Discovery of unique mitotic mechanisms in Paradiplonema papillatum

. 2025 Aug ; 15 (8) : 250096. [epub] 20250806

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40763799

Grantová podpora
Wellcome Trust - United Kingdom

Diplonemids are highly diverse and abundant marine plankton with significant ecological importance. However, little is known about their biology, even in the model diplonemid Paradiplonema papillatum whose genome sequence is available. Examining the subcellular localization of proteins using fluorescence microscopy is a powerful approach to infer their putative function. Here, we report a plasmid-based method that enables YFP-tagging of a gene at the endogenous locus. By examining the localization of proteins whose homologs are involved in chromosome organization or segregation in other eukaryotes, we discovered several notable features in mitotically dividing P. papillatum cells. Cohesin is enriched on condensed interphase chromatin. During mitosis, chromosomes organize into two rings (termed mitotic rings herein) that surround the elongating nucleolus and align on a bipolar spindle. Homologs of chromosomal passenger complex components (INCENP, two Aurora kinases and KIN-A), a CLK1 kinase, meiotic chromosome axis protein SYCP2L1, spindle checkpoint protein Mad1 and microtubule regulator XMAP215 localize in between the two mitotic rings. In contrast, a Mad2 homolog localizes near basal bodies as in trypanosomes. By representing the first molecular characterization of mitotic mechanisms in P. papillatum and raising many questions, this study forms the foundation for dissecting mitotic mechanisms in diplonemids.

Zobrazit více v PubMed

de Vargas C, et al. 2015. Ocean plankton. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605. ( 10.1126/science.1261605) PubMed DOI

Flegontova O, Flegontov P, Londoño PAC, Walczowski W, Šantić D, Edgcomb VP, Lukeš J, Horák A. 2020. Environmental determinants of the distribution of planktonic diplonemids and kinetoplastids in the oceans. Environ. Microbiol. 22, 4014–4031. ( 10.1111/1462-2920.15190) PubMed DOI

Schoenle A, Hohlfeld M, Hermanns K, Mahé F, de Vargas C, Nitsche F, Arndt H. 2021. High and specific diversity of protists in the deep-sea basins dominated by diplonemids, kinetoplastids, ciliates and foraminiferans. Commun. Biol. 4, 501. ( 10.1038/s42003-021-02012-5) PubMed DOI PMC

Prokopchuk G, Korytář T, Juricová V, Majstorović J, Horák A, Šimek K, Lukeš J. 2022. Trophic flexibility of marine diplonemids—switching from osmotrophy to bacterivory. ISME J. 16, 1409–1419. ( 10.1038/s41396-022-01192-0) PubMed DOI PMC

Cavalier-Smith T. 2016. Higher classification and phylogeny of Euglenozoa. Eur. J. Protistol. 56, 250–276. ( 10.1016/j.ejop.2016.09.003) PubMed DOI

Kostygov AY, Karnkowska A, Votýpka J, Tashyreva D, Maciszewski K, Yurchenko V, Lukeš J. 2021. Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses. Open Biol. 11, 200407. ( 10.1098/rsob.200407) PubMed DOI PMC

Záhonová K, Lukeš J, Dacks JB. 2025. Diplonemid protists possess exotic endomembrane machinery, impacting models of membrane trafficking in modern and ancient eukaryotes. Curr. Biol. 35, 1508–1520.( 10.1016/j.cub.2025.02.032) PubMed DOI

Porter D. 1973. Isonema papillatum sp. n., a new colorless marine flagellate: a light‐ and electronmicroscopic study. J. Protozool. 20, 351–356. ( 10.1111/j.1550-7408.1973.tb00895.x) DOI

Triemer RE, Ott DW. 1990. Ultrastructure of Diplonema ambulator Larsen & Patterson (Euglenozoa) and its relationship to Isonema. Eur. J. Protistol. 25, 316–320. ( 10.1016/s0932-4739(11)80123-9) PubMed DOI

Triemer RE. 1992. Ultrastructure of mitosis in Diplonema ambulator Larsen and Patterson (Euglenozoa). Eur. J. Protistol. 28, 398–404. ( 10.1016/s0932-4739(11)80003-9) PubMed DOI

Valach M, et al. 2023. Recent expansion of metabolic versatility in Diplonema papillatum, the model species of a highly speciose group of marine eukaryotes. BMC Biol. 21, 99. ( 10.1186/s12915-023-01563-9) PubMed DOI PMC

Musacchio A, Desai A. 2017. A molecular view of kinetochore assembly and function. Biology 6, 5. ( 10.3390/biology6010005) PubMed DOI PMC

Drinnenberg IA, Akiyoshi B. 2017. Evolutionary lessons from species with unique kinetochores. Prog. Mol. Subcell. Biol. 56, 111–138. ( 10.1007/978-3-319-58592-5_5) PubMed DOI

van Hooff JJ, Tromer E, van Wijk LM, Snel B, Kops GJ. 2017. Evolutionary dynamics of the kinetochore network in eukaryotes as revealed by comparative genomics. EMBO Rep. 18, 1559–1571. ( 10.15252/embr.201744102) PubMed DOI PMC

Ebenezer TE, et al. 2019. Transcriptome, proteome and draft genome of Euglena gracilis. BMC Biol. 17, 11. ( 10.1186/s12915-019-0626-8) PubMed DOI PMC

Butenko A, et al. 2020. Evolution of metabolic capabilities and molecular features of diplonemids, kinetoplastids, and euglenids. BMC Biol. 18, 23. ( 10.1186/s12915-020-0754-1) PubMed DOI PMC

Akiyoshi B, Gull K. 2014. Discovery of unconventional kinetochores in kinetoplastids. Cell 156, 1247–1258. ( 10.1016/j.cell.2014.01.049) PubMed DOI PMC

Akiyoshi B. 2016. The unconventional kinetoplastid kinetochore: from discovery toward functional understanding. Biochem. Soc. Trans. 44, 1201–1217. ( 10.1042/bst20160112) PubMed DOI PMC

Lax G, et al. 2021. Multigene phylogenetics of euglenids based on single-cell transcriptomics of diverse phagotrophs. Mol. Phylogenet. Evol. 159, 107088. ( 10.1016/j.ympev.2021.107088) PubMed DOI

Benz C, Raas MWD, Tripathi P, Faktorová D, Tromer EC, Akiyoshi B, Lukeš J. 2024. On the possibility of yet a third kinetochore system in the protist phylum Euglenozoa. mBio 15, e0293624. ( 10.1128/mbio.02936-24) PubMed DOI PMC

Faktorová D, Kaur B, Valach M, Graf L, Benz C, Burger G, Lukeš J. 2020. Targeted integration by homologous recombination enables in situ tagging and replacement of genes in the marine microeukaryote Diplonema papillatum. Environ. Microbiol. 22, 3660–3670. ( 10.1111/1462-2920.15130) PubMed DOI

Tashyreva D, Prokopchuk G, Votýpka J, Yabuki A, Horák A, Lukeš J. 2018. Life cycle, ultrastructure, and phylogeny of new diplonemids and their endosymbiotic bacteria. mBio 9, e02447-17. ( 10.1128/mbio.02447-17) PubMed DOI PMC

Tashyreva D, Týč J, Horák A, Lukeš J. 2023. Ultrastructure and 3D reconstruction of a diplonemid protist (Diplonemea) and its novel membranous organelle. mBio 14, e0192123. ( 10.1128/mbio.01921-23) PubMed DOI PMC

Tashyreva D, Votýpka J, Yabuki A, Horák A, Lukeš J. 2025. Description of new diplonemids (Diplonemea, Euglenozoa) and their endosymbionts: charting the morphological diversity of these poorly known heterotrophic flagellates. Protist 177, 126090. ( 10.1016/j.protis.2025.126090) PubMed DOI

Kaur B, Valach M, Peña‐Diaz P, Moreira S, Keeling PJ, Burger G, Lukeš J, Faktorová D. 2018. Transformation of Diplonema papillatum, the type species of the highly diverse and abundant marine microeukaryotes Diplonemida (Euglenozoa). Environ. Microbiol. 20, 1030–1040. ( 10.1111/1462-2920.14041) PubMed DOI

Faktorová D, Záhonová K, Benz C, Dacks JB, Field MC, Lukeš J. 2023. Functional differentiation of Sec13 paralogues in the euglenozoan protists. Open Biol. 13, 220364. ( 10.1098/rsob.220364) PubMed DOI PMC

Kelly S, et al. 2007. Functional genomics in Trypanosoma brucei: a collection of vectors for the expression of tagged proteins from endogenous and ectopic gene loci. Mol. Biochem. Parasitol. 154, 103–109. ( 10.1016/j.molbiopara.2007.03.012) PubMed DOI PMC

Cooke CA, Heck MM, Earnshaw WC. 1987. The inner centromere protein (INCENP) antigens: movement from inner centromere to midbody during mitosis. J. Cell Biol. 105, 2053–2067. ( 10.1083/jcb.105.5.2053) PubMed DOI PMC

Li Z, Lee JH, Chu F, Burlingame AL, Günzl A, Wang CC. 2008. Identification of a novel chromosomal passenger complex and its unique localization during cytokinesis in Trypanosoma brucei. PLoS One 3, e2354. ( 10.1371/journal.pone.0002354) PubMed DOI PMC

Stortz JA, et al. 2017. Genome-wide and protein kinase-focused RNAi screens reveal conserved and novel damage response pathways in Trypanosoma brucei. PLoS Pathog. 13, e1006477. ( 10.1371/journal.ppat.1006477) PubMed DOI PMC

Akiyoshi B. 2020. Analysis of a Mad2 homolog in Trypanosoma brucei provides possible hints on the origin of the spindle checkpoint. bioRxiv. ( 10.1101/2020.12.29.424754) DOI

Ballmer D, Akiyoshi B. 2024. Dynamic localization of the chromosomal passenger complex in trypanosomes is controlled by the orphan kinesins KIN-A and KIN-B. eLife 13, P93522. ( 10.7554/elife.93522) PubMed DOI PMC

Ishii M, Akiyoshi B. 2020. Characterization of unconventional kinetochore kinases KKT10/19 in Trypanosoma brucei. J. Cell Sci. 133, s240978. ( 10.1242/jcs.240978) PubMed DOI PMC

Saldivia M, et al. 2020. Targeting the trypanosome kinetochore with CLK1 protein kinase inhibitors. Nat. Microbiol. 5, 1207–1216. ( 10.1038/s41564-020-0745-6) PubMed DOI PMC

Corkery DP, Holly AC, Lahsaee S, Dellaire G. 2015. Connecting the speckles: splicing kinases and their role in tumorigenesis and treatment response. Nucleus 6, 279–288. ( 10.1080/19491034.2015.1062194) PubMed DOI PMC

Tromer EC, Wemyss TA, Ludzia P, Waller RF, Akiyoshi B. 2021. Repurposing of synaptonemal complex proteins for kinetochores in Kinetoplastida. Open Biol. 11, 210049. ( 10.1098/rsob.210049) PubMed DOI PMC

Adams IR, Davies OR. 2023. Meiotic chromosome structure, the synaptonemal complex, and infertility. Annu. Rev. Genom. Hum. Genet. 24, 35–61. ( 10.1146/annurev-genom-110122-090239) PubMed DOI

Musacchio A, Salmon ED. 2007. The spindle-assembly checkpoint in space and time. Nat. Rev. Mol. Cell Biol. 8, 379–393. ( 10.1038/nrm2163) PubMed DOI

Akiyoshi B, Gull K. 2013. Evolutionary cell biology of chromosome segregation: insights from trypanosomes. Open Biol. 3, 130023. ( 10.1098/rsob.130023) PubMed DOI PMC

Billington K, et al. 2023. Genome-wide subcellular protein map for the flagellate parasite Trypanosoma brucei. Nat. Microbiol. 8, 533–547. ( 10.1038/s41564-022-01295-6) PubMed DOI PMC

Miller MP, Asbury CL, Biggins S. 2016. A TOG protein confers tension sensitivity to kinetochore-microtubule attachments. Cell 165, 1–12. ( 10.1016/j.cell.2016.04.030) PubMed DOI PMC

Herman JA, Miller MP, Biggins S. 2020. chTOG is a conserved mitotic error correction factor. eLife 9, e61773. ( 10.7554/elife.61773) PubMed DOI PMC

Yatskevich S, Rhodes J, Nasmyth K. 2019. Organization of chromosomal DNA by SMC complexes. Annu. Rev. Genet. 53, 445–482. ( 10.1146/annurev-genet-112618-043633) PubMed DOI

Hirano T. 2012. Condensins: universal organizers of chromosomes with diverse functions. Genes Dev. 26, 1659–1678. ( 10.1101/gad.194746.112) PubMed DOI PMC

Tedeschi A, et al. 2013. Wapl is an essential regulator of chromatin structure and chromosome segregation. Nature 501, 564–568. ( 10.1038/nature12471) PubMed DOI PMC

Xiang Y, Tsuchiya D, Yu Z, Zhao X, McKinney S, Unruh J, Slaughter B, Lake CM, Hawley RS. 2024. Multiple reorganizations of the lateral elements of the synaptonemal complex facilitate homolog segregation in Bombyx mori oocytes. Curr. Biol. 34, 352–360.( 10.1016/j.cub.2023.12.018) PubMed DOI

Hochegger H, Hégarat N, Pereira-Leal JB. 2013. Aurora at the pole and equator: overlapping functions of aurora kinases in the mitotic spindle. Open Biol. 3, 120185. ( 10.1098/rsob.120185) PubMed DOI PMC

Komaki S, Tromer EC, De Jaeger G, De Winne N, Heese M, Schnittger A. 2022. Molecular convergence by differential domain acquisition is a hallmark of chromosomal passenger complex evolution. Proc. Natl Acad. Sci. USA 119, e2200108119. ( 10.1073/pnas.2200108119) PubMed DOI PMC

Lampson MA, Cheeseman IM. 2011. Sensing centromere tension: aurora B and the regulation of kinetochore function. Trends Cell Biol. 21, 133–140. ( 10.1016/j.tcb.2010.10.007) PubMed DOI PMC

Laband K, Le Borgne R, Edwards F, Stefanutti M, Canman JC, Verbavatz JM, Dumont J. 2017. Chromosome segregation occurs by microtubule pushing in oocytes. Nat. Commun. 8, 1499. ( 10.1038/s41467-017-01539-8) PubMed DOI PMC

Yu CH, Redemann S, Wu HY, Kiewisz R, Yoo TY, Conway W, Farhadifar R, Müller-Reichert T, Needleman D. 2019. Central-spindle microtubules are strongly coupled to chromosomes during both anaphase A and anaphase B. Mol. Biol. Cell 30, 2503–2514. ( 10.1091/mbc.e19-01-0074) PubMed DOI PMC

Chen GY, Deng C, Chenoweth DM, Lampson MA. 2025. Microtubule depolymerization at kinetochores restricts anaphase spindle elongation. bioRxiv. ( 10.1101/2024.08.30.610502) DOI

Akiyoshi B, et al. 2010. Tension directly stabilizes reconstituted kinetochore-microtubule attachments. Nature 468, 576–579. ( 10.1038/nature09594) PubMed DOI PMC

Woods A, Sherwin T, Sasse R, Macrae TH, Baines AJ, Gull K. 1989. Definition of individual components within the cytoskeleton of Trypanosoma brucei by a library of monoclonal antibodies. J. Cell Sci. 93, 491–500. ( 10.1242/jcs.93.3.491) PubMed DOI

Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675. ( 10.1038/nmeth.2089) PubMed DOI PMC

Akiyoshi B, Faktorová D, Lukes J. 2025. Supplementary material from: Discovery of unique mitotic mechanisms in Paradiplonema papillatum. Figshare. ( 10.6084/m9.figshare.c.7900922) PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Discovery of unique mitotic mechanisms in Paradiplonema papillatum

. 2025 Aug ; 15 (8) : 250096. [epub] 20250806

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...