Recent expansion of metabolic versatility in Diplonema papillatum, the model species of a highly speciose group of marine eukaryotes
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
BB/R016437/1
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
37143068
PubMed Central
PMC10161547
DOI
10.1186/s12915-023-01563-9
PII: 10.1186/s12915-023-01563-9
Knihovny.cz E-zdroje
- Klíčová slova
- CAZymes, Ecological distribution, Feeding strategy, Gene-family evolution, Genome, Geographical distribution, Lateral gene transfer, Paradiplonema papillatum, Proteome, Protists, Transcriptome,
- MeSH
- Euglenozoa genetika MeSH
- Eukaryota * genetika MeSH
- fylogeneze MeSH
- Kinetoplastida * genetika MeSH
- lidé MeSH
- multigenová rodina MeSH
- profáze meiózy I MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Diplonemid flagellates are among the most abundant and species-rich of known marine microeukaryotes, colonizing all habitats, depths, and geographic regions of the world ocean. However, little is known about their genomes, biology, and ecological role. RESULTS: We present the first nuclear genome sequence from a diplonemid, the type species Diplonema papillatum. The ~ 280-Mb genome assembly contains about 32,000 protein-coding genes, likely co-transcribed in groups of up to 100. Gene clusters are separated by long repetitive regions that include numerous transposable elements, which also reside within introns. Analysis of gene-family evolution reveals that the last common diplonemid ancestor underwent considerable metabolic expansion. D. papillatum-specific gains of carbohydrate-degradation capability were apparently acquired via horizontal gene transfer. The predicted breakdown of polysaccharides including pectin and xylan is at odds with reports of peptides being the predominant carbon source of this organism. Secretome analysis together with feeding experiments suggest that D. papillatum is predatory, able to degrade cell walls of live microeukaryotes, macroalgae, and water plants, not only for protoplast feeding but also for metabolizing cell-wall carbohydrates as an energy source. The analysis of environmental barcode samples shows that D. papillatum is confined to temperate coastal waters, presumably acting in bioremediation of eutrophication. CONCLUSIONS: Nuclear genome information will allow systematic functional and cell-biology studies in D. papillatum. It will also serve as a reference for the highly diverse diplonemids and provide a point of comparison for studying gene complement evolution in the sister group of Kinetoplastida, including human-pathogenic taxa.
Department of Biological Sciences King Abdulaziz University Jeddah Saudi Arabia
Faculty of Science University of Ostrava Ostrava Czech Republic
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
Present address DTU Bioengineering Technical University of Denmark Lyngby Denmark
Present address Environment Climate Change Canada Dorval QC Canada
Present address High Performance Computing Centre Bristol UK
RIKEN Interdisciplinary Theoretical and Mathematical Sciences Program Hirosawa Wako Saitama Japan
School of Biological Sciences University of Bristol Bristol UK
Zobrazit více v PubMed
Flegontova O, Flegontov P, Malviya S, Audic S, Wincker P, de Vargas C, et al. Extreme diversity of diplonemid eukaryotes in the ocean. Curr Biol. 2016;26(22):3060–3065. doi: 10.1016/j.cub.2016.09.031. PubMed DOI
Obiol A, Giner CR, Sánchez P, Duarte CM, Acinas SG, Massana R. A metagenomic assessment of microbial eukaryotic diversity in the global ocean. Mol Ecol Resour. 2020;20(3):718–731. doi: 10.1111/1755-0998.13147. PubMed DOI
Flegontova O, Flegontov P, Londoño PAC, Walczowski W, Šantić D, Edgcomb VP, et al. Environmental determinants of the distribution of planktonic diplonemids and kinetoplastids in the oceans. Environ Microbiol. 2020;22(9):4014–4031. doi: 10.1111/1462-2920.15190. PubMed DOI
de Vargas C, Audic S, Henry N, Decelle J, Mahe F, Logares R, et al. Ocean plankton. Eukaryotic plankton diversity in the sunlit ocean. Science (New York, NY). 2015;348(6237):1261605. doi: 10.1126/science.1261605. PubMed DOI
Flegontova O, Flegontov P, Jachníková N, Lukeš J, Horák A. Water masses shape pico-nano eukaryotic communities of the Weddell Sea. Commun Biol. 2023;6(1):64. doi: 10.1038/s42003-023-04452-7. PubMed DOI PMC
Schoenle A, Hohlfeld M, Hermanns K, Mahé F, de Vargas C, Nitsche F, et al. High and specific diversity of protists in the deep-sea basins dominated by diplonemids, kinetoplastids, ciliates and foraminiferans. Commun Biol. 2021;4(1):501. doi: 10.1038/s42003-021-02012-5. PubMed DOI PMC
Mukherjee I, Salcher MM, Andrei A, Kavagutti VS, Shabarova T, Grujčić V, et al. A freshwater radiation of diplonemids. Environ Microbiol. 2020;22(11):4658–4668. doi: 10.1111/1462-2920.15209. PubMed DOI
Tashyreva D, Prokopchuk G, Votýpka J, Yabuki A, Horák A, Lukeš J. Life cycle, ultrastructure, and phylogeny of new diplonemids and their endosymbiotic bacteria. mBio. 2018;9(2):e02447–17. doi: 10.1128/mBio.02447-17. PubMed DOI PMC
Elbrächter M, Schnepf E, Balzer I. Hemistasia phaeocysticola (Scherffel) comb. nov., redescription of a free-living, marine, phagotrophic kinetoplastid flagellate. Arch Protistenkd. 1996;147(2):125–36. doi: 10.1016/S0003-9365(96)80028-5. DOI
Roy J, Faktorová D, Lukeš J, Burger G. Unusual mitochondrial genome structures throughout the Euglenozoa. Protist. 2007;158(3):385–396. doi: 10.1016/j.protis.2007.03.002. PubMed DOI
Prokopchuk G, Korytář T, Juricová V, Majstorović J, Horák A, Šimek K, et al. Trophic flexibility of marine diplonemids - switching from osmotrophy to bacterivory. ISME J. 2022;16:1409–1419. doi: 10.1038/s41396-022-01192-0. PubMed DOI PMC
Pilátová J, Tashyreva D, Týč J, Vancová M, Bokhari SNH, Skoupý R, et al. Massive accumulation of strontium and barium in diplonemid protists. mBio. 2023;14(1):e0327922. doi: 10.1128/mbio.03279-22. PubMed DOI PMC
Lara E, Moreira D, Vereshchaka A, Lopez-Garcia P. Pan-oceanic distribution of new highly diverse clades of deep-sea diplonemids. Environ Microbiol. 2009;11(1):47–55. doi: 10.1111/j.1462-2920.2008.01737.x. PubMed DOI
Okamoto N, Gawryluk RMR, Del Campo J, Strassert JFH, Lukeš J, Richards TA, et al. A revised taxonomy of diplonemids including the Eupelagonemidae n. fam. and a type species, Eupelagonema oceanica n. gen. & sp. J Eukaryot Microbiol. 2019;66(3):519–24. PubMed
Kostygov AY, Karnkowska A, Votýpka J, Tashyreva D, Maciszewski K, Yurchenko V, et al. Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses. Open Biol. 2021;11(3):200407. doi: 10.1098/rsob.200407. PubMed DOI PMC
Tashyreva D, Prokopchuk G, Yabuki A, Kaur B, Faktorová D, Votýpka J, et al. Phylogeny and morphology of new diplonemids from Japan. Protist. 2018;169(2):158–179. doi: 10.1016/j.protis.2018.02.001. PubMed DOI
Prokopchuk G, Tashyreva D, Yabuki A, Horák A, Masařová P, Lukeš J. Morphological, ultrastructural, motility and evolutionary characterization of two new Hemistasiidae species. Protist. 2019;170(3):259–282. doi: 10.1016/j.protis.2019.04.001. PubMed DOI
Tashyreva D, Simpson AGB, Prokopchuk G, Škodová-Sveráková I, Butenko A, Hammond M, et al. Diplonemids - a review on "new" flagellates on the oceanic block. Protist. 2022;173(2):125868. doi: 10.1016/j.protis.2022.125868. PubMed DOI
Gawryluk RMR, Del Campo J, Okamoto N, Strassert JFH, Lukeš J, Richards TA, et al. Morphological identification and single-cell genomics of marine diplonemids. Curr Biol. 2016;26(22):3053–3059. doi: 10.1016/j.cub.2016.09.013. PubMed DOI
López-García P, Vereshchaka A, Moreira D. Eukaryotic diversity associated with carbonates and fluid-seawater interface in Lost City hydrothermal field. Environ Microbiol. 2007;9(2):546–554. doi: 10.1111/j.1462-2920.2006.01158.x. PubMed DOI
Derelle R, Torruella G, Klimeš V, Brinkmann H, Kim E, Vlček Č, et al. Bacterial proteins pinpoint a single eukaryotic root. Proc Natl Acad Sci U S A. 2015;112(7):E693–E699. doi: 10.1073/pnas.1420657112. PubMed DOI PMC
Lukeš J, Wheeler R, Jirsová D, David V, Archibald JM. Massive mitochondrial DNA content in diplonemid and kinetoplastid protists. IUBMB Life. 2018;70(12):1267–1274. doi: 10.1002/iub.1894. PubMed DOI PMC
Kiethega GN, Yan Y, Turcotte M, Burger G. RNA-level unscrambling of fragmented genes in Diplonema mitochondria. RNA Biol. 2013;10(2):301–313. doi: 10.4161/rna.23340. PubMed DOI PMC
Moreira S, Valach M, Aoulad-Aissa M, Otto C, Burger G. Novel modes of RNA editing in mitochondria. Nucleic Acids Res. 2016;44(10):4907–4919. doi: 10.1093/nar/gkw188. PubMed DOI PMC
Lukeš J, Kaur B, Speijer D. RNA editing in mitochondria and plastids: weird and widespread. Trends Genet. 2021;37(2):99–102. doi: 10.1016/j.tig.2020.10.004. PubMed DOI
Kaur B, Záhonová K, Valach M, Faktorová D, Prokopchuk G, Burger G, et al. Gene fragmentation and RNA editing without borders: eccentric mitochondrial genomes of diplonemids. Nucleic Acids Res. 2020;48(5):2694–2708. doi: 10.1093/nar/gkz1215. PubMed DOI PMC
Valach M, Moreira S, Hoffmann S, Stadler PF, Burger G. Keeping it complicated: mitochondrial genome plasticity across diplonemids. Sci Rep. 2017;7(1):14166. doi: 10.1038/s41598-017-14286-z. PubMed DOI PMC
Kaur B, Valach M, Peña-Diaz P, Moreira S, Keeling PJ, Burger G, et al. Transformation of Diplonema papillatum, the type species of the highly diverse and abundant marine microeukaryotes Diplonemida (Euglenozoa) Environ Microbiol. 2018;20(3):1030–1040. doi: 10.1111/1462-2920.14041. PubMed DOI
Faktorová D, Kaur B, Valach M, Graf L, Benz C, Burger G, et al. Targeted integration by homologous recombination enables in situ tagging and replacement of genes in the marine microeukaryote Diplonema papillatum. Environ Microbiol. 2020;22:3660–3670. doi: 10.1111/1462-2920.15130. PubMed DOI
von der Heyden S, Chao EE, Vickerman K, Cavalier-Smith T. Ribosomal RNA phylogeny of bodonid and diplonemid flagellates and the evolution of Euglenozoa. J Eukaryot Microbiol. 2004;51(4):402–416. doi: 10.1111/j.1550-7408.2004.tb00387.x. PubMed DOI
Busse I, Preisfeld A. Phylogenetic position of Rhynchopus sp and Diplonema ambulator as indicated by analyses of euglenozoan small subunit ribosomal DNA. Gene. 2002;284(1–2):83–91. doi: 10.1016/S0378-1119(02)00390-6. PubMed DOI
Záhonová K, Lax G, Sinha SD, Leonard G, Richards TA, Lukeš J, et al. Single-cell genomics unveils a canonical origin of the diverse mitochondrial genomes of euglenozoans. BMC Biol. 2021;19(1):103. doi: 10.1186/s12915-021-01035-y. PubMed DOI PMC
Wideman JG, Lax G, Leonard G, Milner DS, Rodríguez-Martínez R, Simpson AGB, et al. A single-cell genome reveals diplonemid-like ancestry of kinetoplastid mitochondrial gene structure. Philos Trans R Soc Lond B Biol Sci. 2019;374(1786):20190100. doi: 10.1098/rstb.2019.0100. PubMed DOI PMC
Butenko A, Opperdoes FR, Flegontova O, Horák A, Hampl V, Keeling P, et al. Evolution of metabolic capabilities and molecular features of diplonemids, kinetoplastids, and euglenids. BMC Biol. 2020;18(1):23. doi: 10.1186/s12915-020-0754-1. PubMed DOI PMC
Morales J, Hashimoto M, Williams TA, Hirawake-Mogi H, Makiuchi T, Tsubouchi A, et al. Differential remodelling of peroxisome function underpins the environmental and metabolic adaptability of diplonemids and kinetoplastids. Proc Biol Sci. 1830;2016(283):20160520. PubMed PMC
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31(19):3210–3212. doi: 10.1093/bioinformatics/btv351. PubMed DOI
Preußer C, Jaé N, Bindereif A. mRNA splicing in trypanosomes. Int J Med Microbiol. 2012;302(4–5):221–224. doi: 10.1016/j.ijmm.2012.07.004. PubMed DOI
Tessier LH, Keller M, Chan RL, Fournier R, Weil JH, Imbault P. Short leader sequences may be transferred from small RNAs to pre-mature mRNAs by trans-splicing in Euglena. EMBO J. 1991;10(9):2621–2625. doi: 10.1002/j.1460-2075.1991.tb07804.x. PubMed DOI PMC
Salzberg SL. Next-generation genome annotation: we still struggle to get it right. Genome Biol. 2019;20(1):92. doi: 10.1186/s13059-019-1715-2. PubMed DOI PMC
Kim E, Magen A, Ast G. Different levels of alternative splicing among eukaryotes. Nucleic Acids Res. 2006;35(1):125–131. doi: 10.1093/nar/gkl924. PubMed DOI PMC
Yeoh LM, Goodman CD, Mollard V, McHugh E, Lee VV, Sturm A, et al. Alternative splicing is required for stage differentiation in malaria parasites. Genome Biol. 2019;20(1):151. doi: 10.1186/s13059-019-1756-6. PubMed DOI PMC
Frey KA-O, Pucker BA-O. Animal, fungi, and plant genome sequences harbor different non-canonical splice sites. Cells. 2020;9(2):458. doi: 10.3390/cells9020458. PubMed DOI PMC
Milanowski R, Gumińska N, Karnkowska A, Ishikawa T, Zakryś B. Intermediate introns in nuclear genes of euglenids – are they a distinct type? BMC Evol Biol. 2016;16(1):49. doi: 10.1186/s12862-016-0620-5. PubMed DOI PMC
Kolev NG, Ullu E, Tschudi C. The emerging role of RNA-binding proteins in the life cycle of Trypanosoma brucei. Cell Microbiol. 2014;16(4):482–489. doi: 10.1111/cmi.12268. PubMed DOI PMC
Gray MW, Burger G, Derelle R, Klimeš V, Léger MM, Sarrasin M, et al. The draft nuclear genome sequence and predicted mitochondrial proteome of Andalucia godoyi, a protist with the most gene-rich and bacteria-like mitochondrial genome. BMC Biol. 2020;18(1):22. doi: 10.1186/s12915-020-0741-6. PubMed DOI PMC
Jackson AP, Otto TD, Aslett M, Armstrong SD, Bringaud F, Schlacht A, et al. Kinetoplastid phylogenomics reveals the evolutionary innovations associated with the origins of parasitism. Curr Biol. 2016;26(2):161–172. doi: 10.1016/j.cub.2015.11.055. PubMed DOI PMC
Fritz-Laylin LK, Prochnik SE, Ginger ML, Dacks JB, Carpenter ML, Field MC, et al. The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell. 2010;140(5):631–642. doi: 10.1016/j.cell.2010.01.032. PubMed DOI
Ebenezer TE, Zoltner M, Burrell A, Nenarokova A, Novák Vanclová AMG, Prasad B, et al. Transcriptome, proteome and draft genome of Euglena gracilis. BMC Biol. 2019;17(1):11. doi: 10.1186/s12915-019-0626-8. PubMed DOI PMC
Kojima KK. Structural and sequence diversity of eukaryotic transposable elements. Genes Genet Syst. 2020;94(6):233–252. doi: 10.1266/ggs.18-00024. PubMed DOI
Vlcek C, Marande W, Teijeiro S, Lukeš J, Burger G. Systematically fragmented genes in a multipartite mitochondrial genome. Nucleic Acids Res. 2011;39(3):979–988. doi: 10.1093/nar/gkq883. PubMed DOI PMC
Calabrese FM, Balacco DL, Preste R, Diroma MA, Forino R, Ventura M, et al. NumtS colonization in mammalian genomes. Sci Rep. 2017;7(1):16357. doi: 10.1038/s41598-017-16750-2. PubMed DOI PMC
Ko YJ, Kim S. Analysis of nuclear mitochondrial DNA segments of nine plant species: size, distribution, and insertion loci. Genom Inform. 2016;14(3):90–95. doi: 10.5808/GI.2016.14.3.90. PubMed DOI PMC
Michalovova M, Vyskot B, Kejnovsky E. Analysis of plastid and mitochondrial DNA insertions in the nucleus (NUPTs and NUMTs) of six plant species: size, relative age and chromosomal localization. Heredity. 2013;111(4):314–320. doi: 10.1038/hdy.2013.51. PubMed DOI PMC
Kolev NG, Franklin JB, Carmi S, Shi H, Michaeli S, Tschudi C. The transcriptome of the human pathogen Trypanosoma brucei at single-nucleotide resolution. PLoS Pathog. 2010;6(9):e1001090. doi: 10.1371/journal.ppat.1001090. PubMed DOI PMC
Sturm NR, Maslov DA, Grisard EC, Campbell DA. Diplonema spp possess spliced leader RNA genes similar to the Kinetoplastida. J Eukaryot Microbiol. 2001;48(3):325–31. doi: 10.1111/j.1550-7408.2001.tb00321.x. PubMed DOI
Vanhamme L, Pays E. Control of gene expression in trypanosomes. Microbiol Rev. 1995;59(2):223–240. doi: 10.1128/mr.59.2.223-240.1995. PubMed DOI PMC
Borst P, Sabatini R. Base J: discovery, biosynthesis, and possible functions. Annu Rev Microbiol. 2008;62:235–251. doi: 10.1146/annurev.micro.62.081307.162750. PubMed DOI
van Luenen HG, Farris C, Jan S, Genest PA, Tripathi P, Velds A, et al. Glucosylated hydroxymethyluracil, DNA base J, prevents transcriptional readthrough in Leishmania. Cell. 2012;150(5):909–921. doi: 10.1016/j.cell.2012.07.030. PubMed DOI PMC
Schmitz RJ, Lewis ZA, Goll MG. DNA methylation: shared and divergent features across eukaryotes. Trends Genet. 2019;35(11):818–827. doi: 10.1016/j.tig.2019.07.007. PubMed DOI PMC
Ketting RF. The many faces of RNAi. Dev Cell. 2011;20(2):148–161. doi: 10.1016/j.devcel.2011.01.012. PubMed DOI
Gutbrod MJ, Martienssen RA. Conserved chromosomal functions of RNA interference. Nat Rev Genet. 2020;21(5):311–331. doi: 10.1038/s41576-019-0203-6. PubMed DOI PMC
O’Neill EC, Trick M, Henrissat B, Field RA. Euglena in time: evolution, control of central metabolic processes and multi-domain proteins in carbohydrate and natural product biochemistry. Perspect Sci. 2015;6:84–93. doi: 10.1016/j.pisc.2015.07.002. DOI
Matveyev AV, Alves JM, Serrano MG, Lee V, Lara AM, Barton WA, et al. The evolutionary loss of RNAi key determinants in kinetoplastids as a multiple sporadic phenomenon. J Mol Evol. 2017;84(2–3):104–115. doi: 10.1007/s00239-017-9780-1. PubMed DOI PMC
Matzov D, Taoka M, Nobe Y, Yamauchi Y, Halfon Y, Asis N, et al. Cryo-EM structure of the highly atypical cytoplasmic ribosome of Euglena gracilis. Nucleic Acids Res. 2020;48(20):11750–11761. doi: 10.1093/nar/gkaa893. PubMed DOI PMC
Hałakuc P, Karnkowska A, Milanowski R. Typical structure of rRNA coding genes in diplonemids points to two independent origins of the bizarre rDNA structures of euglenozoans. BMC Ecol Evol. 2022;22(1):59. doi: 10.1186/s12862-022-02014-9. PubMed DOI PMC
Ehrlich R, Davyt M, López I, Chalar C, Marín M. On the track of the missing tRNA genes: a source of non-canonical functions? Front Mol Biosci. 2021;8:643701. doi: 10.3389/fmolb.2021.643701. PubMed DOI PMC
Guy MP, Phizicky EM. Two-subunit enzymes involved in eukaryotic post-transcriptional tRNA modification. RNA Biol. 2014;11(12):1608–1618. doi: 10.1080/15476286.2015.1008360. PubMed DOI PMC
Rubio MA, Pastar I, Gaston KW, Ragone FL, Janzen CJ, Cross GA, et al. An adenosine-to-inosine tRNA-editing enzyme that can perform C-to-U deamination of DNA. Proc Natl Acad Sci U S A. 2007;104(19):7821–7826. doi: 10.1073/pnas.0702394104. PubMed DOI PMC
Drouin G, Tsang C. 5S rRNA gene arrangements in protists: a case of nonadaptive evolution. J Mol Evol. 2012;74(5–6):342–351. doi: 10.1007/s00239-012-9512-5. PubMed DOI
Jean-Joseph B, Flisser A, Martinez A, Metzenberg S. The U5/U6 snRNA genomic repeat of Taenia solium. J Parasitol. 2003;89(2):329–335. doi: 10.1645/0022-3395(2003)089[0329:TUSGRO]2.0.CO;2. PubMed DOI
Makiuchi T, Annoura T, Hashimoto M, Hashimoto T, Aoki T, Nara T. Compartmentalization of a glycolytic enzyme in Diplonema, a non-kinetoplastid euglenozoan. Protist. 2011;162(3):482–489. doi: 10.1016/j.protis.2010.11.003. PubMed DOI
Škodová-Sveráková I, Prokopchuk G, Peña-Diaz P, Záhonová K, Moos M, Horváth A, et al. Unique dynamics of paramylon storage in the marine euglenozoan Diplonema papillatum. Protist. 2020;171(2):125717. doi: 10.1016/j.protis.2020.125717. PubMed DOI
Valach M, Léveillé-Kunst A, Gray MW, Burger G. Respiratory chain Complex I of unparalleled divergence in diplonemids. J Biol Chem. 2018;293(41):16043–16056. doi: 10.1074/jbc.RA118.005326. PubMed DOI PMC
Škodová-Sveráková I, Záhonová K, Bučková B, Füssy Z, Yurchenko V, Lukeš J. Catalase and ascorbate peroxidase in euglenozoan protists. Pathogens (Basel, Switzerland) 2020;9(4):317. PubMed PMC
Škodová-Sveráková I, Záhonová K, Juricová V, Danchenko M, Moos M, Baráth P, et al. Highly flexible metabolism of the marine euglenozoan protist Diplonema papillatum. BMC Biol. 2021;19(1):251. doi: 10.1186/s12915-021-01186-y. PubMed DOI PMC
Le Costaouëc T, Unamunzaga C, Mantecon L, Helbert W. New structural insights into the cell-wall polysaccharide of the diatom Phaeodactylum tricornutum. Algal Res. 2017;26:172–179. doi: 10.1016/j.algal.2017.07.021. DOI
Michel G, Tonon T, Scornet D, Cock JM, Kloareg B. Central and storage carbon metabolism of the brown alga Ectocarpus siliculosus: insights into the origin and evolution of storage carbohydrates in eukaryotes. New Phytol. 2010;188(1):67–81. doi: 10.1111/j.1469-8137.2010.03345.x. PubMed DOI
Becker S, Tebben J, Coffinet S, Wiltshire K, Iversen MH, Harder T, et al. Laminarin is a major molecule in the marine carbon cycle. Proc Natl Acad Sci U S A. 2020;117(12):6599–6607. doi: 10.1073/pnas.1917001117. PubMed DOI PMC
Passow U. Transparent exopolymer particles (TEP) in aquatic environments. Progress Oceanogr. 2002;55(3):287–333. doi: 10.1016/S0079-6611(02)00138-6. DOI
Roy J, Faktorová D, Benada O, Lukeš J, Burger G. Description of Rhynchopus euleeides n sp (Diplonemea), a free-living marine euglenozoan. J Eukaryot Microbiol. 2007;54(2):137–45. doi: 10.1111/j.1550-7408.2007.00244.x. PubMed DOI
Ralton JE, Sernee MF, McConville MJ. Evolution and function of carbohydrate reserve biosynthesis in parasitic protists. Trends Parasitol. 2021;37(11):988–1001. doi: 10.1016/j.pt.2021.06.005. PubMed DOI
Porter D. Isonema papillatum sp. n., a new colorless marine flagellate: a light- and electronmicroscopic study. J Protozool. 1973;20(3):351–6. doi: 10.1111/j.1550-7408.1973.tb00895.x. DOI
Fan X, Qiu H, Han W, Wang Y, Xu D, Zhang X, et al. Phytoplankton pangenome reveals extensive prokaryotic horizontal gene transfer of diverse functions. Sci Adv. 2020;6(18):0111. doi: 10.1126/sciadv.aba0111. PubMed DOI PMC
Husnik F, McCutcheon JP. Functional horizontal gene transfer from bacteria to eukaryotes. Nat Rev Microbiol. 2018;16(2):67–79. doi: 10.1038/nrmicro.2017.137. PubMed DOI
Eme L, Gentekaki E, Curtis B, Archibald JM, Roger AJ. Lateral gene transfer in the adaptation of the anaerobic parasite Blastocystis to the gut. Curr Biol. 2017;27(6):807–820. doi: 10.1016/j.cub.2017.02.003. PubMed DOI
Alsmark C, Foster PG, Sicheritz-Ponten T, Nakjang S, Martin Embley T, Hirt RP. Patterns of prokaryotic lateral gene transfers affecting parasitic microbial eukaryotes. Genome Biol. 2013;14(2):R19. doi: 10.1186/gb-2013-14-2-r19. PubMed DOI PMC
Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20(1):238. doi: 10.1186/s13059-019-1832-y. PubMed DOI PMC
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32(1):268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC
Csurös M. Count: evolutionary analysis of phylogenetic profiles with parsimony and likelihood. Bioinformatics. 2010;26(15):1910–1912. doi: 10.1093/bioinformatics/btq315. PubMed DOI
Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science (New York, NY) 2002;298(5600):1912–1934. doi: 10.1126/science.1075762. PubMed DOI
Lehti-Shiu MD, Shiu SH. Diversity, classification and function of the plant protein kinase superfamily. Philos Trans R Soc Lond B Biol Sci. 2012;367(1602):2619–2639. doi: 10.1098/rstb.2012.0003. PubMed DOI PMC
Wawrik B, Bronk DA, Baer SE, Chi L, Sun M, Cooper JT, et al. Bacterial utilization of creatine in seawater. Aquat Microb Ecol. 2017;80(2):153–165. doi: 10.3354/ame01850. DOI
Larsen J, Patterson DJ. Some flagellates (Protista) from tropical marine sediments. J Nat Hist. 1990;24:801–937. doi: 10.1080/00222939000770571. DOI
Gerbracht JV, Harding T, Simpson AGB, Roger AJ, Hess S. Comparative transcriptomics reveals the molecular toolkit used by an algivorous protist for cell wall perforation. Curr Biol. 2022;32(15):3374–84.e5. doi: 10.1016/j.cub.2022.05.049. PubMed DOI
Ibarbalz FM, Henry N, Brandão MC, Martini S, Busseni G, Byrne H, et al. Global trends in marine plankton diversity across kingdoms of life. Cell. 2019;179(5):1084–97.e21. doi: 10.1016/j.cell.2019.10.008. PubMed DOI PMC
Kopf A, Bicak M, Kottmann R, Schnetzer J, Kostadinov I, Lehmann K, et al. The ocean sampling day consortium. GigaScience. 2015;4:27. doi: 10.1186/s13742-015-0066-5. PubMed DOI PMC
Käse L, Kraberg AC, Metfies K, Neuhaus S, Sprong PAA, Fuchs BM, et al. Rapid succession drives spring community dynamics of small protists at Helgoland Roads, North Sea. J Plankton Res. 2020;42(3):305–319. doi: 10.1093/plankt/fbaa017. PubMed DOI PMC
Massana R, Gobet A, Audic S, Bass D, Bittner L, Boutte C, et al. Marine protist diversity in European coastal waters and sediments as revealed by high-throughput sequencing. Environ Microbiol. 2015;17(10):4035–4049. doi: 10.1111/1462-2920.12955. PubMed DOI
Ramond P, Sourisseau M, Simon N, Romac S, Schmitt S, Rigaut-Jalabert F, et al. Coupling between taxonomic and functional diversity in protistan coastal communities. Environ Microbiol. 2019;21(2):730–749. doi: 10.1111/1462-2920.14537. PubMed DOI
Lähnemann D, Köster J, Szczurek E, McCarthy DJ, Hicks SC, Robinson MD, et al. Eleven grand challenges in single-cell data science. Genome Biol. 2020;21(1):31. doi: 10.1186/s13059-020-1926-6. PubMed DOI PMC
Rodriguez-Ezpeleta N, Teijeiro S, Forget L, Burger G, Lang BF. Construction of cDNA libraries: focus on protists and fungi. Methods Mol Biol. 2009;533:33–47. doi: 10.1007/978-1-60327-136-3_3. PubMed DOI
Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP, Flanigan MJ, et al. A whole-genome assembly of Drosophila. Science (New York, NY) 2000;287(5461):2196–2204. doi: 10.1126/science.287.5461.2196. PubMed DOI
Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27(5):722–736. doi: 10.1101/gr.215087.116. PubMed DOI PMC
Potter SC, Luciani A, Eddy SR, Park Y, Lopez R, Finn RD. HMMER web server: 2018 update. Nucleic Acids Res. 2018;46(W1):W200–W204. doi: 10.1093/nar/gky448. PubMed DOI PMC
Griffiths-Jones S, Bateman A, Marshall M, Khanna A, Eddy SR. Rfam: an RNA family database. Nucleic Acids Res. 2003;31(1):439–441. doi: 10.1093/nar/gkg006. PubMed DOI PMC
Nawrocki EP, Eddy SR. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics. 2013;29(22):2933–5. doi: 10.1093/bioinformatics/btt509. PubMed DOI PMC
Valach M, Moreira S, Petitjean C, Benz C, Butenko A, Flegontova O, Nenarokova A Prokopchuk G, Batsone T, Lapebie P, Limogo L, Sarrasin M, Stretenowich P, Tripathi P, Nara T, Henrissat B, Lang BF, Gray MW, Williams TA, Lukes J and Burger G. https://identifiers.org/biosample:SAMN30986590 (2023). PubMed PMC
Valach M, Moreira S, Petitjean C, Benz C, Butenko A, Flegontova O, Nenarokova A, Prokopchuk G, Batsone T, Lapebie P, Limogo L, Sarrasin M, Stretenowich P, Tripathi P, Nara T, Henrissat B, Lang BF, Gray MW, Williams TA, Lukes J and Burger G. https://identifiers.org/bioproject:PRJNA883718 (2023). PubMed PMC