Trophic flexibility of marine diplonemids - switching from osmotrophy to bacterivory
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35042972
PubMed Central
PMC9039065
DOI
10.1038/s41396-022-01192-0
PII: 10.1038/s41396-022-01192-0
Knihovny.cz E-zdroje
- MeSH
- Bacteria genetika MeSH
- ekosystém * MeSH
- Eukaryota * MeSH
- plankton MeSH
- stravovací zvyklosti MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Diplonemids are one of the most abundant groups of heterotrophic planktonic microeukaryotes in the world ocean and, thus, are likely to play an essential role in marine ecosystems. So far, only few species have been introduced into a culture, allowing basic studies of diplonemid genetics, morphology, ultrastructure, metabolism, as well as endosymbionts. However, it remains unclear whether these heterotrophic flagellates are parasitic or free-living and what are their predominant dietary patterns and preferred food items. Here we show that cultured diplonemids, maintained in an organic-rich medium as osmotrophs, can gradually switch to bacterivory as a sole food resource, supporting positive growth of their population, even when fed with a low biovolume of bacteria. We further observed remarkable differences in species-specific feeding patterns, size-selective grazing preferences, and distinct feeding strategies. Diplonemids can discriminate between low-quality food items and inedible particles, such as latex beads, even after their ingestion, by discharging them in the form of large waste vacuoles. We also detected digestion-related endogenous autofluorescence emitted by lysosomes and the activity of a melanin-like material. We present the first evidence that these omnipresent protists possess an opportunistic lifestyle that provides a considerable advantage in the generally food resource-limited marine environments.
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Institute of Hydrobiology Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
Zobrazit více v PubMed
Worden AZ, Follows MJ, Giovannoni SJ, Wilken S, Zimmerman AE, Keeling PJ. Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science. 2015;347:1257594. doi: 10.1126/science.1257594. PubMed DOI
Bar-On YM, Phillips R, Milo R. The biomass distribution on Earth. Proc Natl Acad Sci USA. 2018;115:6506–11. doi: 10.1073/pnas.1711842115. PubMed DOI PMC
Di Poi E, Blason C, Corinaldesi C, Danovaro R, Malisana E, Fonda-Umani S. Structure and interactions within the pelagic microbial food web (from viruses to microplankton) across environmental gradients in the Mediterranean Sea. Glob Biogeochem Cycles. 2013;27:1034–45. doi: 10.1002/2013GB004589. DOI
Das S, Mangwani N. Ocean acidification and marine microorganisms: responses and consequences. Oceanologia. 2015;57:349–61. doi: 10.1016/j.oceano.2015.07.003. DOI
Keeling PJ, del Campo J. Marine protists are not just big bacteria. Curr Biol. 2017;27:R541–R549. doi: 10.1016/j.cub.2017.03.075. PubMed DOI
de Vargas C, Audic S, Henry N, Decelle J, Mahé F, Logares R, et al. Eukaryotic plankton diversity in the sunlit ocean. Science. 2015;348:1261605. doi: 10.1126/science.1261605. PubMed DOI
Obiol A, Giner CR, Sánchez P, Duarte CM, Acinas SG, Massana R. A metagenomic assessment of microbial eukaryotic diversity in the global ocean. Mol Ecol Resour. 2020;20:718–31. doi: 10.1111/1755-0998.13147. PubMed DOI
Flegontova O, Flegontov P, Malviya S, Audic S, Wincker P, de Vargas C, et al. Extreme diversity of diplonemid eukaryotes in the ocean. Curr Biol. 2016;26:3060–5. doi: 10.1016/j.cub.2016.09.031. PubMed DOI
Gawryluk RMR, Del Campo J, Okamoto N, Strassert JFH, Lukeš J, Richards TA, et al. Morphological identification and single-cell genomics of marine diplonemids. Curr Biol. 2016;26:3053–9. doi: 10.1016/j.cub.2016.09.013. PubMed DOI
Boeuf D, Edwards BR, Eppley JM, Hu SK, Poff KE, Romano AE, et al. Biological composition and microbial dynamics of sinking particulate organic matter at abyssal depths in the oligotrophic open ocean. Proc Natl Acad Sci USA. 2019;116:11824–32. doi: 10.1073/pnas.1903080116. PubMed DOI PMC
Mukherjee I, Salcher MM, Andrei AŞ, Kavagutti VS, Shabarova T, Grujčić V, et al. A freshwater radiation of diplonemids. Environ Microbiol. 2020;22:4658–68. doi: 10.1111/1462-2920.15209. PubMed DOI
Flegontova O, Flegontov P, Londoño PAC, Walczowski W, Šantić D, Edgcomb VP, et al. Environmental determinants of the distribution of planktonic diplonemids and kinetoplastids in the oceans. Environ Microbiol. 2020;22:4014–31. doi: 10.1111/1462-2920.15190. PubMed DOI
Schoenle A, Hohlfeld M, Hermanns K, Mahé F, de Vargas C, Nitsche F, et al. High and specific diversity of protists in the deep-sea basins dominated by diplonemids, kinetoplastids, ciliates and foraminiferans. Commun Biol. 2021;4:501. doi: 10.1038/s42003-021-02012-5. PubMed DOI PMC
Griessmann K. Über marine Flagellaten. Arch Protistenkd. 1913;32:1–78.
Porter D. Isonema papillatum sp. n., a new colorless marine flagellate: A light- and electronmicroscopic study. J Protozool. 1973;20:351–6. doi: 10.1111/j.1550-7408.1973.tb00895.x. DOI
Triemer RE, Ott DW. Ultrastructure of Diplonema ambulator Larsen & Patterson (Euglenozoa) and its relationship to Isonema. Eur J Protistol. 1990;25:316–20. doi: 10.1016/S0932-4739(11)80123-9. PubMed DOI
Tashyreva D, Prokopchuk G, Yabuki A, Kaur B, Faktorová D, Votýpka J, et al. Phylogeny and morphology of new diplonemids from Japan. Protist. 2018;169:158–79. doi: 10.1016/j.protis.2018.02.001. PubMed DOI
Tashyreva D, Prokopchuk G, Votýpka J, Yabuki A, Horák A, Lukeš J. Life cycle, ultrastructure, and phylogeny of new diplonemids and their endosymbiotic bacteria. MBio. 2018;9:e02447–17. doi: 10.1128/mBio.02447-17. PubMed DOI PMC
Prokopchuk G, Tashyreva D, Yabuki A, Horák A, Masařová P, Lukeš J. Morphological, ultrastructural, motility and evolutionary characterization of two new Hemistasiidae species. Protist. 2019;170:259–82. doi: 10.1016/j.protis.2019.04.001. PubMed DOI
Lukeš J, Wheeler R, Jirsová D, David V, Archibald JM. Massive mitochondrial DNA content in diplonemid and kinetoplastid protists. IUBMB Life. 2018;70:1267–74. doi: 10.1002/iub.1894. PubMed DOI PMC
Kaur B, Záhonová K, Valach M, Faktorová D, Prokopchuk G, Burger G, et al. Gene fragmentation and RNA editing without borders: eccentric mitochondrial genomes of diplonemids. Nucleic Acids Res. 2020;48:2694–708. doi: 10.1093/nar/gkz1215. PubMed DOI PMC
Jürgens K, Massana R. Protist grazing on marine bacterioplankton. In: Kirchman DL (ed). Microbial ecology of the oceans. Hoboken, NJ, USA; John Wiley & Sons, Inc: 2008, pp 383–441.
Elbrächter M, Schnepf E, Balzer I. Hemistasia phaeocysticola (Scherffel) comb. nov., redescription of a free-living, marine, phagotrophic kinetoplastid flagellate. Arch für Protistenkd. 1996;147:125–36. doi: 10.1016/S0003-9365(96)80028-5. DOI
Kent ML, Elston RA, Nerad TA, Sawyer TK. An Isonema-like flagellate (Protozoa: Mastigophora) infection in larval geoduck clams, Panope abrupta. J Invertebr Pathol. 1987;50:221–9. doi: 10.1016/0022-2011(87)90086-3. PubMed DOI
von der Heyden S, Chao EE, Vickerman K, Cavalier-Smith T. Ribosomal RNA phylogeny of bodonid and diplonemid flagellates and the evolution of euglenozoa. J Eukaryot Microbiol. 2004;51:402–16. doi: 10.1111/j.1550-7408.2004.tb00387.x. PubMed DOI
Lima-Mendez G, Faust K, Henry N, Decelle J, Colin S, Carcillo F, et al. Determinants of community structure in the global plankton interactome. Science. 2015;348:1262073. doi: 10.1126/science.1262073. PubMed DOI
Roy J, Faktorová D, Benada O, Lukeš J, Burger G. Description of Rhynchopus euleeides n. sp. (Diplonemea), a free-living marine euglenozoan. J Eukaryot Microbiol. 2007;54:137–45. doi: 10.1111/j.1550-7408.2007.00244.x. PubMed DOI
Larsen J, Patterson DJ. Some flagellates (Protista) from tropical marine sediments. J Nat Hist. 1990;24:801–937. doi: 10.1080/00222939000770571. DOI
Sherr BF, Sherr EB, Fallon RD. Use of monodispersed, fluorescently labeled bacteria to estimate in situ protozoan bacterivory. Appl Environ Microbiol. 1987;53:958–65. doi: 10.1128/aem.53.5.958-965.1987. PubMed DOI PMC
Okamoto N, Gawryluk RMR, del Campo J, Strassert JFH, Lukeš J, Richards TA, et al. A revised taxonomy of diplonemids including the Eupelagonemidae n. fam. and a type species, Eupelagonema oceanica n. gen. & sp. J Eukaryot Microbiol. 2019;66:519–24. doi: 10.1111/jeu.12679. PubMed DOI
Jezbera J, Horňák K, Šimek K. Prey selectivity of bacterivorous protists in different size fractions of reservoir water amended with nutrients. Environ Microbiol. 2006;8:1330–9. doi: 10.1111/j.1462-2920.2006.01026.x. PubMed DOI
Rocke E, Pachiadaki MG, Cobban A, Kujawinski EB, Edgcomb VP. Protist community grazing on prokaryotic prey in deep ocean water masses. PLoS One. 2015;10:e0124505. doi: 10.1371/journal.pone.0124505. PubMed DOI PMC
Pernthaler J. Predation on prokaryotes in the water column and its ecological implications. Nat Rev Microbiol. 2005;3:537–46. doi: 10.1038/nrmicro1180. PubMed DOI
Massana R, Unrein F, Rodríguez-Martínez R, Forn I, Lefort T, Pinhassi J, et al. Grazing rates and functional diversity of uncultured heterotrophic flagellates. ISME J. 2009;3:588–96. doi: 10.1038/ismej.2008.130. PubMed DOI
Šimek K, Nedoma J, Znachor P, Kasalicky V, Jezbera J, Hornak K, et al. A finely tuned symphony of factors modulates the microbial food web of a freshwater reservoir in spring. Limnol Oceanogr. 2014;59:1477–92. doi: 10.4319/lo.2014.59.5.1477. DOI
Baltar F, Palovaara J, Unrein F, Catala P, Horňák K, Šimek K, et al. Marine bacterial community structure resilience to changes in protist predation under phytoplankton bloom conditions. ISME J. 2016;10:568–81. doi: 10.1038/ismej.2015.135. PubMed DOI PMC
De Corte D, Paredes G, Yokokawa T, Sintes E, Herndl GJ. Differential response of Cafeteria roenbergensis to different bacterial and archaeal prey characteristics. Micro Ecol. 2019;78:1–5. doi: 10.1007/s00248-018-1293-y. PubMed DOI
Matz C, Bergfeld T, Rice SA, Kjelleberg S. Microcolonies, quorum sensing and cytotoxicity determine the survival of Pseudomonas aeruginosa biofilms exposed to protozoan grazing. Environ Microbiol. 2004;6:218–26. doi: 10.1111/j.1462-2920.2004.00556.x. PubMed DOI
Fenchel T. The ecology of heterotrophic microflagellates. Adv Micro Ecol. 1986;9:57–97. doi: 10.1007/978-1-4757-0611-6_2. DOI
González JM, Iriberri J, Egea L, Barcina I. Differential rates of digestion of bacteria by freshwater and marine phagotrophic protozoa. Appl Environ Microbiol. 1990;56:1851–7. doi: 10.1128/aem.56.6.1851-1857.1990. PubMed DOI PMC
Šimek K, Kasalický V, Jezbera J, Horňák K, Nedoma J, Hahn MW, et al. Differential freshwater flagellate community response to bacterial food quality with a focus on Limnohabitans bacteria. ISME J. 2013;7:1519–30. doi: 10.1038/ismej.2013.57. PubMed DOI PMC
Du Toit A. Growth capacity and cell size. Nat Rev Microbiol. 2019;17:2. PubMed
Montegut-Felkner AE, Triemer RE. Phylogeny of Diplonema ambulator (Larsen and Patterson) 2. Homologies of the feeding apparatus. Eur J Protistol. 1996;32:64–76. doi: 10.1016/S0932-4739(96)80040-X. DOI
Leander BS. Predatory protists. Curr Biol. 2020;30:R510–R516. doi: 10.1016/j.cub.2020.03.052. PubMed DOI
Fukuda R, Ogawa H, Nagata T, Koike II. Direct determination of carbon and nitrogen contents of natural bacterial assemblages in marine environments. Appl Environ Microbiol. 1998;64:3352–8. doi: 10.1128/AEM.64.9.3352-3358.1998. PubMed DOI PMC
Mestre M, Ruiz-González C, Logares R, Duarte CM, Gasol JM, Sala MM. Sinking particles promote vertical connectivity in the ocean microbiome. Proc Natl Acad Sci USA. 2018;115:E6799–E6807. doi: 10.1073/pnas.1802470115. PubMed DOI PMC
Škodová-Sveráková I, Prokopchuk G, Peña-Diaz P, Záhonová K, Moos M, Horváth A, et al. Unique dynamics of paramylon storage in the marine euglenozoan Diplonema papillatum. Protist. 2020;171:125717. doi: 10.1016/j.protis.2020.125717. PubMed DOI
Butenko A, Opperdoes FR, Flegontova O, Horák A, Hampl V, Keeling P, et al. Evolution of metabolic capabilities and molecular features of diplonemids, kinetoplastids, and euglenids. BMC Biol. 2020;18:23. doi: 10.1186/s12915-020-0754-1. PubMed DOI PMC
Roberts EC, Legrand C, Steinke M, Wootton EC. Mechanisms underlying chemical interactions between predatory planktonic protists and their prey. J Plankton Res. 2011;33:833–41. doi: 10.1093/plankt/fbr005. DOI
Jürgens K, Matz C. Predation as a shaping force for the phenotypic and genotypic composition of planktonic bacteria. Antonie Van Leeuwenhoek. 2002;81:413–34. doi: 10.1023/A:1020505204959. PubMed DOI
Cheville NF (ed). Ultrastructural pathology: the comparative cellular basis of disease, 2nd edn. Ames, Iowa, USA: Wiley-Blackwell; 2009, p 47.
Simon JD, Peles DN. The red and the black. Acc Chem Res. 2010;43:1452–60. doi: 10.1021/ar100079y. PubMed DOI
Plonka PM, Grabacka M. Melanin synthesis in microorganisms - biotechnological and medical aspects. Acta Biochimica Polonica. 2006;53:429–43. doi: 10.18388/abp.2006_3314. PubMed DOI
Lye LF, Kang SO, Nosanchuk JD, Casadevall A, Beverley SM. Phenylalanine hydroxylase (PAH) from the lower eukaryote Leishmania major. Mol Biochem Parasitol. 2011;175:58–67. doi: 10.1016/j.molbiopara.2010.09.004. PubMed DOI PMC
Zelickson AS, Hirsch HM, Hartmann JF. Localization of melanin synthesis. J Invest Dermatol. 1965;45:458–63. doi: 10.1038/jid.1965.159. PubMed DOI
Kayatz P, Thumann G, Luther TT, Jordan JF, Bartz-Schmidt KU, Esser PJ, et al. Oxidation causes melanin fluorescence. Invest Ophthalmol Vis Sci. 2001;42:241–6. PubMed
Boucher E, Mandato CA. Plasma membrane and cytoskeleton dynamics during single-cell wound healing. Biochim Biophys Acta. 2015;1853:2649–61. doi: 10.1016/j.bbamcr.2015.07.012. PubMed DOI
Gene expression dynamics of natural assemblages of heterotrophic flagellates during bacterivory
Functional differentiation of Sec13 paralogues in the euglenozoan protists
Massive Accumulation of Strontium and Barium in Diplonemid Protists
Water masses shape pico-nano eukaryotic communities of the Weddell Sea
Gene Transfer Agents in Bacterial Endosymbionts of Microbial Eukaryotes