Transcriptome, proteome and draft genome of Euglena gracilis
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
P009018/1
Medical Research Council - United Kingdom
PubMed
30732613
PubMed Central
PMC6366073
DOI
10.1186/s12915-019-0626-8
PII: 10.1186/s12915-019-0626-8
Knihovny.cz E-zdroje
- Klíčová slova
- Cellular evolution, Euglena gracilis, Excavata, Gene architecture, Horizontal gene transfer, Plastid, Secondary endosymbiosis, Splicing, Transcriptome,
- MeSH
- buněčné jádro MeSH
- Euglena gracilis genetika metabolismus MeSH
- genom * MeSH
- plastidy MeSH
- proteom * MeSH
- transkriptom * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteom * MeSH
BACKGROUND: Photosynthetic euglenids are major contributors to fresh water ecosystems. Euglena gracilis in particular has noted metabolic flexibility, reflected by an ability to thrive in a range of harsh environments. E. gracilis has been a popular model organism and of considerable biotechnological interest, but the absence of a gene catalogue has hampered both basic research and translational efforts. RESULTS: We report a detailed transcriptome and partial genome for E. gracilis Z1. The nuclear genome is estimated to be around 500 Mb in size, and the transcriptome encodes over 36,000 proteins and the genome possesses less than 1% coding sequence. Annotation of coding sequences indicates a highly sophisticated endomembrane system, RNA processing mechanisms and nuclear genome contributions from several photosynthetic lineages. Multiple gene families, including likely signal transduction components, have been massively expanded. Alterations in protein abundance are controlled post-transcriptionally between light and dark conditions, surprisingly similar to trypanosomatids. CONCLUSIONS: Our data provide evidence that a range of photosynthetic eukaryotes contributed to the Euglena nuclear genome, evidence in support of the 'shopping bag' hypothesis for plastid acquisition. We also suggest that euglenids possess unique regulatory mechanisms for achieving extreme adaptability, through mechanisms of paralog expansion and gene acquisition.
Cell Biology Division Department of Biology University of Erlangen Nuremberg 91058 Erlangen Germany
Centro Andaluz de Biología del Desarrollo CSIC Pablo de Olavide University Seville Spain
Department of Biochemistry University of Cambridge Cambridge CB2 1QW UK
Department of Life Sciences The Natural History Museum Cromwell Road London SW7 5BD UK
Department of Parasitology Faculty of Science Charles University BIOCEV 252 50 Vestec Czech Republic
Department of Plant Sciences University of Oxford Oxford OX1 3RB UK
Laboratory of Cellular and Structural Biology The Rockefeller University New York NY 10065 USA
School of Life Sciences University of Dundee Dundee DD1 5EH UK
Zobrazit více v PubMed
Dobell C. Antony van Leeuwenhoek and his “Little Animals.” 1932. doi:10.1038/130679a0.
Kim JT, Boo SM, Zakryś B. Floristic and taxonomic accounts of the genus Euglena (Euglenophyceae) from Korean fresh waters. Algae. 1998;13:173–197.
Gojdics M. The genus Euglena. American Association for the Advancement of Science; 1953. doi:10.1126/science.120.3124.799-a.
Zakryś B, Walne PL. Floristic, taxonomic and phytogeographic studies of green Euglenophyta from the Southeastern United States, with emphasis on new and rare species. Algol Stud für Hydrobiol Suppl Vol. 1994;72:71–114.
Zakryś B. The nuclear DNA level as a potential taxonomic character in Euglena Ehr. (Euglenophyceae). Algol Stud für Hydrobiol Suppl Vol. 1988;:483–504.
Buetow DE. The biology of Euglena: Academic Press; 1968;49.
McFadden GI. Primary and secondary endosymbiosis and the origin of plastids. J Phycol. 2001;37:951–959. doi: 10.1046/j.1529-8817.2001.01126.x. DOI
Dragoş N, Péterfi LŞ, Popescu C. Comparative fine structure of pellicular cytoskeleton in Euglena Ehrenberg. Arch Protistenkd. 1997;148:277–285. doi: 10.1016/S0003-9365(97)80008-5. DOI
Daiker V, Lebert M, Richter P, Häder D-P. Molecular characterization of a calmodulin involved in the signal transduction chain of gravitaxis in Euglena gracilis. Planta. 2010;231:1229–1236. doi: 10.1007/s00425-010-1126-9. PubMed DOI
van der Horst MA, Hellingwerf KJ. Photoreceptor proteins, “star actors of modern times”: a review of the functional dynamics in the structure of representative members of six different photoreceptor families. Acc Chem Res. 2004;37:13–20. doi: 10.1021/ar020219d. PubMed DOI
Heijde M, Ulm R. UV-B photoreceptor-mediated signalling in plants. Trends Plant Sci. 2012;17:230–237. doi: 10.1016/j.tplants.2012.01.007. PubMed DOI
Iseki M, Matsunaga S, Murakami A, Ohno K, Shiga K, Yoshida K, et al. A blue-light-activated adenylyl cyclase mediates photoavoidance in Euglena gracilis. Nature. 2002;415:1047–1051. doi: 10.1038/4151047a. PubMed DOI
Masuda S. Light detection and signal transduction in the BLUF photoreceptors. Plant Cell Physiol. 2013;54:171–179. doi: 10.1093/pcp/pcs173. PubMed DOI
Richter PR, Schuster M, Lebert M, Streb C, Häder D-P. Gravitaxis of Euglena gracilis depends only partially on passive buoyancy. Adv Sp Res. 2007;39:1218–1224. doi: 10.1016/J.ASR.2006.11.024. DOI
Adl SM, Simpson AGB, Lane CE, Lukeš J, Bass D, Bowser SS, et al. The revised classification of eukaryotes. J Eukaryot Microbiol. 2012;59:429–493. doi: 10.1111/j.1550-7408.2012.00644.x. PubMed DOI PMC
Flegontova O, Flegontov P, Malviya S, Audic S, Wincker P, de Vargas C, et al. Extreme diversity of diplonemid eukaryotes in the ocean. Curr Biol. 2016;26:3060–3065. doi: 10.1016/j.cub.2016.09.031. PubMed DOI
O’Neill EC, Trick M, Hill L, Rejzek M, Dusi RG, Hamilton CJ, et al. The transcriptome of Euglena gracilis reveals unexpected metabolic capabilities for carbohydrate and natural product biochemistry. Mol BioSyst. 2015;11:2808–2820. doi: 10.1039/C5MB00319A. PubMed DOI
O’Neill EC, Trick M, Henrissat B, Field RA. Euglena in time: evolution, control of central metabolic processes and multi-domain proteins in carbohydrate and natural product biochemistry. Perspect Sci. 2015;6:84–93. doi: 10.1016/J.PISC.2015.07.002. DOI
Yoshida Y, Tomiyama T, Maruta T, Tomita M, Ishikawa T, Arakawa K. De novo assembly and comparative transcriptome analysis of Euglena gracilis in response to anaerobic conditions. BMC Genomics. 2016;17:182. doi: 10.1186/s12864-016-2540-6. PubMed DOI PMC
Moore AN, McWatters DC, Hudson AJ, Russell AG. RNA-Seq employing a novel rRNA depletion strategy reveals a rich repertoire of snoRNAs in Euglena gracilis including box C/D and Ψ-guide RNAs targeting the modification of rRNA extremities. RNA Biol. 2018;15:1309–1318. doi: 10.1080/15476286.2018.1526561. PubMed DOI PMC
Lukeš J, Skalický T, Týč J, Votýpka J, Yurchenko V. Evolution of parasitism in kinetoplastid flagellates. Mol Biochem Parasitol. 2014;195:115–122. doi: 10.1016/j.molbiopara.2014.05.007. PubMed DOI
Flegontov P, Votýpka J, Skalický T, Logacheva MDD, Penin AAA, Tanifuji G, et al. Paratrypanosoma is a novel early-branching trypanosomatid. Curr Biol. 2013;23:1787–1793. doi: 10.1016/j.cub.2013.07.045. PubMed DOI
Jackson AP, Otto TD, Aslett M, Armstrong SD, Bringaud F, Schlacht A, et al. Kinetoplastid phylogenomics reveals the evolutionary innovations associated with the origins of parasitism. Curr Biol. 2016;26:161–172. doi: 10.1016/j.cub.2015.11.055. PubMed DOI PMC
Jackson AP. Gene family phylogeny and the evolution of parasite cell surfaces. Mol Biochem Parasitol. 2016;209:64–75. doi: 10.1016/j.molbiopara.2016.03.007. PubMed DOI
Langousis G, Hill KL. Motility and more: the flagellum of Trypanosoma brucei. Nat Rev Microbiol. 2014;12:505–518. doi: 10.1038/nrmicro3274. PubMed DOI PMC
Perdomo D, Bonhivers M, Robinson D. The trypanosome flagellar pocket collar and its ring forming protein—TbBILBO1. Cell. 2016;5:9. doi: 10.3390/cells5010009. PubMed DOI PMC
Kalb LC, Frederico YCA, Boehm C, Moreira CM do N, Soares MJ, Field MC. Conservation and divergence within the clathrin interactome of Trypanosoma cruzi. Sci Rep. 2016;6:31212. doi: 10.1038/srep31212. PubMed DOI PMC
Zoltner M, Horn D, de Koning HP, Field MC. Exploiting the Achilles’ heel of membrane trafficking in trypanosomes. Curr Opin Microbiol. 2016;34:97–103. doi: 10.1016/j.mib.2016.08.005. PubMed DOI PMC
Hovel-Miner G, Mugnier MR, Goldwater B, Cross GAM, Papavasiliou FN. A conserved DNA repeat promotes selection of a diverse repertoire of Trypanosoma brucei surface antigens from the genomic archive. PLoS Genet. 2016;12:e1005994. doi: 10.1371/journal.pgen.1005994. PubMed DOI PMC
Devault A, Bañuls A-L. The promastigote surface antigen gene family of the Leishmania parasite: differential evolution by positive selection and recombination. BMC Evol Biol. 2008;8:292. doi: 10.1186/1471-2148-8-292. PubMed DOI PMC
Chamakh-Ayari R, Bras-Gonçalves R, Bahi-Jaber N, Petitdidier E, Markikou-Ouni W, Aoun K, et al. In vitro evaluation of a soluble Leishmania promastigote surface antigen as a potential vaccine candidate against human leishmaniasis. PLoS One. 2014;9:e92708. doi: 10.1371/journal.pone.0092708. PubMed DOI PMC
Mahapatra DM, Chanakya HN, Ramachandra TV. Euglena sp. as a suitable source of lipids for potential use as biofuel and sustainable wastewater treatment. J Appl Phycol. 2013;25:855–865. doi: 10.1007/s10811-013-9979-5. DOI
Furuhashi T, Ogawa T, Nakai R, Nakazawa M, Okazawa A, Padermschoke A, et al. Wax ester and lipophilic compound profiling of Euglena gracilis by gas chromatography-mass spectrometry: toward understanding of wax ester fermentation under hypoxia. Metabolomics. 2015;11:175–183. doi: 10.1007/s11306-014-0687-1. DOI
Yamada K, Suzuki H, Takeuchi T, Kazama Y, Mitra S, Abe T, et al. Efficient selective breeding of live oil-rich Euglena gracilis with fluorescence-activated cell sorting. Sci Rep. 2016;6:26327. doi: 10.1038/srep26327. PubMed DOI PMC
Miazek K, Iwanek W, Remacle C, Richel A, Goffin D. Effect of metals, metalloids and metallic nanoparticles on microalgae growth and industrial product biosynthesis: a review. Int J Mol Sci. 2015;16:23929–23969. doi: 10.3390/ijms161023929. PubMed DOI PMC
RodrÍguez-Zavala JS, GarcÍa-GarcÍa JD, Ortiz-Cruz MA, Moreno-Sánchez R. Molecular mechanisms of resistance to heavy metals in the protist Euglena gracilis. J Environ Sci Heal Part A. 2007;42:1365–1378. doi: 10.1080/10934520701480326. PubMed DOI
dos Santos Ferreira V, Rocchetta I, Conforti V, Bench S, Feldman R, Levin MJ, et al. Gene expression patterns in Euglena gracilis: insights into the cellular response to environmental stress. Gene. 2007;389:136–145. doi: 10.1016/j.gene.2006.10.023. PubMed DOI
Zeng M, Hao W, Zou Y, Shi M, Jiang Y, Xiao P, et al. Fatty acid and metabolomic profiling approaches differentiate heterotrophic and mixotrophic culture conditions in a microalgal food supplement “Euglena”. BMC Biotechnol. 2016;16:49. doi: 10.1186/s12896-016-0279-4. PubMed DOI PMC
Dobáková E, Flegontov P, Skalický T, Lukeš J. Unexpectedly streamlined mitochondrial genome of the euglenozoan Euglena gracilis. Genome Biol Evol. 2015;7:3358–67. 10.1093/gbe/evv229. PubMed PMC
Faktorová D, Dobáková E, Peña-Diaz P, Lukeš J. From simple to supercomplex: mitochondrial genomes of euglenozoan protists. F1000Research. 2016;5:392. doi:10.12688/f1000research.8040.1. PubMed PMC
Hallick RB, Hong L, Drager RG, Favreau MR, Monfort A, Orsat B, et al. Complete sequence of Euglena gracilis chloroplast DNA. Nucleic Acids Res. 1993;21:3537–3544. doi: 10.1093/nar/21.15.3537. PubMed DOI PMC
Rogers MB, Gilson PR, Su V, McFadden GI, Keeling PJ. The complete chloroplast genome of the chlorarachniophyte Bigelowiella natans: evidence for independent origins of chlorarachniophyte and euglenid secondary endosymbionts. Mol Biol Evol. 2007;24:54–62. doi: 10.1093/molbev/msl129. PubMed DOI
Maruyama S, Suzaki T, Weber AP, Archibald JM, Nozaki H. Eukaryote-to-eukaryote gene transfer gives rise to genome mosaicism in euglenids. BMC Evol Biol. 2011;11:105. doi: 10.1186/1471-2148-11-105. PubMed DOI PMC
Howe CJ, Barbrook AC, Nisbet RER, Lockhart PJ, Larkum AWD. The origin of plastids. Philos Trans R Soc Lond Ser B Biol Sci. 2008;363:2675–2685. doi: 10.1098/rstb.2008.0050. PubMed DOI PMC
Dooijes D, Chaves I, Kieft R, Dirks-Mulder A, Martin W, Borst P. Base J originally found in kinetoplastida is also a minor constituent of nuclear DNA of Euglena gracilis. Nucleic Acids Res. 2000;28:3017–3021. doi: 10.1093/nar/28.16.3017. PubMed DOI PMC
Stankiewicz AJ, Falchuk KH, Vallee BL. Composition and structure of zinc-deficient Euglena gracilis chromatin. Biochemistry. 1983;22:5150–5156. doi: 10.1021/bi00291a014. PubMed DOI
Mazus B, Falchuk KH, Vallee BL. Histone formation, gene expression, and zinc deficiency in Euglena gracilis. Biochemistry. 1984;23:42–47. doi: 10.1021/bi00296a007. PubMed DOI
Ebenezer TE, Carrington M, Lebert M, Kelly S, Field MC. Euglena gracilis genome and transcriptome: organelles, nuclear genome assembly strategies and initial features. In: Advances in experimental medicine and biology; 2017. PubMed
Schantz ML, Schantz R. Sequence of a cDNA clone encoding beta tubulin from Euglena gracilis. Nucleic Acids Res. 1989;17:6727. doi: 10.1093/nar/17.16.6727. PubMed DOI PMC
Jackson AP, Vaughan S, Gull K. Evolution of tubulin gene arrays in trypanosomatid parasites: genomic restructuring in Leishmania. BMC Genomics. 2006;7:261. doi: 10.1186/1471-2164-7-261. PubMed DOI PMC
Levasseur PJ, Meng Q, Bouck GB. Tubulin genes in the algal protist Euglena gracilis. J Eukaryot Microbiol. 1994;41:468–77. PubMed
Milanowski R, Karnkowska A, Ishikawa T, Zakryś B. Distribution of conventional and nonconventional introns in tubulin (α and β) genes of euglenids. Mol Biol Evol. 2014;31:584–593. doi: 10.1093/molbev/mst227. PubMed DOI PMC
Milanowski R, Gumińska N, Karnkowska A, Ishikawa T, Zakryś B. Intermediate introns in nuclear genes of euglenids – are they a distinct type? BMC Evol Biol. 2016;16:49. doi: 10.1186/s12862-016-0620-5. PubMed DOI PMC
Canaday J, Tessier LH, Imbault P, Paulus F. Analysis of Euglena gracilis alpha-, beta- and gamma-tubulin genes: introns and pre-mRNA maturation. Mol Gen Genomics. 2001;265:153–160. doi: 10.1007/s004380000403. PubMed DOI
Tessier L, Keller M, Chan RL, Fournier R, Weil J. Short leader sequences may be transferred from small RNAs to pre-mature mRNAs by trans-splicing in Euglena. EMBO J. 1991;10:2621–2625. doi: 10.1002/j.1460-2075.1991.tb07804.x. PubMed DOI PMC
Keller M, Chan RL, Tessier L-H, Weil J-H, Imbault P. Post-transcriptional regulation by light of the biosynthesis of Euglena ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit. Plant Mol Biol. 1991;17:73–82. doi: 10.1007/BF00036807. PubMed DOI
Rawson JR. The characterization of Euglena gracilis DNA by its reassociation kinetics. Biochim Biophys Acta. 1975;402:171–178. doi: 10.1016/0005-2787(75)90036-2. PubMed DOI
Parra G, Bradnam K, Korf I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics. 2007;23:1061–1067. doi: 10.1093/bioinformatics/btm071. PubMed DOI
Slater GSC, Birney E. Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics. 2005;6:31. doi: 10.1186/1471-2105-6-31. PubMed DOI PMC
Mair G, Shi H, Li H, Djikeng A, Aviles HO, Bishop JR, et al. A new twist in trypanosome RNA metabolism: cis-splicing of pre-mRNA. RNA. 2000;6:163–169. doi: 10.1017/S135583820099229X. PubMed DOI PMC
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 2013;8:1494–1512. doi: 10.1038/nprot.2013.084. PubMed DOI PMC
Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28:3150–3152. doi: 10.1093/bioinformatics/bts565. PubMed DOI PMC
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva E V. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31(19):3210–12. PubMed
Jackson AP, Quail MA, Berriman M. Insights into the genome sequence of a free-living kinetoplastid: Bodo saltans (Kinetoplastida: Euglenozoa) BMC Genomics. 2008;9:594. doi: 10.1186/1471-2164-9-594. PubMed DOI PMC
Berriman M, Ghedin E, Hertz-Fowler C, Blandin G, Renauld H, Bartholomeu DC, et al. The genome of the African trypanosome Trypanosoma brucei. Science. 2005;309:416–422. doi: 10.1126/science.1112642. PubMed DOI
Fritz-Laylin LK, Prochnik SE, Ginger ML, Dacks JB, Carpenter ML, Field MC, et al. The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell. 2010;140:631–642. doi: 10.1016/j.cell.2010.01.032. PubMed DOI
Van Assche E, Van Puyvelde S, Vanderleyden J, Steenackers HP. RNA-binding proteins involved in post-transcriptional regulation in bacteria. Front Microbiol. 2015;6:141. doi: 10.3389/fmicb.2015.00141. PubMed DOI PMC
Araújo PR, Teixeira SM. Regulatory elements involved in the post-transcriptional control of stage-specific gene expression in Trypanosoma cruzi: a review. Mem Inst Oswaldo Cruz. 2011;106:257–266. doi: 10.1590/S0074-02762011000300002. PubMed DOI
Montandon PE, Stutz E. Structure and expression of the Euglena nuclear gene coding for the translation elongation factor EF-1 alpha. Nucleic Acids Res. 1990;18:75–82. doi: 10.1093/nar/18.1.75. PubMed DOI PMC
Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 2015;16:157. doi: 10.1186/s13059-015-0721-2. PubMed DOI PMC
Salmon D, Vanwalleghem G, Morias Y, Denoeud J, Krumbholz C, Lhomme F, et al. Adenylate cyclases of Trypanosoma brucei inhibit the innate immune response of the host. Science. 2012;337:463–466. doi: 10.1126/science.1222753. PubMed DOI
Ponce-Toledo RI, Moreira D, López-García P, Deschamps P. Secondary plastids of euglenids and chlorarachniophytes function with a mix of genes of red and green algal ancestry. Mol Biol Evol. 2018;35:2198–2204. doi: 10.1093/molbev/msy121. PubMed DOI PMC
Jackson C, Knoll AH, Chan CX, Verbruggen H. Plastid phylogenomics with broad taxon sampling further elucidates the distinct evolutionary origins and timing of secondary green plastids. Sci Rep. 2018;8:1523. doi: 10.1038/s41598-017-18805-w. PubMed DOI PMC
Curtis BA, Tanifuji G, Burki F, Gruber A, Irimia M, Maruyama S, et al. Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature. 2012;492:59–65. doi: 10.1038/nature11681. PubMed DOI
Dorrell RG, Gile G, McCallum G, Méheust R, Bapteste EP, Klinger CM, et al. Chimeric origins of ochrophytes and haptophytes revealed through an ancient plastid proteome. elife. 2017;6. 10.7554/eLife.23717. PubMed PMC
Dunin-Horkawicz S, Lupas AN. Comprehensive analysis of HAMP domains: implications for transmembrane signal transduction. J Mol Biol. 2010;397:1156–1174. doi: 10.1016/j.jmb.2010.02.031. PubMed DOI
Anantharaman V, Aravind L. Cache – a signaling domain common to animal Ca(2+)-channel subunits and a class of prokaryotic chemotaxis receptors. Trends Biochem Sci. 2000;25:535–537. doi: 10.1016/S0968-0004(00)01672-8. PubMed DOI
Szöör B, Haanstra JR, Gualdrón-López M, Michels PA. Evolution, dynamics and specialized functions of glycosomes in metabolism and development of trypanosomatids. Curr Opin Microbiol. 2014;22:79–87. doi: 10.1016/J.MIB.2014.09.006. PubMed DOI
Morales J, Hashimoto M, Williams TA, Hirawake-mogi H, Makiuchi T, Tsubouchi A, et al. Differential remodelling of peroxisome function underpins the environmental and metabolic adaptability of diplonemids and kinetoplastids. Proc R Soc B. 2016;283:20160520. doi: 10.1098/rspb.2016.0520. PubMed DOI PMC
Güther MLS, Urbaniak MD, Tavendale A, Prescott A, Ferguson MAJ. High-confidence glycosome proteome for procyclic form Trypanosoma brucei by epitope-tag organelle enrichment and SILAC proteomics. J Proteome Res. 2014;13:2796–2806. doi: 10.1021/pr401209w. PubMed DOI PMC
Lonergan TA. Regulation of cell shape in Euglena. IV. Localization of actin, myosin and calmodulin. J Cell Sci. 1985;77:197–208. PubMed
Gadelha C, Zhang W, Chamberlain JW, Chait BT, Wickstead B, Field MC. Architecture of a host-parasite interface: complex targeting mechanisms revealed through proteomics. Mol Cell Proteomics. 2015;14:1911–1926. doi: 10.1074/mcp.M114.047647. PubMed DOI PMC
Barsanti L, Passarelli V, Walne PL, Gualtieri P. The photoreceptor protein of Euglena. FEBS Lett. 2000;482:247–251. doi: 10.1016/S0014-5793(00)02062-7. PubMed DOI
Venkatesh D, Boehm C, Barlow LD, Nankissoor NN, O’Reilly A, Kelly S, et al. Evolution of the endomembrane systems of trypanosomatids – conservation and specialisation. J Cell Sci. 2017;130:1421–1434. doi: 10.1242/jcs.197640. PubMed DOI PMC
Zhou Q, Gheiratmand L, Chen Y, Lim TK, Zhang J, Li S, et al. A comparative proteomic analysis reveals a new bi-lobe protein required for bi-lobe duplication and cell division in Trypanosoma brucei. PLoS One. 2010;5:e9660. doi: 10.1371/journal.pone.0009660. PubMed DOI PMC
Esson HJ, Morriswood B, Yavuz S, Vidilaseris K, Dong G, Warren G. Morphology of the trypanosome bilobe, a novel cytoskeletal structure. Eukaryot Cell. 2012;11:761–772. doi: 10.1128/EC.05287-11. PubMed DOI PMC
Morriswood B, Havlicek K, Demmel L, Yavuz S, Sealey-Cardona M, Vidilaseris K, et al. Novel bilobe components in Trypanosoma brucei identified using proximity-dependent biotinylation. Eukaryot Cell. 2013;12:356–367. doi: 10.1128/EC.00326-12. PubMed DOI PMC
McAllaster MR, Ikeda KN, Lozano-Núñez A, Anrather D, Unterwurzacher V, Gossenreiter T, et al. Proteomic identification of novel cytoskeletal proteins associated with TbPLK, an essential regulator of cell morphogenesis in Trypanosoma brucei. Mol Biol Cell. 2015;26:3013–3029. doi: 10.1091/mbc.E15-04-0219. PubMed DOI PMC
Aslett M, Aurrecoechea C, Berriman M, Brestelli J, Brunk BP, Carrington M, et al. TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res. 2010;38(Database issue):D457–D462. doi: 10.1093/nar/gkp851. PubMed DOI PMC
Bugreev DV, Pezza RJ, Mazina OM, Voloshin ON, Camerini-Otero RD, Mazin AV. The resistance of DMC1 D-loops to dissociation may account for the DMC1 requirement in meiosis. Nat Struct Mol Biol. 2011;18:56–60. doi: 10.1038/nsmb.1946. PubMed DOI PMC
Koreny L, Field MC. Ancient eukaryotic origin and evolutionary plasticity of nuclear lamina. Genome Biol Evol. 2016;8:2663–2671. doi: 10.1093/gbe/evw087. PubMed DOI PMC
Obado SO, Brillantes M, Uryu K, Zhang W, Ketaren NE, Chait BT, et al. Interactome mapping reveals the evolutionary history of the nuclear pore complex. PLoS Biol. 2016;14:e1002365. doi: 10.1371/journal.pbio.1002365. PubMed DOI PMC
Akiyoshi B, Gull K. Discovery of unconventional kinetochores in kinetoplastids. Cell. 2014;156:1247–1258. doi: 10.1016/j.cell.2014.01.049. PubMed DOI PMC
D’Archivio S, Wickstead B. Trypanosome outer kinetochore proteins suggest conservation of chromosome segregation machinery across eukaryotes. J Cell Biol. 2017;216:379–391. doi: 10.1083/jcb.201608043. PubMed DOI PMC
Lukeš J, Guilbride DL, Votýpka J, Zíková A, Benne R, Englund PT. Kinetoplast DNA network: evolution of an improbable structure. Eukaryot Cell. 2002;1:495–502. doi: 10.1128/EC.1.4.495-502.2002. PubMed DOI PMC
David V, Flegontov P, Gerasimov E, Tanifuji G, Hashimi H, Logacheva MD, et al. Gene loss and error-prone RNA editing in the mitochondrion of Perkinsela, an endosymbiotic kinetoplastid. MBio. 2015;6:1–12. doi: 10.3391/mbi.2015.6.1.01. PubMed DOI PMC
Pusnik M, Schmidt O, Perry AJJ, Oeljeklaus S, Niemann M, Warscheid B, et al. Mitochondrial preprotein translocase of trypanosomatids has a bacterial origin. Curr Biol. 2011;21:1738–1743. doi: 10.1016/j.cub.2011.08.060. PubMed DOI
Zarsky V, Tachezy J, Dolezal P. Tom40 is likely common to all mitochondria. Curr Biol. 2012;22:R479–R481. doi: 10.1016/j.cub.2012.03.057. PubMed DOI
Pusnik M, Schmidt O, Perry AJ, Oeljeklaus S, Niemann M, Warscheid B, et al. Response to Zarsky et al. Curr Biol. 2012;22:R481–R482. doi: 10.1016/j.cub.2012.03.056. DOI
Mani J, Meisinger C, Schneider A. Peeping at TOMs — diverse entry gates to mitochondria provide insights into the evolution of eukaryotes. Mol Biol Evol. 2016;33:337–351. doi: 10.1093/molbev/msv219. PubMed DOI
Perez E, Lapaille M, Degand H, Cilibrasi L, Villavicencio-Queijeiro A, Morsomme P, et al. The mitochondrial respiratory chain of the secondary green alga Euglena shares many additional subunits with parasitic Trypanosomatidae. Mitochondrion. 2014;19:338–349. doi: 10.1016/j.mito.2014.02.001. PubMed DOI
Gomez-Silva B, Timko MP, Schiff JA. Chlorophyll biosynthesis from glutamate or 5-aminolevulinate in intact Euglena chloroplasts. Planta. 1985;165:12–22. doi: 10.1007/BF00392206. PubMed DOI
Kim D, Filtz MR, Proteau PJ. The methylerythritol phosphate pathway contributes to carotenoid but not phytol biosynthesis in Euglena. J Nat Prod. 2004;67:1067–1069. doi: 10.1021/np049892x. PubMed DOI
Eggimann G, Sweeney K, Bolt H, Rozatian N, Cobb S, Denny P. The role of phosphoglycans in the susceptibility of Leishmania mexicana to the temporin family of anti-microbial peptides. Molecules. 2015;20:2775–2785. doi: 10.3390/molecules20022775. PubMed DOI PMC
Saint-Guily A, Schantz ML, Schantz R. Structure and expression of a cDNA encoding a histone H2A from Euglena. Plant Mol Biol. 1994;24:941–948. doi: 10.1007/BF00014447. PubMed DOI
Vogel C, Marcotte EM. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet. 2012;13:227–232. doi: 10.1038/nrg3185. PubMed DOI PMC
Hutner SH, Zahalsky AC, Aaronson S, Baker H, Frank O. Culture media for Euglena. In: Methods in Cell Biology. Academic Press; 1966. pp. 217–228.
Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26:1367–1372. doi: 10.1038/nbt.1511. PubMed DOI
Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods. 2016;13:731–740. doi: 10.1038/nmeth.3901. PubMed DOI
Reynolds ES. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963;17:208–12 http://www.ncbi.nlm.nih.gov/pubmed/13986422. PubMed PMC
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017;14:417–419. doi: 10.1038/nmeth.4197. PubMed DOI PMC
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Obado S, Field MC, Chait BT, Rout MP. ‘High-efficiency isolation of nuclear envelope protein complexes from trypanosomes.’ Methods Mol Biol. 2016;1411:67–80. PubMed
Hornett EA, Wheat CW. Quantitative RNA-Seq analysis in non-model species: assessing transcriptome assemblies as a scaffold and the utility of evolutionary divergent genomic reference species. BMC Genomics. 2012;13:361. doi: 10.1186/1471-2164-13-361. PubMed DOI PMC
O’Neil ST, Emrich SJ. Assessing de novo transcriptome assembly metrics for consistency and utility. BMC Genomics. 2013;14:465. doi: 10.1186/1471-2164-14-465. PubMed DOI PMC
Kajitani R, Toshimoto K, Noguchi H, Toyoda A, Ogura Y, Okuno M, et al. Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads. Genome Res. 2014;24:1384–1395. doi: 10.1101/gr.170720.113. PubMed DOI PMC
Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics. 2011;27:578–579. doi: 10.1093/bioinformatics/btq683. PubMed DOI
Simpson JT, Durbin R. Efficient de novo assembly of large genomes using compressed data structures. Genome Res. 2012;22:549–556. doi: 10.1101/gr.126953.111. PubMed DOI PMC
Gnerre S, Maccallum I, Przybylski D, Ribeiro FJ, Burton JN, Walker BJ, et al. High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc Natl Acad Sci U S A. 2011;108:1513–1518. doi: 10.1073/pnas.1017351108. PubMed DOI PMC
Vurture GW, Sedlazeck FJ, Nattestad M, Underwood CJ, Fang H, Gurtowski J, et al. GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics. 2017;33:2202–2204. doi: 10.1093/bioinformatics/btx153. PubMed DOI PMC
Kopylova E, Noé L, Touzet H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28:3211–3217. doi: 10.1093/bioinformatics/bts611. PubMed DOI
Nikolenko SI, Korobeynikov AI, Alekseyev MA. BayesHammer: Bayesian clustering for error correction in single-cell sequencing. BMC Genomics. 2013;14(Suppl 1):S7. doi: 10.1186/1471-2164-14-S1-S7. PubMed DOI PMC
Crusoe MR, Alameldin HF, Awad S, Boucher E, Caldwell A, Cartwright R, et al. The khmer software package: enabling efficient nucleotide sequence analysis. F1000Research. 2015;4. doi:10.12688/f1000research.6924.1. PubMed PMC
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–359. doi: 10.1038/nmeth.1923. PubMed DOI PMC
Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014;9:e112963. doi: 10.1371/journal.pone.0112963. PubMed DOI PMC
Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44:D457–62. PubMed PMC
Tang S, Lomsadze A, Borodovsky M. Identification of protein coding regions in RNA transcripts. Nucleic Acids Res. 2015;43:e78. doi: 10.1093/nar/gkv227. PubMed DOI PMC
El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2018. 10.1093/nar/gky995. PubMed PMC
Conesa A, Götz S, García-gómez JM, Terol J, Talón M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21:3674–3676. doi: 10.1093/bioinformatics/bti610. PubMed DOI
Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45:D353–D361. doi: 10.1093/nar/gkw1092. PubMed DOI PMC
Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30:1236–1240. doi: 10.1093/bioinformatics/btu031. PubMed DOI PMC
Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA, McWilliam H, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23:2947–2948. doi: 10.1093/bioinformatics/btm404. PubMed DOI
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59:307–321. doi: 10.1093/sysbio/syq010. PubMed DOI
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC
Price MN, Dehal PS, Arkin AP. FastTree 2 - approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5:e9490. doi: 10.1371/journal.pone.0009490. PubMed DOI PMC
Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17:754–755. doi: 10.1093/bioinformatics/17.8.754. PubMed DOI
Stöver BC, Müller KF. TreeGraph 2: combining and visualizing evidence from different phylogenetic analyses. BMC Bioinformatics. 2010;11:7. doi: 10.1186/1471-2105-11-7. PubMed DOI PMC
Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA. Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics. 2012;28:464–469. doi: 10.1093/bioinformatics/btr703. PubMed DOI PMC
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–842. doi: 10.1093/bioinformatics/btq033. PubMed DOI PMC
Rice P, Longden I, Bleasby A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 2000;16:276–7 http://www.ncbi.nlm.nih.gov/pubmed/10827456. PubMed
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinforma Appl NOTE. 2009;25:1972–1973. doi: 10.1093/bioinformatics/btp348. PubMed DOI PMC
Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007;35(Web Server issue):W182–W185. doi: 10.1093/nar/gkm321. PubMed DOI PMC
Emanuelsson O, Brunak S, von Heijne G, Nielsen H. Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc. 2007;2:953–971. doi: 10.1038/nprot.2007.131. PubMed DOI
Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011;8:785–786. doi: 10.1038/nmeth.1701. PubMed DOI
Hiller K, Grote A, Scheer M, Münch R, Jahn D. PrediSi: prediction of signal peptides and their cleavage positions. Nucleic Acids Res. 2004;32(WEB SERVER ISS):W375–W379. doi: 10.1093/nar/gkh378. PubMed DOI PMC
Emanuelsson O, Nielsen H, von Heijne G. ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci. 1999;8:978–984. doi: 10.1110/ps.8.5.978. PubMed DOI PMC
Bruley C, Dupierris V, Salvi D, Rolland N, Ferro M. AT_CHLORO: a chloroplast protein database dedicated to sub-plastidial localization. Front Plant Sci. 2012;3:205. doi: 10.3389/fpls.2012.00205. PubMed DOI PMC
Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, et al. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 2011;39(Web Server issue):W316–W322. doi: 10.1093/nar/gkr483. PubMed DOI PMC
Visualisation of Euglena gracilis organelles and cytoskeleton using expansion microscopy
On the possibility of yet a third kinetochore system in the protist phylum Euglenozoa
A lineage-specific protein network at the trypanosome nuclear envelope
New plastids, old proteins: repeated endosymbiotic acquisitions in kareniacean dinoflagellates
Lessons from the deep: mechanisms behind diversification of eukaryotic protein complexes
Comparative analysis of mitochondrion-related organelles in anaerobic amoebozoans
A unique mRNA decapping complex in trypanosomes
Functional differentiation of Sec13 paralogues in the euglenozoan protists
Euglenozoan kleptoplasty illuminates the early evolution of photoendosymbiosis
Sending the message: specialized RNA export mechanisms in trypanosomes
Evolution and diversification of the nuclear envelope
Highly flexible metabolism of the marine euglenozoan protist Diplonema papillatum
Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses
A Uniquely Complex Mitochondrial Proteome from Euglena gracilis
Catalase and Ascorbate Peroxidase in Euglenozoan Protists