The Lipid Composition of Euglena gracilis Middle Plastid Membrane Resembles That of Primary Plastid Envelopes
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
33008834
PubMed Central
PMC7723114
DOI
10.1104/pp.20.00505
PII: pp.20.00505
Knihovny.cz E-zdroje
- MeSH
- buněčná membrána chemie MeSH
- chloroplasty chemie MeSH
- Euglena gracilis chemie MeSH
- genetická variace MeSH
- genotyp MeSH
- lipidy chemie MeSH
- mutace MeSH
- plastidy chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- lipidy MeSH
Euglena gracilis is a photosynthetic flagellate possessing chlorophyte-derived secondary plastids that are enclosed by only three enveloping membranes, unlike most secondary plastids, which are surrounded by four membranes. It has generally been assumed that the two innermost E. gracilis plastid envelopes originated from the primary plastid, while the outermost is of eukaryotic origin. It was suggested that nucleus-encoded plastid proteins pass through the middle and innermost plastid envelopes of E. gracilis by machinery homologous to the translocons of outer and inner chloroplast membranes, respectively. Although recent genomic, transcriptomic, and proteomic data proved the presence of a reduced form of the translocon of inner membrane, they failed to identify any outer-membrane translocon homologs, which raised the question of the origin of E. gracilis's middle plastid envelope. Here, we compared the lipid composition of whole cells of the pigmented E. gracilis strain Z and two bleached mutants that lack detectable plastid structures, W10BSmL and WgmZOflL We determined the lipid composition of E. gracilis strain Z mitochondria and plastids, and of plastid subfractions (thylakoids and envelopes), using HPLC high-resolution tandem mass spectrometry, thin-layer chromatography, and gas chromatography-flame ionization detection analytical techniques. Phosphoglycerolipids are the main structural lipids in mitochondria, while glycosyldiacylglycerols are the major structural lipids of plastids and also predominate in extracts of whole mixotrophic cells. Glycosyldiacylglycerols were detected in both bleached mutants, indicating that mutant cells retain some plastid remnants. Additionally, we discuss the origin of the E. gracilis middle plastid envelope based on the lipid composition of envelope fraction.
Department of Parasitology BIOCEV Faculty of Science Charles University 252 50 Vestec Czech Republic
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Zobrazit více v PubMed
Adl SM, Bass D, Lane CE, Lukeš J, Schoch CL, Smirnov A, Agatha S, Berney C, Brown MW, Burki F, et al. (2019) Revisions to the classification, nomenclature, and diversity of eukaryotes. J Eukaryot Microbiol 66: jeu.12691 PubMed PMC
Adl SM, Simpson AGB, Lane CE, Lukeš J, Bass D, Bowser SS, Brown MW, Burki F, Dunthorn M, Hampl V, et al. (2012) The revised classification of eukaryotes. J Eukaryot Microbiol 59: 429–493 PubMed PMC
Appelqvist L.(1968) Rapid methods of lipid extraction and fatty acid methyl ester preparation for seed and leaf tissue with special remarks on preventing the accumulation of lipid contaminants. Ark Kemi 28: 551–570
Awai K, Maréchal E, Block MA, Brun D, Masuda T, Shimada H, Takamiya K, Ohta H, Joyard J(2001) Two types of MGDG synthase genes, found widely in both 16:3 and 18:3 plants, differentially mediate galactolipid syntheses in photosynthetic and nonphotosynthetic tissues in Arabidopsis thaliana. Proc Natl Acad Sci USA 98: 10960–10965 PubMed PMC
Bennett MS, Triemer RE(2015) Chloroplast genome evolution in the Euglenaceae. J Eukaryot Microbiol 62: 773–785 PubMed
Bennett MS, Wiegert KE, Triemer RE(2014) Characterization of Euglenaformis gen. nov. and the chloroplast genome of Euglenaformis [Euglena] proxima (Euglenophyta). Phycologia 53: 66–73
Block MA, Dorne AJ, Joyard J, Douce R(1983) Preparation and characterization of membrane fractions enriched in outer and inner envelope membranes from spinach chloroplasts. I. Electrophoretic and immunochemical analyses. J Biol Chem 258: 13273–13280 PubMed
Block MA, Douce R, Joyard J, Rolland N(2007) Chloroplast envelope membranes: A dynamic interface between plastids and the cytosol. Photosynth Res 92: 225–244 PubMed PMC
Cavalier-Smith T.(1999) Principles of protein and lipid targeting in secondary symbiogenesis: Euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J Eukaryot Microbiol 46: 347–366 PubMed
Cavalier-Smith T.(2003) Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae). Philos Trans R Soc Lond B Biol Sci 358: 109–134 PubMed PMC
Constantopoulos G, Bloch K(1967) Effect of light intensity on the lipid composition of Euglena gracilis. J Biol Chem 242: 3538–3542
Craig EM, Dahmen JL, Leblond JD(2015) Temperature modulation and the presence of C20 fatty acids in mono- and digalactosyldiacylglycerol of Euglena gracilis and Lepocinclis acus: A modern interpretation of euglenid galactolipids using positive-ion electrospray ionization/mass spectrometry. Phycol Res 63: 231–238
Cramer M, Myers J(1952) Growth and photosynthetic characteristics of Euglena gracilis. Arch Mikrobiol 17: 384–402
Dabbagh N, Preisfeld A(2017) The chloroplast genome of Euglena mutabilis: Cluster arrangement, intron analysis, and intrageneric trends. J Eukaryot Microbiol 64: 31–44 PubMed
Dean JM, Lodhi IJ(2018) Structural and functional roles of ether lipids. Protein Cell 9: 196–206 PubMed PMC
Demé B, Cataye C, Block MA, Maréchal E, Jouhet J(2014) Contribution of galactoglycerolipids to the 3-dimensional architecture of thylakoids. FASEB J 28: 3373–3383 PubMed
Dobáková E, Flegontov P, Skalický T, Lukeš J(2015) Unexpectedly streamlined mitochondrial genome of the euglenozoan Euglena gracilis. Genome Biol Evol 7: 3358–3367 PubMed PMC
Dorne AJ, Joyard J, Block MA, Douce R(1985) Localization of phosphatidylcholine in outer envelope membrane of spinach chloroplasts. J Cell Biol 100: 1690–1697 PubMed PMC
Douce R, Joyard J(1980) Structure and function of the plastid envelope. Adv Bot Res 7: 1–116
Durnford DG, Gray MW(2006) Analysis of Euglena gracilis plastid-targeted proteins reveals different classes of transit sequences. Eukaryot Cell 5: 2079–2091 PubMed PMC
Ebenezer TE, Zoltner M, Burrell A, Nenarokova A, Novák Vanclová AMG, Prasad B, Soukal P, Santana-Molina C, O’Neill E, Nankissoor NN, et al. (2019) Transcriptome, proteome and draft genome of Euglena gracilis. BMC Biol 17: 11. PubMed PMC
Folch J, Lees M, Sloane Stanley GH(1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226: 497–509 PubMed
Frentzen M.(2004) Phosphatidylglycerol and sulfoquinovosyldiacylglycerol: Anionic membrane lipids and phosphate regulation. Curr Opin Plant Biol 7: 270–276 PubMed
Froehlich JE, Benning C, Dörmann P(2001) The digalactosyldiacylglycerol (DGDG) synthase DGD1 is inserted into the outer envelope membrane of chloroplasts in a manner independent of the general import pathway and does not depend on direct interaction with monogalactosyldiacylglycerol synthase for DGDG biosynthesis. J Biol Chem 276: 31806–31812 PubMed
Füssy Z, Záhonová K, Tomčala A, Krajčovič J, Yurchenko V, Oborník M, Eliáš M(2020) The cryptic plastid of Euglena longa defines a new type of nonphotosynthetic plastid organelle. mSphere 5: e00675-20 PubMed PMC
Garg ML, Haerdi JC(1993) The biosynthesis and functions of plasmalogens. J Clin Biochem Nutr 14: 71–82
Gibbs SP.(1978) The chloroplasts of Euglena may have evolved from symbiotic green algae. Can J Bot 56: 2883–2889
Gockel G, Hachtel W(2000) Complete gene map of the plastid genome of the nonphotosynthetic euglenoid flagellate Astasia longa. Protist 151: 347–351 PubMed
Gounaris K, Barber J(1983) Monogalactosyldiacylglycerol: The most abundant polar lipid in nature. Trends Biochem Sci 8: 378–381
Harwood JL.(1998) Membrane lipids in algae In Siegenthaler PA, and Murata N, eds, Lipids in Photosynthesis: Structure, Function and Genetics. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 55–64
Helmy FM, Hack MH, Yaeger RG(1967) Comparative lipid biochemistry. VI. Lipids of green and etiolated Euglena gracilis and of Blastocrithidia culicis. Comp Biochem Physiol 23: 565–567 PubMed
Horvath SE, Daum G(2013) Lipids of mitochondria. Prog Lipid Res 52: 590–614 PubMed
Hrdá Š, Fousek J, Szabová J, Hampl V, Vlček Č(2012) The plastid genome of Eutreptiella provides a window into the process of secondary endosymbiosis of plastid in euglenids. PLoS ONE 7: e33746. PubMed PMC
Hsu FF, Turk J(2007) Differentiation of 1-O-alk-1′-enyl-2-acyl and 1-O-alkyl-2-acyl glycerophospholipids by multiple-stage linear ion-trap mass spectrometry with electrospray ionization. J Am Soc Mass Spectrom 18: 2065–2073 PubMed PMC
Hsu FF, Turk J, Rhoades ER, Russell DG, Shi Y, Groisman EA(2005) Structural characterization of cardiolipin by tandem quadrupole and multiple-stage quadrupole ion-trap mass spectrometry with electrospray ionization. J Am Soc Mass Spectrom 16: 491–504 PubMed
Hulanicka D, Erwin J, Bloch K(1964) Lipid metabolism of Euglena gracilis. J Biol Chem 239: 2778–2787 PubMed
Inagaki J, Fujita Y, Hase T, Yamamoto Y(2000) Protein translocation within chloroplast is similar in Euglena and higher plants. Biochem Biophys Res Commun 277: 436–442 PubMed
Jouhet J, Maréchal E, Baldan B, Bligny R, Joyard J, Block MA(2004) Phosphate deprivation induces transfer of DGDG galactolipid from chloroplast to mitochondria. J Cell Biol 167: 863–874 PubMed PMC
Kivic PA, Vesk M(1974) An electron microscope search for plastids in bleached Euglena gracilis and in Astasia longa. Can J Bot 52: 695–699
LaBrant E, Barnes AC, Roston RL(2018) Lipid transport required to make lipids of photosynthetic membranes. Photosynth Res 138: 345–360 PubMed
Lefort‐Tran M.(1981) The triple layered organization of the Euglena chloroplast envelope (signification and functions). Ber Dtsch Bot Ges 94: 463–476
Matson RS, Fei M, Chang SB(1970) Comparative studies of biosynthesis of galactolipids in Euglena gracilis strain Z. Plant Physiol 45: 531–532 PubMed PMC
Mendiola-Morgenthaler L, Eichenberger W, Boschetti A(1985) Isolation of chloroplast envelopes from Chlamydomonas: Lipid and polypeptide composition. Plant Sci 41: 97–104
Meneses P, Navarro JN, Glonek T(1993) Algal phospholipids by 31P NMR: Comparing isopropanol pretreatment with simple chloroform/methanol extraction. Int J Biochem 25: 903–910 PubMed
Miège C, Maréchal E, Shimojima M, Awai K, Block MA, Ohta H, Takamiya K, Douce R, Joyard J(1999) Biochemical and topological properties of type A MGDG synthase, a spinach chloroplast envelope enzyme catalyzing the synthesis of both prokaryotic and eukaryotic MGDG. Eur J Biochem 265: 990–1001 PubMed
Munn NJ, Arnio E, Liu D, Zoeller RA, Liscum L(2003) Deficiency in ethanolamine plasmalogen leads to altered cholesterol transport. J Lipid Res 44: 182–192 PubMed
Nakano Y, Urade Y, Urade R, Kitaoka S(1987) Isolation, purification, and characterization of the pellicle of Euglena gracilis z. J Biochem 102: 1053–1063 PubMed
Napier JA, Barnes SA(1995) The isolation of intact chloroplasts. Methods Mol Biol 49: 355–360 PubMed
Novák Vanclová AMG, Zoltner M, Kelly S, Soukal P, Záhonová K, Füssy Z, Ebenezer TE, Lacová Dobáková E, Eliáš M, et al. (2020) Metabolic quirks and the colourful history of the Euglena gracilis secondary plastid. New Phytol 225: 1578–1592 PubMed
Ogawa T, Furuhashi T, Okazawa A, Nakai R, Nakazawa M, Kind T, Fiehn O, Kanaya S, Arita M, Ohta D(2014) Exploration of polar lipid accumulation profiles in Euglena gracilis using LipidBlast, an MS/MS spectral library constructed in silico. Biosci Biotechnol Biochem 78: 14–18 PubMed
Osafune T, Schiff JA(1983) W10BSmL, a mutant of Euglena gracilis var. bacillaris lacking plastids. Exp Cell Res 148: 530–535 PubMed
Peltier JB, Friso G, Kalume DE, Roepstorff P, Nilsson F, Adamska I, van Wijk KJ(2000) Proteomics of the chloroplast: Systematic identification and targeting analysis of lumenal and peripheral thylakoid proteins. Plant Cell 12: 319–341 PubMed PMC
Petroutsos D, Amiar S, Abida H, Dolch LJ, Bastien O, Rébeillé F, Jouhet J, Falconet D, Block MA, McFadden GI, et al. (2014) Evolution of galactoglycerolipid biosynthetic pathways: From cyanobacteria to primary plastids and from primary to secondary plastids. Prog Lipid Res 54: 68–85 PubMed
Pohl P, Wagner H(1972) Control of fatty acid and lipid biosynthesis in Euglena gracilis by ammonia, light and DCMU. Z Naturforsch B 27: 53–61 PubMed
Polónyi J, Ebringer L, Dobias J, Krajčovič J(1998) Giant mitochondria in chloroplast-deprived Euglena gracilis late after N-succinimidylofloxacin treatment. Folia Microbiol (Praha) 43: 661–666
Pombert JF, James ER, Janouškovec J, Keeling PJ(2012) Evidence for transitional stages in the evolution of euglenid group II introns and twintrons in the Monomorphina aenigmatica plastid genome. PLoS ONE 7: e53433. PubMed PMC
Regnault A, Chervin D, Chammai A, Piton F, Calvayrac R, Mazliak P(1995) Lipid composition of Euglena gracilis in relation to carbon-nitrogen balance. Phytochemistry 40: 725–773
Rosenberg A, Gouaux J, Milch P(1966) Monogalactosyl and digalactosyl diglycerides from heterotrophic, hetero-autotrophic, and photobiotic Euglena gracilis. J Lipid Res 7: 733–738 PubMed
Rosenberg A, Pecker M(1964) Lipid alterations in Euglena gracilis cells during light-induced greening. Biochemistry 3: 254–258 PubMed
Saidha T, Schiff JA(1989) The role of mitochondria in sulfolipid biosynthesis by Euglena chloroplasts. Biochim Biophys Acta Lipids Lipid Metab 1001: 268–273
Sanda S, Leustek T, Theisen MJ, Garavito RM, Benning C(2001) Recombinant Arabidopsis SQD1 converts UDP-glucose and sulfite to the sulfolipid head group precursor UDP-sulfoquinovose in vitro. J Biol Chem 276: 3941–3946 PubMed
Schnepf E, Deichgräber G(1984) “Myzocytosis”, a kind of endocytosis with implications to compartmentation in endosymbiosis: Observations in Paulsenella (Dinophyta). Naturwissenschaften 71: 218–219
Schwarzhans JP, Cholewa D, Grimm P, Beshay U, Risse JM, Friehs K, Flaschel E(2015) Dependency of the fatty acid composition of Euglena gracilis on growth phase and culture conditions. J Appl Phycol 27: 1389–1399
Shibata S, Arimura SI, Ishikawa T, Awai K(2018) Alterations of membrane lipid content correlated with chloroplast and mitochondria development in Euglena gracilis. Front Plant Sci 9: 370. PubMed PMC
Simm S, Papasotiriou DG, Ibrahim M, Leisegang MS, Müller B, Schorge T, Karas M, Mirus O, Sommer MS, Schleiff E(2013) Defining the core proteome of the chloroplast envelope membranes. Front Plant Sci 4: 11. PubMed PMC
Sláviková S, Vacula R, Fang Z, Ehara T, Osafune T, Schwartzbach SD(2005) Homologous and heterologous reconstitution of Golgi to chloroplast transport and protein import into the complex chloroplasts of Euglena. J Cell Sci 118: 1651–1661 PubMed
Sulli C, Fang Z, Muchhal U, Schwartzbach SD(1999) Topology of Euglena chloroplast protein precursors within endoplasmic reticulum to Golgi to chloroplast transport vesicles. J Biol Chem 274: 457–463 PubMed
Sulli C, Schwartzbach SD(1995) The polyprotein precursor to the Euglena light-harvesting chlorophyll a/b-binding protein is transported to the Golgi apparatus prior to chloroplast import and polyprotein processing. J Biol Chem 270: 13084–13090 PubMed
Sulli C, Schwartzbach SD(1996) A soluble protein is imported into Euglena chloroplasts as a membrane-bound precursor. Plant Cell 8: 43–53 PubMed PMC
Thompson GA Jr., Nozawa Y(1972) Lipids of protozoa: Phospholipids and neutral lipids. Annu Rev Microbiol 26: 249–278 PubMed
Tomčala A, Kyselová V, Schneedorferová I, Opekarová I, Moos M, Urajová P, Kručinská J, Oborník M(2017) Separation and identification of lipids in the photosynthetic cousins of Apicomplexa Chromera velia and Vitrella brassicaformis. J Sep Sci 40: 3402–3413 PubMed
Turmel M, Gagnon MC, O’Kelly CJ, Otis C, Lemieux C(2009) The chloroplast genomes of the green algae Pyramimonas, Monomastix, and Pycnococcus shed new light on the evolutionary history of prasinophytes and the origin of the secondary chloroplasts of euglenids. Mol Biol Evol 26: 631–648 PubMed
Vacula R, Sláviková S, Schwartzbach SD(2007) Protein trafficking to the complex chloroplasts of Euglena. Methods Mol Biol 390: 219–237 PubMed
van Dooren GG, Schwartzbach SD, Osafune T, McFadden GI(2001) Translocation of proteins across the multiple membranes of complex plastids. Biochim Biophys Acta 1541: 34–53 PubMed
Wanders RJ, Brites P(2010) Biosynthesis of ether-phospholipids including plasmalogens, peroxisomes and human disease: New insights into an old problem. Clin Lipidol 5: 379–386
Wang Y, Seppänen-Laakso T, Rischer H, Wiebe MG(2018) Euglena gracilis growth and cell composition under different temperature, light and trophic conditions. PLoS ONE 13: e0195329. PubMed PMC
Wiegert KE, Bennett MS, Triemer RE(2012) Evolution of the chloroplast genome in photosynthetic euglenoids: A comparison of Eutreptia viridis and Euglena gracilis (Euglenophyta). Protist 163: 832–843 PubMed
Wiegert KE, Bennett MS, Triemer RE(2013) Tracing patterns of chloroplast evolution in euglenoids: Contributions from Colacium vesiculosum and Strombomonas acuminata (Euglenophyta). J Eukaryot Microbiol 60: 214–221 PubMed
Yoshida Y, Tomiyama T, Maruta T, Tomita M, Ishikawa T, Arakawa K(2016) De novo assembly and comparative transcriptome analysis of Euglena gracilis in response to anaerobic conditions. BMC Genomics 17: 182. PubMed PMC
Yu B, Xu C, Benning C(2002) Arabidopsis disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphate-limited growth. Proc Natl Acad Sci USA 99: 5732–5737 PubMed PMC
Záhonová K, Füssy Z, Birčák E, Novák Vanclová AMG, Klimeš V, Vesteg M, Krajčovič J, Oborník M, Eliáš M(2018) Peculiar features of the plastids of the colourless alga Euglena longa and photosynthetic euglenophytes unveiled by transcriptome analyses. Sci Rep 8: 17012. PubMed PMC
Zahradníčková H, Tomčala A, Berková P, Schneedorferová I, Okrouhlík J, Šimek P, Hodková M(2014) Cost effective, robust, and reliable coupled separation techniques for the identification and quantification of phospholipids in complex biological matrices: Application to insects. J Sep Sci 37: 2062–2068 PubMed