Metabolic quirks and the colourful history of the Euglena gracilis secondary plastid

. 2020 Feb ; 225 (4) : 1578-1592. [epub] 20191104

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31580486

Grantová podpora
P009018/1 Medical Research Council - United Kingdom

Euglena spp. are phototrophic flagellates with considerable ecological presence and impact. Euglena gracilis harbours secondary green plastids, but an incompletely characterised proteome precludes accurate understanding of both plastid function and evolutionary history. Using subcellular fractionation, an improved sequence database and MS we determined the composition, evolutionary relationships and hence predicted functions of the E. gracilis plastid proteome. We confidently identified 1345 distinct plastid protein groups and found that at least 100 proteins represent horizontal acquisitions from organisms other than green algae or prokaryotes. Metabolic reconstruction confirmed previously studied/predicted enzymes/pathways and provided evidence for multiple unusual features, including uncoupling of carotenoid and phytol metabolism, a limited role in amino acid metabolism, and dual sets of the SUF pathway for FeS cluster assembly, one of which was acquired by lateral gene transfer from Chlamydiae. Plastid paralogues of trafficking-associated proteins potentially mediating fusion of transport vesicles with the outermost plastid membrane were identified, together with derlin-related proteins, potential translocases across the middle membrane, and an extremely simplified TIC complex. The Euglena plastid, as the product of many genomes, combines novel and conserved features of metabolism and transport.

Zobrazit více v PubMed

Altschul S, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25: 3389-3402.

Archibald JM. 2015. Genomic perspectives on the birth and spread of plastids. Proceedings of the National Academy of Sciences, USA 112: 1421374112.

Balsera M, Soll J, Buchanan BB. 2010. Redox extends its regulatory reach to chloroplast protein import. Trends in Plant Science 15: 515-21.

Barsanti L, Vismara R, Passarelli V, Gualtieri P. 2001. Paramylon (β-1,3-glucan) content in wild type and WZSL mutant of Euglena gracilis. Effects of growth conditions. Journal of Applied Phycology 13: 59-65.

Becker B, Hoef-Emden K, Melkonian M. 2008. Chlamydial genes shed light on the evolution of photoautotrophic eukaryotes. BMC Evolutionary Biology 8: 203.

Blee E, Schantz R. 1978. Biosynthesis of galactolipids in Euglena gracilis: I, Incorporation of UDP galactose into galactosyldiglycerides. Plant Science Letters 13: 247-255.

Bölter B, Soll J. 2016. Once upon a time - chloroplast protein import research from infancy to future challenges. Molecular Plant 9: 798-812.

Boucher MJ, Ghosh S, Zhang L, Lal A, Jang SW, Ju A, Zhang S, Wang X, Ralph SA, Zou J et al. 2018. Integrative proteomics and bioinformatic prediction enable a high-confidence apicoplast proteome in malaria parasites. PLoS Biology 16: e2005895.

Bruce BD. 2000. Chloroplast transit peptides: structure, function and evolution. Trends in Cell Biology 10: 440-447.

Burki F, Imanian B, Hehenberger E, Hirakawa Y, Maruyama S, Keeling PJ. 2014. Endosymbiotic gene transfer in tertiary plastid-containing dinoflagellates. Eukaryotic Cell 13: 246-255.

Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. 2009. TrimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25: 1972-1973.

Cenci U, Ducatez M, Kadouche D, Colleoni C, Ball SG. 2016. Was the chlamydial adaptative strategy to tryptophan starvation an early determinant of plastid endosymbiosis? Frontiers in Cellular and Infection Microbiology 6: 67.

Cenci U, Qiu H, Pillonel T, Cardol P, Remacle C, Colleoni C, Kadouche D, Chabi M, Greub G, Bhattacharya D et al. 2018. Host-pathogen biotic interactions shaped vitamin K metabolism in Archaeplastida. Scientific Reports 8: 15243.

Cox J, Mann M. 2008. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nature Biotechnology 26: 1367-1372.

Davis B, Merrett MJ. 1973. Malate dehydrogenase isoenzymes in division synchronized cultures of Euglena. Plant Physiology 51.

Dobáková E, Flegontov P, Skalický T, Lukeš J. 2015. Unexpectedly streamlined mitochondrial genome of the euglenozoan Euglena gracilis. Genome Biology and Evolution 7: 3358-3367.

Doetsch NA, Favreau MR, Kuscuoglu N, Thompson MD, Hallick RB. 2001. Chloroplast transformation in Euglena gracilis: splicing of a group III twintron transcribed from a transgenic psbK operon. Current Genetics 39: 49-60.

Doolittle WF. 1998. You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends in Genetics 14: 307-311.

van Dooren GG, Striepen B. 2013. The algal past and parasite present of the apicoplast. Annual Review of Microbiology 67: 271-289.

Vom Dorp K, Hölzl G, Plohmann C, Eisenhut M, Abraham M, Weber APM, Hanson AD, Dörmann P. 2015. Remobilization of phytol from chlorophyll degradation is essential for tocopherol synthesis and growth of Arabidopsis. Plant Cell 27: 2846-2859.

Dorrell RG, Howe CJ. 2015. Integration of plastids with their hosts: lessons learned from dinoflagellates. Proceedings of the National Academy of Sciences, USA 112: 10247-54.

Durnford DG, Gray MW. 2006. Analysis of Euglena gracilis plastid-targeted proteins reveals different classes of transit sequences. Eukaryotic Cell 5: 2079-2091.

Ebenezer TE, Zoltner M, Burrell A, Nenarokova A, Novák Vanclová AMG, Prasad B, Soukal P, Santana-Molina C, O’Neill E, Nankissoor NN et al. 2019. Transcriptome, proteome and draft genome of Euglena gracilis. BMC Biology 17: 11.

Emanuelsson O, Nielsen H, von Heijne G. 1999. ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Science: A Publication of the Protein Society 8: 978-984.

Emms DM, Kelly S. 2015. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biology 16: 157.

Emonds-Alt B, Coosemans N, Gerards T, Remacle C, Cardol P. 2017. Isolation and characterization of mutants corresponding to the MENA, MENB, MENC and MENE enzymatic steps of 5′-monohydroxyphylloquinone biosynthesis in Chlamydomonas reinhardtii. The Plant Journal 89: 141-154.

Facchinelli F, Colleoni C, Ball SG, Weber APM. 2013. Chlamydia, cyanobiont, or host: who was on top in the ménage à trois? Trends in Plant Science 18: 673-9.

Felsner G, Sommer MS, Gruenheit N, Hempel F, Moog D, Zauner S, Martin W, Maier UG. 2011. ERAD components in organisms with complex red plastids suggest recruitment of a preexisting protein transport pathway for the periplastid membrane. Genome Biology and Evolution 3: 140-150.

Felsner G, Sommer MS, Maier UG. 2010. The physical and functional borders of transit peptide-like sequences in secondary endosymbionts. BMC Plant Biology 10: 223.

Geimer S, Belicová A, Legen J, Sláviková S, Herrmann RG, Krajcovic J. 2009. Transcriptome analysis of the Euglena gracilis plastid chromosome. Current Genetics 55: 425-438.

Gomez-Silva B, Timko MP, Schiff JA. 1985. Chlorophyll biosynthesis from glutamate or 5-aminolevulinate in intact Euglena chloroplasts. Planta 165: 12-22.

Gould SB, Maier U-G, Martin WF. 2015. Protein import and the origin of red complex plastids. Current Biology 25: R515-R521.

Grosche C, Diehl A, Rensing SA, Maier UG. 2018. Iron-sulfur cluster biosynthesis in algae with complex plastids. Genome Biology and Evolution 10: 2061-2071.

Gumińska N, Płecha M, Zakryś B, Milanowski R. 2018. Order of removal of conventional and nonconventional introns from nuclear transcripts of Euglena gracilis. PLoS Genetics 14: e1007761.

Hall RP, Schoenborn HW. 1939. The question of autotrophic nutrition in Euglena gracilis. Physiological Zoology. 12: 76-84.

Hallick RB, Hong L, Drager RG, Favreau MR, Monfort A, Orsat B, Spielmann A, Stutz E. 1993. Complete sequence of Euglena gracilis chloroplast DNA. Nucleic Acids Research 21: 3537-3544.

Hempel F, Bullmann L, Lau J, Zauner S, Maier UG. 2009. ERAD-derived preprotein transport across the second outermost plastid membrane of diatoms. Molecular Biology and Evolution 26: 1781-1790.

Heyes DJ, Neil HunterC. 2009. Biosynthesis of chlorophyll and bacteriochlorophyll. In: Warren MJ, Smith AG, eds. Tetrapyrroles. New York, NY: Springer New York, 235-249.

Hiller K, Grote A, Scheer M, Münch R, Jahn D. 2004. PrediSi: Prediction of signal peptides and their cleavage positions. Nucleic Acids Research 32: 375-379.

Hopkins JF, Spencer DF, Laboissiere S, Neilson JAD, Eveleigh RJM, Durnford DG, Gray MW, Archibald JM. 2012. Proteomics reveals plastid- and periplastid-targeted proteins in the chlorarachniophyte alga Bigelowiella natans. Genome Biology and Evolution 4: 1391-1406.

Howe CJ, Schlarb-Ridley BG, Wastl J, Purton S, Bendall DS. 2006. The novel cytochrome c6 of chloroplasts: a case of evolutionary bricolage? Journal of Experimental Botany 57: 13-22.

Huang M, Friso G, Nishimura K, Qu X, Olinares PDB, Majeran W, Sun Q, van Wijk KJ. 2013. Construction of plastid reference proteomes for maize and Arabidopsis and evaluation of their orthologous relationships; the concept of orthoproteomics. Journal of Proteome Research 12: 491-504.

Inagaki J, Fujita Y, Hase T, Yamamoto Y. 2000. Protein translocation within chloroplast is similar in Euglena and higher plants. Biochemical and Biophysical Research Communications 277: 436-442.

Inwongwan S, Kruger NJ, Ratcliffe RG, O’Neill EC. 2019. Euglena central metabolic pathways and their subcellular locations. Metabolites 9: 115.

Jackson C, Knoll AH, Chan CX, Verbruggen H. 2018. Plastid phylogenomics with broad taxon sampling further elucidates the distinct evolutionary origins and timing of secondary green plastids. Scientific Reports 8: 1523.

Jenkins KP, Hong L, Hallick RB. 1995. Alternative splicing of the Euglena gracilis chloroplast roaA transcript. RNA (New York, N.Y.) 1: 624-633.

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772-780.

Kikuchi S, Oishi M, Hirabayashi Y, Lee DW, Hwang I, Nakai M. 2009. A 1-megadalton translocation complex containing Tic20 and Tic21 mediates chloroplast protein import at the inner envelope membrane. Plant Cell 21: 1781-1797.

Kim D, Filtz MR, Proteau PJ. 2004. The methylerythritol phosphate pathway contributes to carotenoid but not phytol biosynthesis in Euglena gracilis. Journal of Natural Products 67: 1067-1069.

Kořený L, Oborník M. 2011. Sequence evidence for the presence of two tetrapyrrole pathways in Euglena gracilis. Genome Biology and Evolution 3: 359-364.

Koziol AG, Durnford DG. 2008. Euglena light-harvesting complexes are encoded by multifarious polyprotein mRNAs that evolve in concert. Molecular Biology and Evolution 25: 92-100.

Krinsky NI, Goldsmith TH. 1960. The carotenoids of the flagellated alga, Euglena gracilis. Archives of Biochemistry and Biophysics 91: 271-279.

Kuo RC, Zhang H, Zhuang Y, Hannick L, Lin S. 2013. Transcriptomic study reveals widespread spliced leader trans-splicing, short 5′-UTRs and potential complex carbon fixation mechanisms in the euglenoid alga Eutreptiella sp. PLoS ONE 8: e60826.

Kyte J, Doolittle RF. 1982. A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology 157: 105-132.

Lakey B, Triemer R. 2017. The tetrapyrrole synthesis pathway as a model of horizontal gene transfer in euglenoids. Journal of Phycology 53: 198-217.

Langemeyer L, Fröhlich F, Ungermann C. 2018. Rab GTPase function in endosome and lysosome biogenesis. Trends in Cell Biology 28: 957-970.

Larkum AWD, Lockhart PJ, Howe CJ. 2007. Shopping for plastids. Trends in Plant Science 12: 189-195.

Lau JB, Stork S, Moog D, Schulz J, Maier UG. 2016. Protein-protein interactions indicate composition of a 480 kDa SELMA complex in the second outermost membrane of diatom complex plastids. Molecular Microbiology 100: 76-89.

Leander BS. 2004. Did trypanosomatid parasites have photosynthetic ancestors? Trends in Microbiology 12: 251-258.

Leander BS, Lax G, Karnkowska A, Simpson AGB. 2017. Euglenida. In: Archibald J, Simpson A, Slamovits C, eds. Handbook of the protists. Cham: Springer International Publishing, 1-42.

Leander BS, Triemer RE, Farmer MA. 2001. Character evolution in heterotrophic euglenids. European Journal of Protistology 37: 337-356.

Lee DW, Yoo Y-J, Razzak MA, Hwang I. 2018. Prolines in transit peptides are crucial for efficient preprotein translocation into chloroplasts. Plant Physiology 176: 663-677.

Li H, TengY-S. 2013. Transit peptide design and plastid import regulation. Trends in Plant Science 18: 360-366.

Lin Y-P, Wu M-C, Charng Y-Y. 2016. Identification of a chlorophyll dephytylase involved in chlorophyll turnover in Arabidopsis. Plant Cell 28: 2974-2990.

Lohr M, Schwender J, Polle JEW. 2012. Isoprenoid biosynthesis in eukaryotic phototrophs: a spotlight on algae. Plant Science 185-186: 9-22.

Lu Y. 2018. Assembly and transfer of iron-sulfur clusters in the plastid. Frontiers in Plant Science 9: 336.

MacArthur MW, Thornton JM. 1991. Influence of proline residues on protein conformation. Journal of Molecular Biology 218: 397-412.

Maier UG, Zauner S, Hempel F. 2015. Protein import into complex plastids: cellular organization of higher complexity. European Journal of Cell Biology 94: 340-348.

Marin B, Nowack ECM, Melkonian M. 2005. A plastid in the making: evidence for a second primary endosymbiosis. Protist 156: 425-432.

Markunas CM, Triemer RE. 2016. Evolutionary history of the enzymes involved in the Calvin-Benson cycle in euglenids. Journal of Eukaryotic Microbiology 63: 326-339.

Maruyama S, Suzaki T, Weber APM, Archibald JM, Nozaki H. 2011. Eukaryote-to-eukaryote gene transfer gives rise to genome mosaicism in euglenids. BMC Evolutionary Biology 11: 105.

Mateášiková-Kováčová B, Vesteg M, Drahovská H, Záhonová K, Vacula R, Krajčovič J. 2012. Nucleus-encoded mRNAs for chloroplast proteins GapA, PetA, and PsbO are trans-spliced in the flagellate Euglena gracilis irrespective of light and plastid function. Journal of Eukaryotic Microbiology 59: 651-653.

Matson RS, Meifei Chang SB. 1970. Comparative studies of biosynthesis of galactolipids in Euglena gracilis strain Z. Plant Physiology 45: 531-532.

Matsumoto T, Shinozaki F, Chikuni T, Yabuki A, Takishita K, Kawachi M, Nakayama T, Inouye I, Hashimoto T, Inagaki Y. 2011. Green-colored plastids in the dinoflagellate genus Lepidodinium are of core chlorophyte origin. Protist 162: 268-276.

Minge MA, Shalchian-Tabrizi K, Tørresen OK, Takishita K, Probert I, Inagaki Y, Klaveness D, Jakobsen KS. 2010. A phylogenetic mosaic plastid proteome and unusual plastid-targeting signals in the green-colored dinoflagellate Lepidodinium chlorophorum. BMC Evolutionary Biology 10: 191.

Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. 2007. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Research 35: W182-W185.

Moustafa A, Reyes-Prieto A, Bhattacharya D. 2008. Chlamydiae has contributed at least 55 genes to Plantae with predominantly plastid functions. PLoS ONE 3: e2205.

Muchhal US, Schwartzbach SD. 1994. Characterization of the unique intron-exon junctions of Euglena gene(s) encoding the polyprotein precursor to the light-harvesting chlorophyll a/b binding protein of photosystem II. Nucleic Acids Research 22: 5737-44.

Nakai M. 2018. New perspectives on chloroplast protein import. Plant and Cell Physiology 59: 1111-1119.

Nawrocki WJ, Tourasse NJ, Taly A, Rappaport F, Wollman F-A. 2015. The plastid terminal oxidase: Its elusive function points to multiple contributions to plastid physiology. Annual Review of Plant Biology 66: 49-74.

Nowack ECM, Price DC, Bhattacharya D, Singer A, Melkonian M, Grossman AR. 2016. Gene transfers from diverse bacteria compensate for reductive genome evolution in the chromatophore of Paulinella chromatophora. Proceedings of the National Academy of Sciences, USA 113: 12214-12219.

O’Neill EC, Trick M, Hill L, Rejzek M, Dusi RG, Hamilton CJ, Zimba PV, Henrissat B, Field RA. 2015. The transcriptome of Euglena gracilis reveals unexpected metabolic capabilities for carbohydrate and natural product biochemistry. Molecular BioSystems 11: 2808-2820.

Patron NJ, Waller RF. 2007. Transit peptide diversity and divergence: a global analysis of plastid targeting signals. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology 29: 1048-58.

Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ, Inuganti A, Griss J, Mayer G, Eisenacher M et al. 2019. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Research 47: D442-D450.

Petersen TN, Brunak S, von Heijne G, Nielsen H. 2011. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods 8: 785-786.

Ponce-Toledo RI, Moreira D, López-García P, Deschamps P, Ruiz-Trillo I. 2018. Secondary plastids of euglenids and chlorarachniophytes function with a mix of genes of red and green algal ancestry. Molecular Biology and Evolution 35: 2198-2204.

Ponce-Toledo RI, López-García P, Moreira D. 2019. Horizontal and endosymbiotic gene transfer in early plastid evolution. New Phytologist 224: 618-624.

R Core Team. 2013. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

Reinbothe C, Ortel B, Parthier B, Reinbothe S. 1994. Cytosolic and plastid forms of 5-enolpyruvylshikimate-3-phosphate synthase in Euglena gracilis are differentially expressed during light-induced chloroplast development. Molecular & General Genetics 245: 616-22.

Saidha T, Na SQ, Li JY, Schiff JA. 1988. A sulphate metabolizing centre in Euglena mitochondria. Biochemical Journal 253: 533-539.

Saidha T, Schiff JA. 1989. The role of mitochondria in sulfolipid biosynthesis by Euglena chloroplasts. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism 1001: 268-273.

Saldarriaga JF, Taylor FJR, Keeling PJ, Cavalier-Smith T. 2001. Dinoflagellate nuclear SSU rRNA phylogeny suggests multiple plastid losses and replacements. Journal of Molecular Evolution 53: 204-213.

Seeger JW, Bentley R. 1991. Phylloquinone (Vitamin K1) biosynthesis in Euglena gracilis strain Z. Phytochemistry 30: 3585-3589.

Sheiner L, Striepen B. 2013. Protein sorting in complex plastids. Biochimica et Biophysica Acta - Molecular Cell Research 1833: 352-359.

Shibata S, Arimura S, Ishikawa T, Awai K. 2018. Alterations of membrane lipid content correlated with chloroplast and mitochondria development in Euglena gracilis. Frontiers in Plant Science 9: 370.

Sláviková S, Vacula R, Fang Z, Ehara T, Osafune T, Schwartzbach SD. 2005. Homologous and heterologous reconstitution of Golgi to chloroplast transport and protein import into the complex chloroplasts of Euglena. Journal of Cell Science 118: 1651-1661.

Smith KW, Stroupe ME. 2012. Mutational analysis of sulfite reductase hemoprotein reveals the mechanism for coordinated electron and proton transfer. Biochemistry 51: 9857-9868.

Soding J, Biegert A, Lupas AN. 2005. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Research 33: W244-W248.

Sommer MS, Gould SB, Lehmann P, Gruber A, Przyborski JM, Maier U-G. 2007. Der1-mediated preprotein import into the periplastid compartment of chromalveolates? Molecular Biology and Evolution 24: 918-928.

Spork S, Hiss JA, Mandel K, Sommer M, Kooij TWA, Chu T, Schneider G, Maier UG, Przyborski JM 2009. An unusual ERAD-like complex is targeted to the apicoplast of Plasmodium falciparum. Eukaryotic Cell 8: 1134-1145.

Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688-2690.

Stiller JW, Schreiber J, Yue J, Guo H, Ding Q, Huang J. 2014. The evolution of photosynthesis in chromist algae through serial endosymbioses. Nature Communications 5: 5764.

Stork S, Moog D, Przyborski JM, Wilhelmi I, Zauner S, Maier UG. 2012. Distribution of the SELMA translocon in secondary plastids of red algal origin and predicted uncoupling of ubiquitin-dependent translocation from degradation. Eukaryotic Cell 11: 1472-1481.

Sulli C, Fang ZW, Muchhal U, Schwartzbach SD. 1999. Topology of Euglena chloroplast protein precursors within endoplasmic reticulum to Golgi to chloroplast transport vesicles. Journal of Biological Chemistry 274: 457-463.

Takano Y, Hansen G, Fujita D, Horiguchi T. 2008. Serial replacement of diatom endosymbionts in two freshwater dinoflagellates, Peridiniopsis spp. (Peridiniales, Dinophyceae). Phycologia 47: 41-53.

Tanaka Y, Ogawa T, Maruta T, Yoshida Y, Arakawa K, Ishikawa T. 2017. Glucan synthase-like 2 is indispensable for paramylon synthesis in Euglena gracilis. FEBS Letters 591: 1360-1370.

Teng Y-S, Su Y, Chen L-J, Lee YJ, Hwang I, Li H. 2006. Tic21 is an essential translocon component for protein translocation across the chloroplast inner envelope membrane. Plant Cell 18: 2247-2257.

Terashima M, Specht M, Hippler M. 2011. The chloroplast proteome: a survey from the Chlamydomonas reinhardtii perspective with a focus on distinctive features. Current Genetics 57: 151-168.

Tessier LH, Keller M, Chan RL, Fournier R, Weil JH, Imbault P. 1991. Short leader sequences may be transferred from small RNAs to pre-mature mRNAs by trans-splicing in Euglena. EMBO Journal 10: 2621-2625.

Tonkin CJ, Struck NS, Mullin KA, Stimmler LM, McFadden GI. 2006. Evidence for Golgi-independent transport from the early secretory pathway to the plastid in malaria parasites. Molecular Microbiology 61: 614-630.

Turmel M, Gagnon M-C, O’Kelly CJ, Otis C, Lemieux C. 2009. The chloroplast genomes of the green algae Pyramimonas, Monomastix, and Pycnococcus shed new light on the evolutionary history of prasinophytes and the origin of the secondary chloroplasts of euglenids. Molecular Biology and Evolution 26: 631-648.

Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox J. 2016. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nature Methods 13: 731-740.

Watanabe F, Yoshimura K, Shigeoka S. 2017. Biochemistry and physiology of vitamins in Euglena. In: Schwartzbach SD, Shigeoka S, eds. Euglena: Biochemistry, Cell and Molecular Biology. Cham: Springer International Publishing, 65-90.

Wetherbee R, Jackson CJ, Repetti SI, Clementson LA, Costa JF, van de Meene A, Crawford S, Verbruggen H. 2018. The golden paradox - a new heterokont lineage with chloroplasts surrounded by two membranes. Journal of Phycology 55: 257-278.

Wildner GF, Hauska G. 1974. Localization of the reaction site of cytochrome 552 in chloroplasts from Euglena gracilis: cytochrome content and photooxidation in different chloroplast preparations. Archives of Biochemistry and Biophysics 164: 127-135.

Xia S, Zhang Q, Zhu H, Cheng Y, Liu G, Hu Z. 2013. Systematics of a kleptoplastidal dinoflagellate, Gymnodinium eucyaneum Hu (Dinophyceae), and its cryptomonad endosymbiont. PLoS ONE 8: e53820.

Yamaguchi A, Yubuki N, Leander BS. 2012. Morphostasis in a novel eukaryote illuminates the evolutionary transition from phagotrophy to phototrophy: description of Rapaza viridis n. gen. et sp. (Euglenozoa, Euglenida). BMC Evolutionary Biology 12: 29.

Yoon HS, Hackett JD, Van Dolah FM, Nosenko T, Lidie KL, Bhattacharya D. 2005. Tertiary endosymbiosis driven genome evolution in dinoflagellate algae. Molecular Biology and Evolution 22: 1299-1308.

Yoshida Y, Tomiyama T, Maruta T, Tomita M, Ishikawa T, Arakawa K. 2016. De novo assembly and comparative transcriptome analysis of Euglena gracilis in response to anaerobic conditions. BMC Genomics 17: 182.

Záhonová K, Füssy Z, Birčák E, Novák Vanclová AMG, Klimeš V, Vesteg M, Krajčovič J, Oborník M, Eliáš M. 2018. Peculiar features of the plastids of the colourless alga Euglena longa and photosynthetic euglenophytes unveiled by transcriptome analyses. Scientific Reports 8: 17012.

Zhao L, Chang W, Xiao Y, Liu H, Liu P. 2013. Methylerythritol phosphate pathway of isoprenoid biosynthesis. Annual Review of Biochemistry 82: 497-530.

Ziegler K, Maldener I, Lockau W. 1989. 5′-Monohydroxyphylloquinone as a component of photosystem I. Zeitschrift für Naturforschung C 44: 468-472.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Visualisation of Euglena gracilis organelles and cytoskeleton using expansion microscopy

. 2025 Apr ; 8 (4) : . [epub] 20250207

Reduced plastid genomes of colorless facultative pathogens Prototheca (Chlorophyta) are retained for membrane transport genes

. 2024 Dec 18 ; 22 (1) : 294. [epub] 20241218

A cryptic plastid and a novel mitochondrial plasmid in Leucomyxa plasmidifera gen. and sp. nov. (Ochrophyta) push the frontiers of organellar biology

. 2024 Oct ; 14 (10) : 240022. [epub] 20241030

New plastids, old proteins: repeated endosymbiotic acquisitions in kareniacean dinoflagellates

. 2024 Apr ; 25 (4) : 1859-1885. [epub] 20240318

Encyclopedia of Family A DNA Polymerases Localized in Organelles: Evolutionary Contribution of Bacteria Including the Proto-Mitochondrion

. 2024 Feb 01 ; 41 (2) : .

Euglenozoan kleptoplasty illuminates the early evolution of photoendosymbiosis

. 2023 Mar 21 ; 120 (12) : e2220100120. [epub] 20230316

Highly flexible metabolism of the marine euglenozoan protist Diplonema papillatum

. 2021 Nov 24 ; 19 (1) : 251. [epub] 20211124

Heterotrophic euglenid Rhabdomonas costata resembles its phototrophic relatives in many aspects of molecular and cell biology

. 2021 Jun 22 ; 11 (1) : 13070. [epub] 20210622

The iron-sulfur scaffold protein HCF101 unveils the complexity of organellar evolution in SAR, Haptista and Cryptista

. 2021 Mar 19 ; 21 (1) : 46. [epub] 20210319

Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses

. 2021 Mar ; 11 (3) : 200407. [epub] 20210310

The Lipid Composition of Euglena gracilis Middle Plastid Membrane Resembles That of Primary Plastid Envelopes

. 2020 Dec ; 184 (4) : 2052-2063. [epub] 20201002

The Cryptic Plastid of Euglena longa Defines a New Type of Nonphotosynthetic Plastid Organelle

. 2020 Oct 21 ; 5 (5) : . [epub] 20201021

A Uniquely Complex Mitochondrial Proteome from Euglena gracilis

. 2020 Aug 01 ; 37 (8) : 2173-2191.

Catalase and Ascorbate Peroxidase in Euglenozoan Protists

. 2020 Apr 24 ; 9 (4) : . [epub] 20200424

Inventory and Evolution of Mitochondrion-localized Family A DNA Polymerases in Euglenozoa

. 2020 Apr 01 ; 9 (4) : . [epub] 20200401

Evolution of metabolic capabilities and molecular features of diplonemids, kinetoplastids, and euglenids

. 2020 Mar 02 ; 18 (1) : 23. [epub] 20200302

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...