Recent expansion of metabolic versatility in Diplonema papillatum, the model species of a highly speciose group of marine eukaryotes

. 2023 May 04 ; 21 (1) : 99. [epub] 20230504

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37143068

Grantová podpora
BB/R016437/1 Biotechnology and Biological Sciences Research Council - United Kingdom

Odkazy

PubMed 37143068
PubMed Central PMC10161547
DOI 10.1186/s12915-023-01563-9
PII: 10.1186/s12915-023-01563-9
Knihovny.cz E-zdroje

BACKGROUND: Diplonemid flagellates are among the most abundant and species-rich of known marine microeukaryotes, colonizing all habitats, depths, and geographic regions of the world ocean. However, little is known about their genomes, biology, and ecological role. RESULTS: We present the first nuclear genome sequence from a diplonemid, the type species Diplonema papillatum. The ~ 280-Mb genome assembly contains about 32,000 protein-coding genes, likely co-transcribed in groups of up to 100. Gene clusters are separated by long repetitive regions that include numerous transposable elements, which also reside within introns. Analysis of gene-family evolution reveals that the last common diplonemid ancestor underwent considerable metabolic expansion. D. papillatum-specific gains of carbohydrate-degradation capability were apparently acquired via horizontal gene transfer. The predicted breakdown of polysaccharides including pectin and xylan is at odds with reports of peptides being the predominant carbon source of this organism. Secretome analysis together with feeding experiments suggest that D. papillatum is predatory, able to degrade cell walls of live microeukaryotes, macroalgae, and water plants, not only for protoplast feeding but also for metabolizing cell-wall carbohydrates as an energy source. The analysis of environmental barcode samples shows that D. papillatum is confined to temperate coastal waters, presumably acting in bioremediation of eutrophication. CONCLUSIONS: Nuclear genome information will allow systematic functional and cell-biology studies in D. papillatum. It will also serve as a reference for the highly diverse diplonemids and provide a point of comparison for studying gene complement evolution in the sister group of Kinetoplastida, including human-pathogenic taxa.

Zobrazit více v PubMed

Flegontova O, Flegontov P, Malviya S, Audic S, Wincker P, de Vargas C, et al. Extreme diversity of diplonemid eukaryotes in the ocean. Curr Biol. 2016;26(22):3060–3065. doi: 10.1016/j.cub.2016.09.031. PubMed DOI

Obiol A, Giner CR, Sánchez P, Duarte CM, Acinas SG, Massana R. A metagenomic assessment of microbial eukaryotic diversity in the global ocean. Mol Ecol Resour. 2020;20(3):718–731. doi: 10.1111/1755-0998.13147. PubMed DOI

Flegontova O, Flegontov P, Londoño PAC, Walczowski W, Šantić D, Edgcomb VP, et al. Environmental determinants of the distribution of planktonic diplonemids and kinetoplastids in the oceans. Environ Microbiol. 2020;22(9):4014–4031. doi: 10.1111/1462-2920.15190. PubMed DOI

de Vargas C, Audic S, Henry N, Decelle J, Mahe F, Logares R, et al. Ocean plankton. Eukaryotic plankton diversity in the sunlit ocean. Science (New York, NY). 2015;348(6237):1261605. doi: 10.1126/science.1261605. PubMed DOI

Flegontova O, Flegontov P, Jachníková N, Lukeš J, Horák A. Water masses shape pico-nano eukaryotic communities of the Weddell Sea. Commun Biol. 2023;6(1):64. doi: 10.1038/s42003-023-04452-7. PubMed DOI PMC

Schoenle A, Hohlfeld M, Hermanns K, Mahé F, de Vargas C, Nitsche F, et al. High and specific diversity of protists in the deep-sea basins dominated by diplonemids, kinetoplastids, ciliates and foraminiferans. Commun Biol. 2021;4(1):501. doi: 10.1038/s42003-021-02012-5. PubMed DOI PMC

Mukherjee I, Salcher MM, Andrei A, Kavagutti VS, Shabarova T, Grujčić V, et al. A freshwater radiation of diplonemids. Environ Microbiol. 2020;22(11):4658–4668. doi: 10.1111/1462-2920.15209. PubMed DOI

Tashyreva D, Prokopchuk G, Votýpka J, Yabuki A, Horák A, Lukeš J. Life cycle, ultrastructure, and phylogeny of new diplonemids and their endosymbiotic bacteria. mBio. 2018;9(2):e02447–17. doi: 10.1128/mBio.02447-17. PubMed DOI PMC

Elbrächter M, Schnepf E, Balzer I. Hemistasia phaeocysticola (Scherffel) comb. nov., redescription of a free-living, marine, phagotrophic kinetoplastid flagellate. Arch Protistenkd. 1996;147(2):125–36. doi: 10.1016/S0003-9365(96)80028-5. DOI

Roy J, Faktorová D, Lukeš J, Burger G. Unusual mitochondrial genome structures throughout the Euglenozoa. Protist. 2007;158(3):385–396. doi: 10.1016/j.protis.2007.03.002. PubMed DOI

Prokopchuk G, Korytář T, Juricová V, Majstorović J, Horák A, Šimek K, et al. Trophic flexibility of marine diplonemids - switching from osmotrophy to bacterivory. ISME J. 2022;16:1409–1419. doi: 10.1038/s41396-022-01192-0. PubMed DOI PMC

Pilátová J, Tashyreva D, Týč J, Vancová M, Bokhari SNH, Skoupý R, et al. Massive accumulation of strontium and barium in diplonemid protists. mBio. 2023;14(1):e0327922. doi: 10.1128/mbio.03279-22. PubMed DOI PMC

Lara E, Moreira D, Vereshchaka A, Lopez-Garcia P. Pan-oceanic distribution of new highly diverse clades of deep-sea diplonemids. Environ Microbiol. 2009;11(1):47–55. doi: 10.1111/j.1462-2920.2008.01737.x. PubMed DOI

Okamoto N, Gawryluk RMR, Del Campo J, Strassert JFH, Lukeš J, Richards TA, et al. A revised taxonomy of diplonemids including the Eupelagonemidae n. fam. and a type species, Eupelagonema oceanica n. gen. & sp. J Eukaryot Microbiol. 2019;66(3):519–24. PubMed

Kostygov AY, Karnkowska A, Votýpka J, Tashyreva D, Maciszewski K, Yurchenko V, et al. Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses. Open Biol. 2021;11(3):200407. doi: 10.1098/rsob.200407. PubMed DOI PMC

Tashyreva D, Prokopchuk G, Yabuki A, Kaur B, Faktorová D, Votýpka J, et al. Phylogeny and morphology of new diplonemids from Japan. Protist. 2018;169(2):158–179. doi: 10.1016/j.protis.2018.02.001. PubMed DOI

Prokopchuk G, Tashyreva D, Yabuki A, Horák A, Masařová P, Lukeš J. Morphological, ultrastructural, motility and evolutionary characterization of two new Hemistasiidae species. Protist. 2019;170(3):259–282. doi: 10.1016/j.protis.2019.04.001. PubMed DOI

Tashyreva D, Simpson AGB, Prokopchuk G, Škodová-Sveráková I, Butenko A, Hammond M, et al. Diplonemids - a review on "new" flagellates on the oceanic block. Protist. 2022;173(2):125868. doi: 10.1016/j.protis.2022.125868. PubMed DOI

Gawryluk RMR, Del Campo J, Okamoto N, Strassert JFH, Lukeš J, Richards TA, et al. Morphological identification and single-cell genomics of marine diplonemids. Curr Biol. 2016;26(22):3053–3059. doi: 10.1016/j.cub.2016.09.013. PubMed DOI

López-García P, Vereshchaka A, Moreira D. Eukaryotic diversity associated with carbonates and fluid-seawater interface in Lost City hydrothermal field. Environ Microbiol. 2007;9(2):546–554. doi: 10.1111/j.1462-2920.2006.01158.x. PubMed DOI

Derelle R, Torruella G, Klimeš V, Brinkmann H, Kim E, Vlček Č, et al. Bacterial proteins pinpoint a single eukaryotic root. Proc Natl Acad Sci U S A. 2015;112(7):E693–E699. doi: 10.1073/pnas.1420657112. PubMed DOI PMC

Lukeš J, Wheeler R, Jirsová D, David V, Archibald JM. Massive mitochondrial DNA content in diplonemid and kinetoplastid protists. IUBMB Life. 2018;70(12):1267–1274. doi: 10.1002/iub.1894. PubMed DOI PMC

Kiethega GN, Yan Y, Turcotte M, Burger G. RNA-level unscrambling of fragmented genes in Diplonema mitochondria. RNA Biol. 2013;10(2):301–313. doi: 10.4161/rna.23340. PubMed DOI PMC

Moreira S, Valach M, Aoulad-Aissa M, Otto C, Burger G. Novel modes of RNA editing in mitochondria. Nucleic Acids Res. 2016;44(10):4907–4919. doi: 10.1093/nar/gkw188. PubMed DOI PMC

Lukeš J, Kaur B, Speijer D. RNA editing in mitochondria and plastids: weird and widespread. Trends Genet. 2021;37(2):99–102. doi: 10.1016/j.tig.2020.10.004. PubMed DOI

Kaur B, Záhonová K, Valach M, Faktorová D, Prokopchuk G, Burger G, et al. Gene fragmentation and RNA editing without borders: eccentric mitochondrial genomes of diplonemids. Nucleic Acids Res. 2020;48(5):2694–2708. doi: 10.1093/nar/gkz1215. PubMed DOI PMC

Valach M, Moreira S, Hoffmann S, Stadler PF, Burger G. Keeping it complicated: mitochondrial genome plasticity across diplonemids. Sci Rep. 2017;7(1):14166. doi: 10.1038/s41598-017-14286-z. PubMed DOI PMC

Kaur B, Valach M, Peña-Diaz P, Moreira S, Keeling PJ, Burger G, et al. Transformation of Diplonema papillatum, the type species of the highly diverse and abundant marine microeukaryotes Diplonemida (Euglenozoa) Environ Microbiol. 2018;20(3):1030–1040. doi: 10.1111/1462-2920.14041. PubMed DOI

Faktorová D, Kaur B, Valach M, Graf L, Benz C, Burger G, et al. Targeted integration by homologous recombination enables in situ tagging and replacement of genes in the marine microeukaryote Diplonema papillatum. Environ Microbiol. 2020;22:3660–3670. doi: 10.1111/1462-2920.15130. PubMed DOI

von der Heyden S, Chao EE, Vickerman K, Cavalier-Smith T. Ribosomal RNA phylogeny of bodonid and diplonemid flagellates and the evolution of Euglenozoa. J Eukaryot Microbiol. 2004;51(4):402–416. doi: 10.1111/j.1550-7408.2004.tb00387.x. PubMed DOI

Busse I, Preisfeld A. Phylogenetic position of Rhynchopus sp and Diplonema ambulator as indicated by analyses of euglenozoan small subunit ribosomal DNA. Gene. 2002;284(1–2):83–91. doi: 10.1016/S0378-1119(02)00390-6. PubMed DOI

Záhonová K, Lax G, Sinha SD, Leonard G, Richards TA, Lukeš J, et al. Single-cell genomics unveils a canonical origin of the diverse mitochondrial genomes of euglenozoans. BMC Biol. 2021;19(1):103. doi: 10.1186/s12915-021-01035-y. PubMed DOI PMC

Wideman JG, Lax G, Leonard G, Milner DS, Rodríguez-Martínez R, Simpson AGB, et al. A single-cell genome reveals diplonemid-like ancestry of kinetoplastid mitochondrial gene structure. Philos Trans R Soc Lond B Biol Sci. 2019;374(1786):20190100. doi: 10.1098/rstb.2019.0100. PubMed DOI PMC

Butenko A, Opperdoes FR, Flegontova O, Horák A, Hampl V, Keeling P, et al. Evolution of metabolic capabilities and molecular features of diplonemids, kinetoplastids, and euglenids. BMC Biol. 2020;18(1):23. doi: 10.1186/s12915-020-0754-1. PubMed DOI PMC

Morales J, Hashimoto M, Williams TA, Hirawake-Mogi H, Makiuchi T, Tsubouchi A, et al. Differential remodelling of peroxisome function underpins the environmental and metabolic adaptability of diplonemids and kinetoplastids. Proc Biol Sci. 1830;2016(283):20160520. PubMed PMC

Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31(19):3210–3212. doi: 10.1093/bioinformatics/btv351. PubMed DOI

Preußer C, Jaé N, Bindereif A. mRNA splicing in trypanosomes. Int J Med Microbiol. 2012;302(4–5):221–224. doi: 10.1016/j.ijmm.2012.07.004. PubMed DOI

Tessier LH, Keller M, Chan RL, Fournier R, Weil JH, Imbault P. Short leader sequences may be transferred from small RNAs to pre-mature mRNAs by trans-splicing in Euglena. EMBO J. 1991;10(9):2621–2625. doi: 10.1002/j.1460-2075.1991.tb07804.x. PubMed DOI PMC

Salzberg SL. Next-generation genome annotation: we still struggle to get it right. Genome Biol. 2019;20(1):92. doi: 10.1186/s13059-019-1715-2. PubMed DOI PMC

Kim E, Magen A, Ast G. Different levels of alternative splicing among eukaryotes. Nucleic Acids Res. 2006;35(1):125–131. doi: 10.1093/nar/gkl924. PubMed DOI PMC

Yeoh LM, Goodman CD, Mollard V, McHugh E, Lee VV, Sturm A, et al. Alternative splicing is required for stage differentiation in malaria parasites. Genome Biol. 2019;20(1):151. doi: 10.1186/s13059-019-1756-6. PubMed DOI PMC

Frey KA-O, Pucker BA-O. Animal, fungi, and plant genome sequences harbor different non-canonical splice sites. Cells. 2020;9(2):458. doi: 10.3390/cells9020458. PubMed DOI PMC

Milanowski R, Gumińska N, Karnkowska A, Ishikawa T, Zakryś B. Intermediate introns in nuclear genes of euglenids – are they a distinct type? BMC Evol Biol. 2016;16(1):49. doi: 10.1186/s12862-016-0620-5. PubMed DOI PMC

Kolev NG, Ullu E, Tschudi C. The emerging role of RNA-binding proteins in the life cycle of Trypanosoma brucei. Cell Microbiol. 2014;16(4):482–489. doi: 10.1111/cmi.12268. PubMed DOI PMC

Gray MW, Burger G, Derelle R, Klimeš V, Léger MM, Sarrasin M, et al. The draft nuclear genome sequence and predicted mitochondrial proteome of Andalucia godoyi, a protist with the most gene-rich and bacteria-like mitochondrial genome. BMC Biol. 2020;18(1):22. doi: 10.1186/s12915-020-0741-6. PubMed DOI PMC

Jackson AP, Otto TD, Aslett M, Armstrong SD, Bringaud F, Schlacht A, et al. Kinetoplastid phylogenomics reveals the evolutionary innovations associated with the origins of parasitism. Curr Biol. 2016;26(2):161–172. doi: 10.1016/j.cub.2015.11.055. PubMed DOI PMC

Fritz-Laylin LK, Prochnik SE, Ginger ML, Dacks JB, Carpenter ML, Field MC, et al. The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell. 2010;140(5):631–642. doi: 10.1016/j.cell.2010.01.032. PubMed DOI

Ebenezer TE, Zoltner M, Burrell A, Nenarokova A, Novák Vanclová AMG, Prasad B, et al. Transcriptome, proteome and draft genome of Euglena gracilis. BMC Biol. 2019;17(1):11. doi: 10.1186/s12915-019-0626-8. PubMed DOI PMC

Kojima KK. Structural and sequence diversity of eukaryotic transposable elements. Genes Genet Syst. 2020;94(6):233–252. doi: 10.1266/ggs.18-00024. PubMed DOI

Vlcek C, Marande W, Teijeiro S, Lukeš J, Burger G. Systematically fragmented genes in a multipartite mitochondrial genome. Nucleic Acids Res. 2011;39(3):979–988. doi: 10.1093/nar/gkq883. PubMed DOI PMC

Calabrese FM, Balacco DL, Preste R, Diroma MA, Forino R, Ventura M, et al. NumtS colonization in mammalian genomes. Sci Rep. 2017;7(1):16357. doi: 10.1038/s41598-017-16750-2. PubMed DOI PMC

Ko YJ, Kim S. Analysis of nuclear mitochondrial DNA segments of nine plant species: size, distribution, and insertion loci. Genom Inform. 2016;14(3):90–95. doi: 10.5808/GI.2016.14.3.90. PubMed DOI PMC

Michalovova M, Vyskot B, Kejnovsky E. Analysis of plastid and mitochondrial DNA insertions in the nucleus (NUPTs and NUMTs) of six plant species: size, relative age and chromosomal localization. Heredity. 2013;111(4):314–320. doi: 10.1038/hdy.2013.51. PubMed DOI PMC

Kolev NG, Franklin JB, Carmi S, Shi H, Michaeli S, Tschudi C. The transcriptome of the human pathogen Trypanosoma brucei at single-nucleotide resolution. PLoS Pathog. 2010;6(9):e1001090. doi: 10.1371/journal.ppat.1001090. PubMed DOI PMC

Sturm NR, Maslov DA, Grisard EC, Campbell DA. Diplonema spp possess spliced leader RNA genes similar to the Kinetoplastida. J Eukaryot Microbiol. 2001;48(3):325–31. doi: 10.1111/j.1550-7408.2001.tb00321.x. PubMed DOI

Vanhamme L, Pays E. Control of gene expression in trypanosomes. Microbiol Rev. 1995;59(2):223–240. doi: 10.1128/mr.59.2.223-240.1995. PubMed DOI PMC

Borst P, Sabatini R. Base J: discovery, biosynthesis, and possible functions. Annu Rev Microbiol. 2008;62:235–251. doi: 10.1146/annurev.micro.62.081307.162750. PubMed DOI

van Luenen HG, Farris C, Jan S, Genest PA, Tripathi P, Velds A, et al. Glucosylated hydroxymethyluracil, DNA base J, prevents transcriptional readthrough in Leishmania. Cell. 2012;150(5):909–921. doi: 10.1016/j.cell.2012.07.030. PubMed DOI PMC

Schmitz RJ, Lewis ZA, Goll MG. DNA methylation: shared and divergent features across eukaryotes. Trends Genet. 2019;35(11):818–827. doi: 10.1016/j.tig.2019.07.007. PubMed DOI PMC

Ketting RF. The many faces of RNAi. Dev Cell. 2011;20(2):148–161. doi: 10.1016/j.devcel.2011.01.012. PubMed DOI

Gutbrod MJ, Martienssen RA. Conserved chromosomal functions of RNA interference. Nat Rev Genet. 2020;21(5):311–331. doi: 10.1038/s41576-019-0203-6. PubMed DOI PMC

O’Neill EC, Trick M, Henrissat B, Field RA. Euglena in time: evolution, control of central metabolic processes and multi-domain proteins in carbohydrate and natural product biochemistry. Perspect Sci. 2015;6:84–93. doi: 10.1016/j.pisc.2015.07.002. DOI

Matveyev AV, Alves JM, Serrano MG, Lee V, Lara AM, Barton WA, et al. The evolutionary loss of RNAi key determinants in kinetoplastids as a multiple sporadic phenomenon. J Mol Evol. 2017;84(2–3):104–115. doi: 10.1007/s00239-017-9780-1. PubMed DOI PMC

Matzov D, Taoka M, Nobe Y, Yamauchi Y, Halfon Y, Asis N, et al. Cryo-EM structure of the highly atypical cytoplasmic ribosome of Euglena gracilis. Nucleic Acids Res. 2020;48(20):11750–11761. doi: 10.1093/nar/gkaa893. PubMed DOI PMC

Hałakuc P, Karnkowska A, Milanowski R. Typical structure of rRNA coding genes in diplonemids points to two independent origins of the bizarre rDNA structures of euglenozoans. BMC Ecol Evol. 2022;22(1):59. doi: 10.1186/s12862-022-02014-9. PubMed DOI PMC

Ehrlich R, Davyt M, López I, Chalar C, Marín M. On the track of the missing tRNA genes: a source of non-canonical functions? Front Mol Biosci. 2021;8:643701. doi: 10.3389/fmolb.2021.643701. PubMed DOI PMC

Guy MP, Phizicky EM. Two-subunit enzymes involved in eukaryotic post-transcriptional tRNA modification. RNA Biol. 2014;11(12):1608–1618. doi: 10.1080/15476286.2015.1008360. PubMed DOI PMC

Rubio MA, Pastar I, Gaston KW, Ragone FL, Janzen CJ, Cross GA, et al. An adenosine-to-inosine tRNA-editing enzyme that can perform C-to-U deamination of DNA. Proc Natl Acad Sci U S A. 2007;104(19):7821–7826. doi: 10.1073/pnas.0702394104. PubMed DOI PMC

Drouin G, Tsang C. 5S rRNA gene arrangements in protists: a case of nonadaptive evolution. J Mol Evol. 2012;74(5–6):342–351. doi: 10.1007/s00239-012-9512-5. PubMed DOI

Jean-Joseph B, Flisser A, Martinez A, Metzenberg S. The U5/U6 snRNA genomic repeat of Taenia solium. J Parasitol. 2003;89(2):329–335. doi: 10.1645/0022-3395(2003)089[0329:TUSGRO]2.0.CO;2. PubMed DOI

Makiuchi T, Annoura T, Hashimoto M, Hashimoto T, Aoki T, Nara T. Compartmentalization of a glycolytic enzyme in Diplonema, a non-kinetoplastid euglenozoan. Protist. 2011;162(3):482–489. doi: 10.1016/j.protis.2010.11.003. PubMed DOI

Škodová-Sveráková I, Prokopchuk G, Peña-Diaz P, Záhonová K, Moos M, Horváth A, et al. Unique dynamics of paramylon storage in the marine euglenozoan Diplonema papillatum. Protist. 2020;171(2):125717. doi: 10.1016/j.protis.2020.125717. PubMed DOI

Valach M, Léveillé-Kunst A, Gray MW, Burger G. Respiratory chain Complex I of unparalleled divergence in diplonemids. J Biol Chem. 2018;293(41):16043–16056. doi: 10.1074/jbc.RA118.005326. PubMed DOI PMC

Škodová-Sveráková I, Záhonová K, Bučková B, Füssy Z, Yurchenko V, Lukeš J. Catalase and ascorbate peroxidase in euglenozoan protists. Pathogens (Basel, Switzerland) 2020;9(4):317. PubMed PMC

Škodová-Sveráková I, Záhonová K, Juricová V, Danchenko M, Moos M, Baráth P, et al. Highly flexible metabolism of the marine euglenozoan protist Diplonema papillatum. BMC Biol. 2021;19(1):251. doi: 10.1186/s12915-021-01186-y. PubMed DOI PMC

Le Costaouëc T, Unamunzaga C, Mantecon L, Helbert W. New structural insights into the cell-wall polysaccharide of the diatom Phaeodactylum tricornutum. Algal Res. 2017;26:172–179. doi: 10.1016/j.algal.2017.07.021. DOI

Michel G, Tonon T, Scornet D, Cock JM, Kloareg B. Central and storage carbon metabolism of the brown alga Ectocarpus siliculosus: insights into the origin and evolution of storage carbohydrates in eukaryotes. New Phytol. 2010;188(1):67–81. doi: 10.1111/j.1469-8137.2010.03345.x. PubMed DOI

Becker S, Tebben J, Coffinet S, Wiltshire K, Iversen MH, Harder T, et al. Laminarin is a major molecule in the marine carbon cycle. Proc Natl Acad Sci U S A. 2020;117(12):6599–6607. doi: 10.1073/pnas.1917001117. PubMed DOI PMC

Passow U. Transparent exopolymer particles (TEP) in aquatic environments. Progress Oceanogr. 2002;55(3):287–333. doi: 10.1016/S0079-6611(02)00138-6. DOI

Roy J, Faktorová D, Benada O, Lukeš J, Burger G. Description of Rhynchopus euleeides n sp (Diplonemea), a free-living marine euglenozoan. J Eukaryot Microbiol. 2007;54(2):137–45. doi: 10.1111/j.1550-7408.2007.00244.x. PubMed DOI

Ralton JE, Sernee MF, McConville MJ. Evolution and function of carbohydrate reserve biosynthesis in parasitic protists. Trends Parasitol. 2021;37(11):988–1001. doi: 10.1016/j.pt.2021.06.005. PubMed DOI

Porter D. Isonema papillatum sp. n., a new colorless marine flagellate: a light- and electronmicroscopic study. J Protozool. 1973;20(3):351–6. doi: 10.1111/j.1550-7408.1973.tb00895.x. DOI

Fan X, Qiu H, Han W, Wang Y, Xu D, Zhang X, et al. Phytoplankton pangenome reveals extensive prokaryotic horizontal gene transfer of diverse functions. Sci Adv. 2020;6(18):0111. doi: 10.1126/sciadv.aba0111. PubMed DOI PMC

Husnik F, McCutcheon JP. Functional horizontal gene transfer from bacteria to eukaryotes. Nat Rev Microbiol. 2018;16(2):67–79. doi: 10.1038/nrmicro.2017.137. PubMed DOI

Eme L, Gentekaki E, Curtis B, Archibald JM, Roger AJ. Lateral gene transfer in the adaptation of the anaerobic parasite Blastocystis to the gut. Curr Biol. 2017;27(6):807–820. doi: 10.1016/j.cub.2017.02.003. PubMed DOI

Alsmark C, Foster PG, Sicheritz-Ponten T, Nakjang S, Martin Embley T, Hirt RP. Patterns of prokaryotic lateral gene transfers affecting parasitic microbial eukaryotes. Genome Biol. 2013;14(2):R19. doi: 10.1186/gb-2013-14-2-r19. PubMed DOI PMC

Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20(1):238. doi: 10.1186/s13059-019-1832-y. PubMed DOI PMC

Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32(1):268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC

Csurös M. Count: evolutionary analysis of phylogenetic profiles with parsimony and likelihood. Bioinformatics. 2010;26(15):1910–1912. doi: 10.1093/bioinformatics/btq315. PubMed DOI

Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science (New York, NY) 2002;298(5600):1912–1934. doi: 10.1126/science.1075762. PubMed DOI

Lehti-Shiu MD, Shiu SH. Diversity, classification and function of the plant protein kinase superfamily. Philos Trans R Soc Lond B Biol Sci. 2012;367(1602):2619–2639. doi: 10.1098/rstb.2012.0003. PubMed DOI PMC

Wawrik B, Bronk DA, Baer SE, Chi L, Sun M, Cooper JT, et al. Bacterial utilization of creatine in seawater. Aquat Microb Ecol. 2017;80(2):153–165. doi: 10.3354/ame01850. DOI

Larsen J, Patterson DJ. Some flagellates (Protista) from tropical marine sediments. J Nat Hist. 1990;24:801–937. doi: 10.1080/00222939000770571. DOI

Gerbracht JV, Harding T, Simpson AGB, Roger AJ, Hess S. Comparative transcriptomics reveals the molecular toolkit used by an algivorous protist for cell wall perforation. Curr Biol. 2022;32(15):3374–84.e5. doi: 10.1016/j.cub.2022.05.049. PubMed DOI

Ibarbalz FM, Henry N, Brandão MC, Martini S, Busseni G, Byrne H, et al. Global trends in marine plankton diversity across kingdoms of life. Cell. 2019;179(5):1084–97.e21. doi: 10.1016/j.cell.2019.10.008. PubMed DOI PMC

Kopf A, Bicak M, Kottmann R, Schnetzer J, Kostadinov I, Lehmann K, et al. The ocean sampling day consortium. GigaScience. 2015;4:27. doi: 10.1186/s13742-015-0066-5. PubMed DOI PMC

Käse L, Kraberg AC, Metfies K, Neuhaus S, Sprong PAA, Fuchs BM, et al. Rapid succession drives spring community dynamics of small protists at Helgoland Roads, North Sea. J Plankton Res. 2020;42(3):305–319. doi: 10.1093/plankt/fbaa017. PubMed DOI PMC

Massana R, Gobet A, Audic S, Bass D, Bittner L, Boutte C, et al. Marine protist diversity in European coastal waters and sediments as revealed by high-throughput sequencing. Environ Microbiol. 2015;17(10):4035–4049. doi: 10.1111/1462-2920.12955. PubMed DOI

Ramond P, Sourisseau M, Simon N, Romac S, Schmitt S, Rigaut-Jalabert F, et al. Coupling between taxonomic and functional diversity in protistan coastal communities. Environ Microbiol. 2019;21(2):730–749. doi: 10.1111/1462-2920.14537. PubMed DOI

Lähnemann D, Köster J, Szczurek E, McCarthy DJ, Hicks SC, Robinson MD, et al. Eleven grand challenges in single-cell data science. Genome Biol. 2020;21(1):31. doi: 10.1186/s13059-020-1926-6. PubMed DOI PMC

Rodriguez-Ezpeleta N, Teijeiro S, Forget L, Burger G, Lang BF. Construction of cDNA libraries: focus on protists and fungi. Methods Mol Biol. 2009;533:33–47. doi: 10.1007/978-1-60327-136-3_3. PubMed DOI

Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP, Flanigan MJ, et al. A whole-genome assembly of Drosophila. Science (New York, NY) 2000;287(5461):2196–2204. doi: 10.1126/science.287.5461.2196. PubMed DOI

Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27(5):722–736. doi: 10.1101/gr.215087.116. PubMed DOI PMC

Potter SC, Luciani A, Eddy SR, Park Y, Lopez R, Finn RD. HMMER web server: 2018 update. Nucleic Acids Res. 2018;46(W1):W200–W204. doi: 10.1093/nar/gky448. PubMed DOI PMC

Griffiths-Jones S, Bateman A, Marshall M, Khanna A, Eddy SR. Rfam: an RNA family database. Nucleic Acids Res. 2003;31(1):439–441. doi: 10.1093/nar/gkg006. PubMed DOI PMC

Nawrocki EP, Eddy SR. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics. 2013;29(22):2933–5. doi: 10.1093/bioinformatics/btt509. PubMed DOI PMC

Valach M, Moreira S, Petitjean C, Benz C, Butenko A, Flegontova O, Nenarokova A Prokopchuk G, Batsone T, Lapebie P, Limogo L, Sarrasin M, Stretenowich P, Tripathi P, Nara T, Henrissat B, Lang BF, Gray MW, Williams TA, Lukes J and Burger G. https://identifiers.org/biosample:SAMN30986590 (2023). PubMed PMC

Valach M, Moreira S, Petitjean C, Benz C, Butenko A, Flegontova O, Nenarokova A, Prokopchuk G, Batsone T, Lapebie P, Limogo L, Sarrasin M, Stretenowich P, Tripathi P, Nara T, Henrissat B, Lang BF, Gray MW, Williams TA, Lukes J and Burger G. https://identifiers.org/bioproject:PRJNA883718 (2023). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace