Discovery of unique mitotic mechanisms in Paradiplonema papillatum
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Wellcome Trust - United Kingdom
PubMed
40763799
PubMed Central
PMC12324889
DOI
10.1098/rsob.250096
Knihovny.cz E-zdroje
- Klíčová slova
- Euglenozoa, chromosome, diplonemid, kinetochore, kinetoplastid,
- MeSH
- aparát dělícího vřeténka metabolismus MeSH
- chromozomální proteiny, nehistonové metabolismus MeSH
- chromozomy metabolismus MeSH
- Dinoflagellata * genetika metabolismus cytologie MeSH
- mitóza * MeSH
- proteiny buněčného cyklu metabolismus MeSH
- segregace chromozomů MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chromozomální proteiny, nehistonové MeSH
- proteiny buněčného cyklu MeSH
Diplonemids are highly diverse and abundant marine plankton with significant ecological importance. However, little is known about their biology, even in the model diplonemid Paradiplonema papillatum whose genome sequence is available. Examining the subcellular localization of proteins using fluorescence microscopy is a powerful approach to infer their putative function. Here, we report a plasmid-based method that enables YFP-tagging of a gene at the endogenous locus. By examining the localization of proteins whose homologs are involved in chromosome organization or segregation in other eukaryotes, we discovered several notable features in mitotically dividing P. papillatum cells. Cohesin is enriched on condensed interphase chromatin. During mitosis, chromosomes organize into two rings (termed mitotic rings herein) that surround the elongating nucleolus and align on a bipolar spindle. Homologs of chromosomal passenger complex components (INCENP, two Aurora kinases and KIN-A), a CLK1 kinase, meiotic chromosome axis protein SYCP2L1, spindle checkpoint protein Mad1 and microtubule regulator XMAP215 localize in between the two mitotic rings. In contrast, a Mad2 homolog localizes near basal bodies as in trypanosomes. By representing the first molecular characterization of mitotic mechanisms in P. papillatum and raising many questions, this study forms the foundation for dissecting mitotic mechanisms in diplonemids.
Faculty of Sciences University of South Bohemia České Budějovice Czech Republic
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
Zobrazit více v PubMed
de Vargas C, et al. 2015. Ocean plankton. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605. ( 10.1126/science.1261605) PubMed DOI
Flegontova O, Flegontov P, Londoño PAC, Walczowski W, Šantić D, Edgcomb VP, Lukeš J, Horák A. 2020. Environmental determinants of the distribution of planktonic diplonemids and kinetoplastids in the oceans. Environ. Microbiol. 22, 4014–4031. ( 10.1111/1462-2920.15190) PubMed DOI
Schoenle A, Hohlfeld M, Hermanns K, Mahé F, de Vargas C, Nitsche F, Arndt H. 2021. High and specific diversity of protists in the deep-sea basins dominated by diplonemids, kinetoplastids, ciliates and foraminiferans. Commun. Biol. 4, 501. ( 10.1038/s42003-021-02012-5) PubMed DOI PMC
Prokopchuk G, Korytář T, Juricová V, Majstorović J, Horák A, Šimek K, Lukeš J. 2022. Trophic flexibility of marine diplonemids—switching from osmotrophy to bacterivory. ISME J. 16, 1409–1419. ( 10.1038/s41396-022-01192-0) PubMed DOI PMC
Cavalier-Smith T. 2016. Higher classification and phylogeny of Euglenozoa. Eur. J. Protistol. 56, 250–276. ( 10.1016/j.ejop.2016.09.003) PubMed DOI
Kostygov AY, Karnkowska A, Votýpka J, Tashyreva D, Maciszewski K, Yurchenko V, Lukeš J. 2021. Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses. Open Biol. 11, 200407. ( 10.1098/rsob.200407) PubMed DOI PMC
Záhonová K, Lukeš J, Dacks JB. 2025. Diplonemid protists possess exotic endomembrane machinery, impacting models of membrane trafficking in modern and ancient eukaryotes. Curr. Biol. 35, 1508–1520.( 10.1016/j.cub.2025.02.032) PubMed DOI
Porter D. 1973. Isonema papillatum sp. n., a new colorless marine flagellate: a light‐ and electronmicroscopic study. J. Protozool. 20, 351–356. ( 10.1111/j.1550-7408.1973.tb00895.x) DOI
Triemer RE, Ott DW. 1990. Ultrastructure of Diplonema ambulator Larsen & Patterson (Euglenozoa) and its relationship to Isonema. Eur. J. Protistol. 25, 316–320. ( 10.1016/s0932-4739(11)80123-9) PubMed DOI
Triemer RE. 1992. Ultrastructure of mitosis in Diplonema ambulator Larsen and Patterson (Euglenozoa). Eur. J. Protistol. 28, 398–404. ( 10.1016/s0932-4739(11)80003-9) PubMed DOI
Valach M, et al. 2023. Recent expansion of metabolic versatility in Diplonema papillatum, the model species of a highly speciose group of marine eukaryotes. BMC Biol. 21, 99. ( 10.1186/s12915-023-01563-9) PubMed DOI PMC
Musacchio A, Desai A. 2017. A molecular view of kinetochore assembly and function. Biology 6, 5. ( 10.3390/biology6010005) PubMed DOI PMC
Drinnenberg IA, Akiyoshi B. 2017. Evolutionary lessons from species with unique kinetochores. Prog. Mol. Subcell. Biol. 56, 111–138. ( 10.1007/978-3-319-58592-5_5) PubMed DOI
van Hooff JJ, Tromer E, van Wijk LM, Snel B, Kops GJ. 2017. Evolutionary dynamics of the kinetochore network in eukaryotes as revealed by comparative genomics. EMBO Rep. 18, 1559–1571. ( 10.15252/embr.201744102) PubMed DOI PMC
Ebenezer TE, et al. 2019. Transcriptome, proteome and draft genome of Euglena gracilis. BMC Biol. 17, 11. ( 10.1186/s12915-019-0626-8) PubMed DOI PMC
Butenko A, et al. 2020. Evolution of metabolic capabilities and molecular features of diplonemids, kinetoplastids, and euglenids. BMC Biol. 18, 23. ( 10.1186/s12915-020-0754-1) PubMed DOI PMC
Akiyoshi B, Gull K. 2014. Discovery of unconventional kinetochores in kinetoplastids. Cell 156, 1247–1258. ( 10.1016/j.cell.2014.01.049) PubMed DOI PMC
Akiyoshi B. 2016. The unconventional kinetoplastid kinetochore: from discovery toward functional understanding. Biochem. Soc. Trans. 44, 1201–1217. ( 10.1042/bst20160112) PubMed DOI PMC
Lax G, et al. 2021. Multigene phylogenetics of euglenids based on single-cell transcriptomics of diverse phagotrophs. Mol. Phylogenet. Evol. 159, 107088. ( 10.1016/j.ympev.2021.107088) PubMed DOI
Benz C, Raas MWD, Tripathi P, Faktorová D, Tromer EC, Akiyoshi B, Lukeš J. 2024. On the possibility of yet a third kinetochore system in the protist phylum Euglenozoa. mBio 15, e0293624. ( 10.1128/mbio.02936-24) PubMed DOI PMC
Faktorová D, Kaur B, Valach M, Graf L, Benz C, Burger G, Lukeš J. 2020. Targeted integration by homologous recombination enables in situ tagging and replacement of genes in the marine microeukaryote Diplonema papillatum. Environ. Microbiol. 22, 3660–3670. ( 10.1111/1462-2920.15130) PubMed DOI
Tashyreva D, Prokopchuk G, Votýpka J, Yabuki A, Horák A, Lukeš J. 2018. Life cycle, ultrastructure, and phylogeny of new diplonemids and their endosymbiotic bacteria. mBio 9, e02447-17. ( 10.1128/mbio.02447-17) PubMed DOI PMC
Tashyreva D, Týč J, Horák A, Lukeš J. 2023. Ultrastructure and 3D reconstruction of a diplonemid protist (Diplonemea) and its novel membranous organelle. mBio 14, e0192123. ( 10.1128/mbio.01921-23) PubMed DOI PMC
Tashyreva D, Votýpka J, Yabuki A, Horák A, Lukeš J. 2025. Description of new diplonemids (Diplonemea, Euglenozoa) and their endosymbionts: charting the morphological diversity of these poorly known heterotrophic flagellates. Protist 177, 126090. ( 10.1016/j.protis.2025.126090) PubMed DOI
Kaur B, Valach M, Peña‐Diaz P, Moreira S, Keeling PJ, Burger G, Lukeš J, Faktorová D. 2018. Transformation of Diplonema papillatum, the type species of the highly diverse and abundant marine microeukaryotes Diplonemida (Euglenozoa). Environ. Microbiol. 20, 1030–1040. ( 10.1111/1462-2920.14041) PubMed DOI
Faktorová D, Záhonová K, Benz C, Dacks JB, Field MC, Lukeš J. 2023. Functional differentiation of Sec13 paralogues in the euglenozoan protists. Open Biol. 13, 220364. ( 10.1098/rsob.220364) PubMed DOI PMC
Kelly S, et al. 2007. Functional genomics in Trypanosoma brucei: a collection of vectors for the expression of tagged proteins from endogenous and ectopic gene loci. Mol. Biochem. Parasitol. 154, 103–109. ( 10.1016/j.molbiopara.2007.03.012) PubMed DOI PMC
Cooke CA, Heck MM, Earnshaw WC. 1987. The inner centromere protein (INCENP) antigens: movement from inner centromere to midbody during mitosis. J. Cell Biol. 105, 2053–2067. ( 10.1083/jcb.105.5.2053) PubMed DOI PMC
Li Z, Lee JH, Chu F, Burlingame AL, Günzl A, Wang CC. 2008. Identification of a novel chromosomal passenger complex and its unique localization during cytokinesis in Trypanosoma brucei. PLoS One 3, e2354. ( 10.1371/journal.pone.0002354) PubMed DOI PMC
Stortz JA, et al. 2017. Genome-wide and protein kinase-focused RNAi screens reveal conserved and novel damage response pathways in Trypanosoma brucei. PLoS Pathog. 13, e1006477. ( 10.1371/journal.ppat.1006477) PubMed DOI PMC
Akiyoshi B. 2020. Analysis of a Mad2 homolog in Trypanosoma brucei provides possible hints on the origin of the spindle checkpoint. bioRxiv. ( 10.1101/2020.12.29.424754) DOI
Ballmer D, Akiyoshi B. 2024. Dynamic localization of the chromosomal passenger complex in trypanosomes is controlled by the orphan kinesins KIN-A and KIN-B. eLife 13, P93522. ( 10.7554/elife.93522) PubMed DOI PMC
Ishii M, Akiyoshi B. 2020. Characterization of unconventional kinetochore kinases KKT10/19 in Trypanosoma brucei. J. Cell Sci. 133, s240978. ( 10.1242/jcs.240978) PubMed DOI PMC
Saldivia M, et al. 2020. Targeting the trypanosome kinetochore with CLK1 protein kinase inhibitors. Nat. Microbiol. 5, 1207–1216. ( 10.1038/s41564-020-0745-6) PubMed DOI PMC
Corkery DP, Holly AC, Lahsaee S, Dellaire G. 2015. Connecting the speckles: splicing kinases and their role in tumorigenesis and treatment response. Nucleus 6, 279–288. ( 10.1080/19491034.2015.1062194) PubMed DOI PMC
Tromer EC, Wemyss TA, Ludzia P, Waller RF, Akiyoshi B. 2021. Repurposing of synaptonemal complex proteins for kinetochores in Kinetoplastida. Open Biol. 11, 210049. ( 10.1098/rsob.210049) PubMed DOI PMC
Adams IR, Davies OR. 2023. Meiotic chromosome structure, the synaptonemal complex, and infertility. Annu. Rev. Genom. Hum. Genet. 24, 35–61. ( 10.1146/annurev-genom-110122-090239) PubMed DOI
Musacchio A, Salmon ED. 2007. The spindle-assembly checkpoint in space and time. Nat. Rev. Mol. Cell Biol. 8, 379–393. ( 10.1038/nrm2163) PubMed DOI
Akiyoshi B, Gull K. 2013. Evolutionary cell biology of chromosome segregation: insights from trypanosomes. Open Biol. 3, 130023. ( 10.1098/rsob.130023) PubMed DOI PMC
Billington K, et al. 2023. Genome-wide subcellular protein map for the flagellate parasite Trypanosoma brucei. Nat. Microbiol. 8, 533–547. ( 10.1038/s41564-022-01295-6) PubMed DOI PMC
Miller MP, Asbury CL, Biggins S. 2016. A TOG protein confers tension sensitivity to kinetochore-microtubule attachments. Cell 165, 1–12. ( 10.1016/j.cell.2016.04.030) PubMed DOI PMC
Herman JA, Miller MP, Biggins S. 2020. chTOG is a conserved mitotic error correction factor. eLife 9, e61773. ( 10.7554/elife.61773) PubMed DOI PMC
Yatskevich S, Rhodes J, Nasmyth K. 2019. Organization of chromosomal DNA by SMC complexes. Annu. Rev. Genet. 53, 445–482. ( 10.1146/annurev-genet-112618-043633) PubMed DOI
Hirano T. 2012. Condensins: universal organizers of chromosomes with diverse functions. Genes Dev. 26, 1659–1678. ( 10.1101/gad.194746.112) PubMed DOI PMC
Tedeschi A, et al. 2013. Wapl is an essential regulator of chromatin structure and chromosome segregation. Nature 501, 564–568. ( 10.1038/nature12471) PubMed DOI PMC
Xiang Y, Tsuchiya D, Yu Z, Zhao X, McKinney S, Unruh J, Slaughter B, Lake CM, Hawley RS. 2024. Multiple reorganizations of the lateral elements of the synaptonemal complex facilitate homolog segregation in Bombyx mori oocytes. Curr. Biol. 34, 352–360.( 10.1016/j.cub.2023.12.018) PubMed DOI
Hochegger H, Hégarat N, Pereira-Leal JB. 2013. Aurora at the pole and equator: overlapping functions of aurora kinases in the mitotic spindle. Open Biol. 3, 120185. ( 10.1098/rsob.120185) PubMed DOI PMC
Komaki S, Tromer EC, De Jaeger G, De Winne N, Heese M, Schnittger A. 2022. Molecular convergence by differential domain acquisition is a hallmark of chromosomal passenger complex evolution. Proc. Natl Acad. Sci. USA 119, e2200108119. ( 10.1073/pnas.2200108119) PubMed DOI PMC
Lampson MA, Cheeseman IM. 2011. Sensing centromere tension: aurora B and the regulation of kinetochore function. Trends Cell Biol. 21, 133–140. ( 10.1016/j.tcb.2010.10.007) PubMed DOI PMC
Laband K, Le Borgne R, Edwards F, Stefanutti M, Canman JC, Verbavatz JM, Dumont J. 2017. Chromosome segregation occurs by microtubule pushing in oocytes. Nat. Commun. 8, 1499. ( 10.1038/s41467-017-01539-8) PubMed DOI PMC
Yu CH, Redemann S, Wu HY, Kiewisz R, Yoo TY, Conway W, Farhadifar R, Müller-Reichert T, Needleman D. 2019. Central-spindle microtubules are strongly coupled to chromosomes during both anaphase A and anaphase B. Mol. Biol. Cell 30, 2503–2514. ( 10.1091/mbc.e19-01-0074) PubMed DOI PMC
Chen GY, Deng C, Chenoweth DM, Lampson MA. 2025. Microtubule depolymerization at kinetochores restricts anaphase spindle elongation. bioRxiv. ( 10.1101/2024.08.30.610502) DOI
Akiyoshi B, et al. 2010. Tension directly stabilizes reconstituted kinetochore-microtubule attachments. Nature 468, 576–579. ( 10.1038/nature09594) PubMed DOI PMC
Woods A, Sherwin T, Sasse R, Macrae TH, Baines AJ, Gull K. 1989. Definition of individual components within the cytoskeleton of Trypanosoma brucei by a library of monoclonal antibodies. J. Cell Sci. 93, 491–500. ( 10.1242/jcs.93.3.491) PubMed DOI
Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675. ( 10.1038/nmeth.2089) PubMed DOI PMC
Akiyoshi B, Faktorová D, Lukes J. 2025. Supplementary material from: Discovery of unique mitotic mechanisms in Paradiplonema papillatum. Figshare. ( 10.6084/m9.figshare.c.7900922) PubMed DOI