., Jorge S.F., Ferreira-Junior J.R., Barrientos A., Barros M.H.. Functional analyses of mitoribosome 54S subunit devoid of mitochondria-specific protein sequences. Yeast. 2022; 39:208–229. PubMed PMC
Gray M.W., Lukeš J., Archibald J.M., Keeling P.J., Doolittle W.F.. Irremediable complexity?. Science. 2010; 330:920–921. PubMed
Scaltsoyiannes V., Corre N., Waltz F., Giegé P.. Types and functions of mitoribosome-specific ribosomal proteins across eukaryotes. Int. J. Mol. Sci. 2022; 23:3474. PubMed PMC
Lill R., Freibert S.A.. Mechanisms of mitochondrial iron-sulfur protein biogenesis. Annu. Rev. Biochem. 2020; 89:471–499. PubMed
Singh J., Raina R., Vinothkumar K.R., Anand R.. Decoding the mechanism of specific RNA targeting by ribosomal methyltransferases. ACS Chem. Biol. 2022; 17:829–839. PubMed
Stephan N.C., Ries A.B., Boehringer D., Ban N.. Structural basis of successive adenosine modifications by the conserved ribosomal methyltransferase KsgA. Nucleic Acids Res. 2021; 49:6389–6398. PubMed PMC
Rebelo-Guiomar P., Pellegrino S., Dent K.C., Sas-Chen A., Miller-Fleming L., Garone C., van Haute L., Rogan J.F., Dinan A., Firth A.E.et al. .. A late-stage assembly checkpoint of the human mitochondrial ribosome large subunit. Nat. Commun. 2022; 13:929. PubMed PMC
Perez-Riverol Y., Bai J., Bandla C., García-Seisdedos D., Hewapathirana S., Kamatchinathan S., Kundu D.J., Prakash A., Frericks-Zipper A., Eisenacher M.et al. .. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2022; 50:D543–D552. PubMed PMC