A cryptic plastid and a novel mitochondrial plasmid in Leucomyxa plasmidifera gen. and sp. nov. (Ochrophyta) push the frontiers of organellar biology
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
European Regional Development Fund
Grantová Agentura České Republiky
Univerzita Karlova v Praze
PubMed
39474867
PubMed Central
PMC11528492
DOI
10.1098/rsob.240022
Knihovny.cz E-zdroje
- Klíčová slova
- Leukarachnion, mitochondrial plasmids, non-photosynthetic plastid, plastid evolution, plastid genome, stramenopiles,
- MeSH
- fylogeneze * MeSH
- genom mitochondriální MeSH
- genom plastidový * MeSH
- mitochondrie genetika metabolismus MeSH
- molekulární evoluce MeSH
- plastidy * genetika metabolismus MeSH
- plazmidy * genetika MeSH
- Publikační typ
- časopisecké články MeSH
Complete plastid loss seems to be very rare among secondarily non-photosynthetic eukaryotes. Leukarachnion sp. PRA-24, an amoeboid colourless protist related to the photosynthetic algal class Synchromophyceae (Ochrophyta), is a candidate for such a case based on a previous investigation by transmission electron microscopy. Here, we characterize this organism in further detail and describe it as Leucomyxa plasmidifera gen. et sp. nov., additionally demonstrating it is the first known representative of a broader clade of non-photosynthetic ochrophytes. We recovered its complete plastid genome, exhibiting a reduced gene set similar to plastomes of other non-photosynthetic ochrophytes, yet being even more extreme in sequence divergence. Identification of components of the plastid protein import machinery in the L. plasmidifera transcriptome assembly corroborated that the organism possesses a cryptic plastid organelle. According to our bioinformatic reconstruction, the plastid contains a unique combination of biosynthetic pathways producing haem, a folate precursor and tocotrienols. As another twist to its organellar biology, L. plasmidifera turned out to contain an unusual long insertion in its mitogenome related to a newly discovered mitochondrial plasmid exhibiting unprecedented features in terms of its size and coding capacity. Combined, our work uncovered further striking outcomes of the evolutionary course of semiautonomous organelles in protists.
Department of Zoology Faculty of Science Charles University Viničná 7 Prague 2 128 43 Czech Republic
Zobrazit více v PubMed
Hadariová L, Vesteg M, Hampl V, Krajčovič J. 2018. Reductive evolution of chloroplasts in non-photosynthetic plants, algae and protists. Curr. Genet. 64 , 365–387. (10.1007/s00294-017-0761-0) PubMed DOI
Grant J, Tekle YI, Anderson OR, Patterson DJ, Katz LA. 2009. Multigene evidence for the placement of a heterotrophic amoeboid lineage Leukarachnion sp. among photosynthetic stramenopiles. Protist 160 , 376–385. (10.1016/j.protis.2009.01.001) PubMed DOI
Geitler L. 1942. Ein neue filarplasmodialer organismus, Leukarachnion batrachospermi, und seine lebensweise. Biol. Zentralbl. 62 , 541–549.
Berney C, Geisen S, Van Wichelen J, Nitsche F, Vanormelingen P, Bonkowski M, Bass D. 2015. Expansion of the ‘reticulosphere’: diversity of novel branching and network-forming amoebae helps to define Variosea (Amoebozoa). Protist 166 , 271–295. (10.1016/j.protis.2015.04.001) PubMed DOI
Dorrell RG, et al. . 2019. Principles of plastid reductive evolution illuminated by nonphotosynthetic chrysophytes. Proc. Natl Acad. Sci. USA 116 , 6914–6923. (10.1073/pnas.1819976116) PubMed DOI PMC
Frankovich TA, Ashworth MP, Sullivan MJ, Theriot EC, Stacy NI. 2018. Epizoic and apochlorotic Tursiocola species (Bacillariophyta) from the skin of Florida manatees (Trichechus manatus latirostris). Protist 169 , 539–568. (10.1016/j.protis.2018.04.002) PubMed DOI
Onyshchenko A, Ruck EC, Nakov T, Alverson AJ. 2019. A single loss of photosynthesis in the diatom order Bacillariales (Bacillariophyta). Am. J. Bot. 106 , 560–572. (10.1002/ajb2.1267) PubMed DOI
Sekiguchi H, Moriya M, Nakayama T, Inouye I. 2002. Vestigial chloroplasts in heterotrophic stramenopiles Pteridomonas danica and Ciliophrys infusionum (Dictyochophyceae). Protist 153 , 157–167. (10.1078/1434-4610-00094) PubMed DOI
Kayama M, Maciszewski K, Yabuki A, Miyashita H, Karnkowska A, Kamikawa R. 2020. Highly reduced plastid genomes of the non-photosynthetic dictyochophyceans Pteridomonas spp. (Ochrophyta, SAR) are retained for tRNA-glu-based organellar heme biosynthesis. Front. Plant Sci. 11 , 602455. (10.3389/fpls.2020.602455) PubMed DOI PMC
Heesch S, Peters AF, Broom JE, Hurd CL. 2008. Affiliation of the parasite Herpodiscus durvillaeae (Phaeophyceae) with the Sphacelariales based on DNA sequence comparisons and morphological observations . Eur. J. Phycol. 43 , 283–295. (10.1080/09670260801911157) DOI
Bringloe TT, Sauermann R, Krause-Jensen D, Olesen B, Klimova A, Klochkova TA, Verbruggen H. 2021. High-throughput sequencing of the kelp Alaria (Phaeophyceae) reveals epi-endobiotic associations, including a likely phaeophycean parasite . Eur. J. Phycol. 56 , 494–504. (10.1080/09670262.2021.1882704) DOI
Guillou L, Chrétiennot-Dinet MJ, Boulben S, Moon-van der V, Staay SY, Vaulot D. 1999. Symbiomonas scintillans genet sp. nov. and Picophagus flagellatus gen. et sp. nov. (Heterokonta): two new heterotrophic flagellates of picoplanktonic size. Protist 150 , 383–398. (10.1016/S1434-4610(99)70040-4) PubMed DOI
Kamikawa R, et al. . 2015. Proposal of a twin aarginine translocator system-mediated constraint against loss of ATP synthase genes from nonphotosynthetic plastid genomes. Mol. Biol. Evol. 32 , 2598–2604. (10.1093/molbev/msv134) PubMed DOI
Kamikawa R, et al. . 2017. A non-photosynthetic diatom reveals early steps of reductive evolution in plastids. Mol. Biol. Evol. 34 , 2355–2366. (10.1093/molbev/msx172) PubMed DOI
Kamikawa R, Azuma T, Ishii KI, Matsuno Y, Miyashita H. 2018. Diversity of organellar genomes in non-photosynthetic diatoms. Protist 169 , 351–361. (10.1016/j.protis.2018.04.009) PubMed DOI
Azuma T, et al. . 2022. An enigmatic stramenopile sheds light on early evolution in ochrophyta plastid organellogenesis. Mol. Biol. Evol. 39 , msac065. (10.1093/molbev/msac065) PubMed DOI PMC
Koch C, Brumme B, Schmidt M, Flieger K, Schnetter R, Wilhelm C. 2011. The life cycle of the amoeboid alga Synchroma grande (Synchromophyceae, Heterokontophyta)—highly adapted yet equally equipped for rapid diversification in benthic habitats. Plant Biol. 13 , 801–808. (10.1111/j.1438-8677.2010.00427.x) PubMed DOI
Andersen RA. 1990. The three-dimensional structure of the flagellar apparatus of Chrysosphaerella brevispina (Chrysophyceae) as viewed by high voltage electron microscopy stereo pairs. Phycologia 29 , 86–97. (10.2216/i0031-8884-29-1-86.1) DOI
Hibberd DJ. 1979. The structure and phylogenetic significance of the flagellar transition region in the chlorophyll c-containing algae. BioSystems 11 , 243–261. (10.1016/0303-2647(79)90025-x) PubMed DOI
Schmidt M, Horn S, Ehlers K, Wilhelm C, Schnetter R. 2015. Guanchochroma wildpretii gen. et spec. nov. (Ochrophyta) provides new insights into the diversification and evolution of the algal class Synchromophyceae. PLoS One 10 , e0131821. (10.1371/journal.pone.0131821) PubMed DOI PMC
Shiryev SA, Agarwala R. 2024. Indexing and searching petabase-scale nucleotide resources. Nat. Methods. 21 , 994–1002. (10.1038/s41592-024-02280-z) PubMed DOI PMC
Dutilh BE, et al. . 2011. FACIL: fast and accurate genetic code inference and logo. Bioinformatics 27 , 1929–1933. (10.1093/bioinformatics/btr316) PubMed DOI PMC
Pánek T, et al. . 2022. A new lineage of non-photosynthetic green algae with extreme organellar genomes. BMC Biol. 20 , 66. (10.1186/s12915-022-01263-w) PubMed DOI PMC
Salomaki ED, Nickles KR, Lane CE. 2015. The ghost plastid of Choreocolax polysiphoniae. J. Phycol. 51 , 217–221. (10.1111/jpy.12283) PubMed DOI
Preuss M, Verbruggen H, Zuccarello GC. 2020. The organelle genomes in the photosynthetic red algal parasite Pterocladiophila hemisphaerica (Florideophyceae, Rhodophyta) have elevated substitution rates and extreme gene loss in the plastid genome . J. Phycol. 56 , 1006–1018. (10.1111/jpy.12996) PubMed DOI
Tanifuji G, Kamikawa R, Moore CE, Mills T, Onodera NT, Kashiyama Y, Archibald JM, Inagaki Y, Hashimoto T. 2020. Comparative plastid genomics of Cryptomonas species reveals fine-scale genomic responses to loss of photosynthesis. Genome Biol. Evol. 12 , 3926–3937. (10.1093/gbe/evaa001) PubMed DOI PMC
Mathur V, Kolísko M, Hehenberger E, Irwin NAT, Leander BS, Kristmundsson Á, Freeman MA, Keeling PJ. 2019. Multiple independent origins of apicomplexan-like parasites. Curr. Biol. 29 , 2936–2941.(10.1016/j.cub.2019.07.019) PubMed DOI
Valach M, Burger G, Gray MW, Lang BF. 2014. Widespread occurrence of organelle genome-encoded 5S rRNAs including permuted molecules. Nucleic Acids Res. 42 , 13764–13777. (10.1093/nar/gku1266) PubMed DOI PMC
Ševčíková T, Yurchenko T, Fawley KP, Amaral R, Strnad H, Santos LMA, Fawley MW, Eliáš M. 2019. Plastid genomes and proteins illuminate the evolution of eustigmatophyte algae and their bacterial endosymbionts. Genome Biol. Evol. 11 , 362–379. (10.1093/gbe/evz004) PubMed DOI PMC
Han KY, Maciszewski K, Graf L, Yang JH, Andersen RA, Karnkowska A, Yoon HS. 2019. Dictyochophyceae plastid genomes reveal unusual variability in their organization. J. Phycol. 55 , 1166–1180. (10.1111/jpy.12904) PubMed DOI
Kim JI, Jeong M, Archibald JM, Shin W. 2020. Comparative plastid genomics of non-photosynthetic chrysophytes: genome reduction and compaction. Front. Plant Sci. 11 , 572703. (10.3389/fpls.2020.572703) PubMed DOI PMC
Barcytė D, Eikrem W, Engesmo A, Seoane S, Wohlmann J, Horák A, Yurchenko T, Eliáš M. 2021. Olisthodiscus represents a new class of Ochrophyta. J. Phycol. 57 , 1094–1118. (10.1111/jpy.13155) PubMed DOI
Di Franco A, Baurain D, Glöckner G, Melkonian M, Philippe H. 2022. Lower statistical support with larger data sets: insights from the Ochrophyta radiation. Mol. Biol. Evol. 39 , msab300. (10.1093/molbev/msab300) PubMed DOI PMC
Barcytė D, et al. . 2022. Redefining Chlorobotryaceae as one of the principal and most diverse lineages of eustigmatophyte algae. Mol. Phylogenet. Evol. 177 , 107607. (10.1016/j.ympev.2022.107607) PubMed DOI
Keeling PJ, et al. . 2014. The marine microbial eukaryote transcriptome sequencing project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol. 12 , e1001889. (10.1371/journal.pbio.1001889) PubMed DOI PMC
Donaher N, Tanifuji G, Onodera NT, Malfatti SA, Chain PSG, Hara Y, Archibald JM. 2009. The complete plastid genome sequence of the secondarily nonphotosynthetic alga Cryptomonas paramecium: reduction, compaction, and accelerated evolutionary rate. Genome Biol. Evol. 1 , 439–448. (10.1093/gbe/evp047) PubMed DOI PMC
Záhonová K, Füssy Z, Oborník M, Eliáš M, Yurchenko V. 2016. RuBisCO in non-photosynthetic alga Euglena longa: divergent features, transcriptomic analysis and regulation of complex formation. PLoS One 11 , e0158790. (10.1371/journal.pone.0158790) PubMed DOI PMC
Muñoz-Gómez SA, Susko E, Williamson K, Eme L, Slamovits CH, Moreira D, López-García P, Roger AJ. 2022. Site-and-branch-heterogeneous analyses of an expanded dataset favour mitochondria as sister to known Alphaproteobacteria. Nat. Ecol. Evol. 6 , 253–262. (10.1038/s41559-021-01638-2) PubMed DOI
Janouškovec J, Paskerova GG, Miroliubova TS, Mikhailov KV, Birley T, Aleoshin VV, Simdyanov TG. 2019. Apicomplexan-like parasites are polyphyletic and widely but selectively dependent on cryptic plastid organelles. eLife 8 , e49662. (10.7554/eLife.49662) PubMed DOI PMC
Nishimura K, van Wijk KJ. 2015. Organization, function and substrates of the essential Clp protease system in plastids. Biochim. Biophys. Acta 1847 , 915–930. (10.1016/j.bbabio.2014.11.012) PubMed DOI
Ševčíková T, et al. . 2015. Updating algal evolutionary relationships through plastid genome sequencing: did alveolate plastids emerge through endosymbiosis of an ochrophyte? Sci. Rep. 5 , 10134. (10.1038/srep10134) PubMed DOI PMC
Dorrell RG, Bowler C. 2017. Secondary plastids of stramenopiles. Adv. Bot. Res. 84 , 57–103. (10.1016/bs.abr.2017.06.003) DOI
Maier UG, Zauner S, Hempel F. 2015. Protein import into complex plastids: cellular organization of higher complexity. Eur. J. Cell Biol. 94 , 340–348. (10.1016/j.ejcb.2015.05.008) PubMed DOI
Patron NJ, Waller RF. 2007. Transit peptide diversity and divergence: a global analysis of plastid targeting signals. Bioessays 29 , 1048–1058. (10.1002/bies.20638) PubMed DOI
Gruber A, Vugrinec S, Hempel F, Gould SB, Maier UG, Kroth PG. 2007. Protein targeting into complex diatom plastids: functional characterisation of a specific targeting motif. Plant Mol. Biol. 64 , 519–530. (10.1007/s11103-007-9171-x) PubMed DOI
Sheiner L, Demerly JL, Poulsen N, Beatty WL, Lucas O, Behnke MS, White MW, Striepen B. 2011. A systematic screen to discover and analyze apicoplast proteins identifies a conserved and essential protein import factor. PLoS Pathog. 7 , e1002392. (10.1371/journal.ppat.1002392) PubMed DOI PMC
Baek S, Imamura S, Higa T, Nakai Y, Tanaka K, Nakai M. 2022. A distinct class of GTP-binding proteins mediates chloroplast protein import in Rhodophyta. Proc. Natl Acad. Sci. USA 119 , e2208277119. (10.1073/pnas.2208277119) PubMed DOI PMC
Gile GH, Moog D, Slamovits CH, Maier UG, Archibald JM. 2015. Dual organellar targeting of aminoacyl-tRNA synthetases in diatoms and cryptophytes. Genome Biol. Evol. 7 , 1728–1742. (10.1093/gbe/evv095) PubMed DOI PMC
Gould SB, Magiera J, García CG, Raval PK. 2024. Performance of localization prediction algorithms decreases rapidly with the evolutionary distance to the training set increasing. bioRxiv (10.1101/2023.12.18.572050) DOI
Dorrell RG, et al. . 2017. Chimeric origins of ochrophytes and haptophytes revealed through an ancient plastid proteome. eLife 6 , e23717. (10.7554/eLife.23717) PubMed DOI PMC
Río Bártulos C, et al. . 2018. Mitochondrial glycolysis in a major lineage of eukaryotes. Genome Biol. Evol. 10 , 2310–2325. (10.1093/gbe/evy164) PubMed DOI PMC
Hanke G, Mulo P. 2013. Plant type ferredoxins and ferredoxin-dependent metabolism. Plant Cell Environ. 36 , 1071–1084. (10.1111/pce.12046) PubMed DOI
Füssy Z, Záhonová K, Tomčala A, Krajčovič J, Yurchenko V, Oborník M, Eliáš M. 2020. The cryptic plastid of Euglena longa defines a new type of nonphotosynthetic plastid organelle. mSphere 5 , e00675-20. (10.1128/mSphere.00675-20) PubMed DOI PMC
Przybyla-Toscano J, Couturier J, Remacle C, Rouhier N. 2021. Occurrence, evolution and specificities of iron-sulfur proteins and maturation factors in chloroplasts from algae. Int. J. Mol. Sci. 22 , 3175. (10.3390/ijms22063175) PubMed DOI PMC
Pombert JF, Blouin NA, Lane C, Boucias D, Keeling PJ. 2014. A lack of parasitic reduction in the obligate parasitic green alga Helicosporidium. PLoS Genet. 10 , e1004355. (10.1371/journal.pgen.1004355) PubMed DOI PMC
Janouškovec J, Tikhonenkov DV, Burki F, Howe AT, Kolísko M, Mylnikov AP, Keeling PJ. 2015. Factors mediating plastid dependency and the origins of parasitism in apicomplexans and their close relatives. Proc. Natl Acad. Sci. USA 112 , 10200–10207. (10.1073/pnas.1423790112) PubMed DOI PMC
Novák Vanclová AMG, et al. . 2020. Metabolic quirks and the colourful history of the Euglena gracilis secondary plastid. New Phytol. 225 , 1578–1592. (10.1111/nph.16237) PubMed DOI
Sato S. 2011. The apicomplexan plastid and its evolution. Cell. Mol. Life Sci. 68 , 1285–1296. (10.1007/s00018-011-0646-1) PubMed DOI PMC
Yoshihara A, Kobayashi K. 2022. Lipids in photosynthetic protein complexes in the thylakoid membrane of plants, algae, and cyanobacteria. J. Exp. Bot. 73 , 2735–2750. (10.1093/jxb/erac017) PubMed DOI
Michaud M, Prinz WA, Jouhet J. 2017. Glycerolipid synthesis and lipid trafficking in plant mitochondria. FEBS J. 284 , 376–390. (10.1111/febs.13812) PubMed DOI PMC
Botté CY, Maréchal E. 2014. Plastids with or without galactoglycerolipids. Trends Plant Sci. 19 , 71–78. (10.1016/j.tplants.2013.10.004) PubMed DOI
Li C, Wang Y, Liu L, Hu Y, Zhang F, Mergen S, Wang G, Schläppi MR, Chu C. 2011. A rice plastidial nucleotide sugar epimerase is involved in galactolipid biosynthesis and improves photosynthetic efficiency. PLoS Genet. 7 , e1002196. (10.1371/journal.pgen.1002196) PubMed DOI PMC
Goddard-Borger ED, Williams SJ. 2017. Sulfoquinovose in the biosphere: occurrence, metabolism and functions. Biochem. J. 474 , 827–849. (10.1042/BCJ20160508) PubMed DOI
Kamikawa R, et al. . 2022. Genome evolution of a nonparasitic secondary heterotroph, the diatom Nitzschia putrida Sci. Adv. 8 , eabi5075. (10.1126/sciadv.abi5075) PubMed DOI PMC
Patron NJ, Durnford DG, Kopriva S. 2008. Sulfate assimilation in eukaryotes: fusions, relocations and lateral transfers. BMC Evol. Biol. 8 , 39. (10.1186/1471-2148-8-39) PubMed DOI PMC
Niu Z, Ye S, Liu J, Lyu M, Xue L, Li M, Lyu C, Zhao J, Shen B. 2022. Two apicoplast dwelling glycolytic enzymes provide key substrates for metabolic pathways in the apicoplast and are critical for Toxoplasma growth. PLoS Pathog. 18 , e1011009. (10.1371/journal.ppat.1011009) PubMed DOI PMC
Mori N, Moriyama T, Sato N. 2019. Uncommon properties of lipid biosynthesis of isolated plastids in the unicellular red alga Cyanidioschyzon merolae . FEBS Open Bio 9 , 114–128. (10.1002/2211-5463.12551) PubMed DOI PMC
Block MA, Jouhet J. 2015. Lipid trafficking at endoplasmic reticulum-chloroplast membrane contact sites. Curr. Opin. Cell Biol. 35 , 21–29. (10.1016/j.ceb.2015.03.004) PubMed DOI
Cihlář J, Füssy Z, Oborník M. 2019. Evolution of tetrapyrrole pathway in eukaryotic phototrophs. Adv. Bot. Res. 90 , 273–309. (10.1016/bs.abr.2018.12.003) DOI
Richards TA, Dacks JB, Campbell SA, Blanchard JL, Foster PG, McLeod R, Roberts CW. 2006. Evolutionary origins of the eukaryotic shikimate pathway: gene fusions, horizontal gene transfer, and endosymbiotic replacements. Eukaryotic Cell 5 , 1517–1531. (10.1128/EC.00106-06) PubMed DOI PMC
Tzin V, Galili G, Aharoni A. 2012. Shikimate pathway and aromatic amino acid biosynthesis. In ELS. Chichester, UK: John Wiley & Sons. (10.1002/9780470015902.a0001315.pub2) DOI
Henn-Sax M, Thoma R, Schmidt S, Hennig M, Kirschner K, Sterner R. 2002. Two (βα)8-barrel enzymes of histidine and tryptophan biosynthesis have similar reaction mechanisms and common strategies for protecting their labile substrates. Biochemistry 41 , 12032–12042. (10.1021/bi026092h) PubMed DOI
Darimont B, Stehlin C, Szadkowski H, Kirschner K. 1998. Mutational analysis of the active site of indoleglycerol phosphate synthase from Escherichia coli. Protein Sci. 7 , 1221–1232. (10.1002/pro.5560070518) PubMed DOI PMC
Jeffery CJ. 2019. The demise of catalysis, but new functions arise: pseudoenzymes as the phoenixes of the protein world. Biochem. Soc. Trans. 47 , 371–379. (10.1042/BST20180473) PubMed DOI
Mène-Saffrané L. 2007. Vitamin E biosynthesis and its regulation in plants. Antioxidants (Basel). 7 , 2. (10.3390/antiox7010002) PubMed DOI PMC
Ševčíková T, Klimeš V, Zbránková V, Strnad H, Hroudová M, Vlček Č, Eliáš M. 2016. A comparative analysis of mitochondrial genomes in eustigmatophyte algae. Genome Biol. Evol. 8 , 705–722. (10.1093/gbe/evw027) PubMed DOI PMC
Sibbald SJ, Lawton M, Archibald JM. 2021. Mitochondrial genome evolution in pelagophyte algae. Genome Biol. Evol. 13 , evab018. (10.1093/gbe/evab018) PubMed DOI PMC
Mukhopadhyay J, Hausner G. 2021. Organellar introns in fungi, algae, and plants. Cells 10 , 2001. (10.3390/cells10082001) PubMed DOI PMC
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25 , 3389–3402. (10.1093/nar/25.17.3389) PubMed DOI PMC
Giegé R, Eriani G. 2023. The tRNA identity landscape for aminoacylation and beyond. Nucleic Acids Res. 51 , 1528–1570. (10.1093/nar/gkad007) PubMed DOI PMC
Hausner G. 2012. Introns, mobile elements, and plasmids. In Organelle genetics (ed. Bullerwell CE), pp. 329–385. Berlin, Germany: Springer. (10.1007/978-3-642-22380-8_13) DOI
Swart EC, et al. . 2012. The Oxytricha trifallax mitochondrial genome. Genome Biol. Evol. 4 , 136–154. (10.1093/gbe/evr136) PubMed DOI PMC
Nishimura Y, Shiratori T, Ishida K ichiro, Hashimoto T, Ohkuma M, Inagaki Y. 2019. Horizontally-acquired genetic elements in the mitochondrial genome of a centrohelid Marophrys sp. SRT127. Sci. Rep. 9 , 4850. (10.1038/s41598-019-41238-6) PubMed DOI PMC
Drew D, North RA, Nagarathinam K, Tanabe M. 2021. Structures and general transport mechanisms by the major facilitator superfamily (MFS). Chem. Rev. 121 , 5289–5335. (10.1021/acs.chemrev.0c00983) PubMed DOI PMC
Shutt TE, Gray MW. 2006. Bacteriophage origins of mitochondrial replication and transcription proteins. Trends Genet. 22 , 90–95. (10.1016/j.tig.2005.11.007) PubMed DOI
Harada R, Hirakawa Y, Yabuki A, Kim E, Yazaki E, Kamikawa R, Nakano K, Eliáš M, Inagaki Y. 2024. Encyclopedia of family a DNA polymerases localized in organelles: evolutionary contribution of bacteria including the proto-mitochondrion. Mol. Biol. Evol. 41 , msae014. (10.1093/molbev/msae014) PubMed DOI PMC
Nieuwenhuis M, Groeneveld J, Aanen DK. 2023. Horizontal transfer of tRNA genes to mitochondrial plasmids facilitates gene loss from fungal mitochondrial DNA. Curr. Genet. 69 , 55–65. (10.1007/s00294-022-01259-7) PubMed DOI PMC
Dellaporta SL, Wood J, Hicks JB. 1983. A plant DNA minipreparation: version II. Plant Mol. Biol. Rep. 1 , 19–21. (10.1007/BF02712670) DOI
Song L, Florea L. 2015. Rcorrector: efficient and accurate error correction for illumina RNA-seq reads. GigaScience 4 , 48. (10.1186/s13742-015-0089-y) PubMed DOI PMC
Haas BJ, et al. . 2013. De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis. Nat. Protoc. 8 , 1494–1512. (10.1038/nprot.2013.084) PubMed DOI PMC
Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 30 , 2114–2120. (10.1093/bioinformatics/btu170) PubMed DOI PMC
Bankevich A, et al. . 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19 , 455–477. (10.1089/cmb.2012.0021) PubMed DOI PMC
Milne I, Bayer M, Stephen G, Cardle L, Marshall D. 2016. Tablet: visualizing next-generation sequence assemblies and mappings. Methods Mol. Biol. 1374 , 253–268. (10.1007/978-1-4939-3167-5_14) PubMed DOI
Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37 , 907–915. (10.1038/s41587-019-0201-4) PubMed DOI PMC
Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. 2021. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol. Biol. Evol. 38 , 4647–4654. (10.1093/molbev/msab199) PubMed DOI PMC
Lang BF, Beck N, Prince S, Sarrasin M, Rioux P, Burger G. 2023. Mitochondrial genome annotation with MFannot: a critical analysis of gene identification and gene model prediction. Front. Plant Sci. 14 , 1222186. (10.3389/fpls.2023.1222186) PubMed DOI PMC
Chan PP, Lowe TM. 2019. tRNAscan-SE: searching for tRNA genes in genomic sequences. Methods Mol. Biol. 1962 , 1–14. (10.1007/978-1-4939-9173-0_1) PubMed DOI PMC
Darty K, Denise A, Ponty Y. 2009. VARNA: interactive drawing and editing of the RNA secondary structure. Bioinformatics 25 , 1974–1975. (10.1093/bioinformatics/btp250) PubMed DOI PMC
Nawrocki EP, Eddy SR. 2013. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29 , 2933–2935. (10.1093/bioinformatics/btt509) PubMed DOI PMC
Eddy SR. 2011. Accelerated profile HMM searches. PLoS Comput. Biol. 7 , e1002195. (10.1371/journal.pcbi.1002195) PubMed DOI PMC
Zimmermann L, et al. . 2018. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J. Mol. Biol. 430 , 2237–2243. (10.1016/j.jmb.2017.12.007) PubMed DOI
Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. 2015. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10 , 845–858. (10.1038/nprot.2015.053) PubMed DOI PMC
Richter DJ, Berney C, Strassert JFH, Poh YP, Herman EK, Muñoz-Gómez SA, Wideman JG, Burki F, de Vargas C. 2022. EukProt: a database of genome-scale predicted proteins across the diversity of eukaryotes. Peer. Community. J. 2 , e56. (10.24072/pcjournal.173) DOI
Jumper J. 2021. Highly accurate protein structure prediction with alphafold. Nature 596 , 583–589. (10.1038/s41586-021-03819-2) PubMed DOI PMC
van Kempen M, Kim SS, Tumescheit C, Mirdita M, Lee J, Gilchrist CLM, Söding J, Steinegger M. 2023. Fast and accurate protein structure search with Foldseek. Nat. Biotechnol. 42 , 243–246. (10.1038/s41587-023-01773-0) PubMed DOI PMC
Greiner S, Lehwark P, Bock R. 2019. OrganellarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res. 47 , W59–W64. (10.1093/nar/gkz238) PubMed DOI PMC
Mistry J, et al. . 2021. Pfam: the protein families database in 2021. Nucleic Acids Res. 49 , D412–D419. (10.1093/nar/gkaa913) PubMed DOI PMC
Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30 , 772–780. (10.1093/molbev/mst010) PubMed DOI PMC
Almagro Armenteros JJ, Salvatore M, Emanuelsson O, Winther O, von Heijne G, Elofsson A, Nielsen H. 2019. Detecting sequence signals in targeting peptides using deep learning. Life Sci. Alliance 2 , e201900429. (10.26508/lsa.201900429) PubMed DOI PMC
Small I, Peeters N, Legeai F, Lurin C. 2004. Predotar: a tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics 4 , 1581–1590. (10.1002/pmic.200300776) PubMed DOI
Petsalaki EI, Bagos PG, Litou ZI, Hamodrakas SJ. 2006. PredSL: a tool for the N-terminal sequence-based prediction of protein subcellular localization. Genom. Proteom. Bioinform. 4 , 48–55. (10.1016/S1672-0229(06)60016-8) PubMed DOI PMC
Hiller K, Grote A, Scheer M, Munch R, Jahn D. 2004. PrediSi: prediction of signal peptides and their cleavage positions. Nucleic Acids Res. 32 , W375–W379. (10.1093/nar/gkh378) PubMed DOI PMC
Thumuluri V, Almagro Armenteros JJ, Johansen AR, Nielsen H, Winther O. 2022. DeepLoc 2.0: multi-label subcellular localization prediction using protein language models. Nucleic Acids Res. 50 , W228–W234. (10.1093/nar/gkac278) PubMed DOI PMC
Fukasawa Y, Tsuji J, Fu SC, Tomii K, Horton P, Imai K. 2015. MitoFates: improved prediction of mitochondrial targeting sequences and their cleavage sites. Mol. Cell Proteomics 14 , 1113–1126. (10.1074/mcp.M114.043083) PubMed DOI PMC
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R. 2020. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37 , 1530–1534. (10.1093/molbev/msaa015) PubMed DOI PMC
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25 , 1972–1973. (10.1093/bioinformatics/btp348) PubMed DOI PMC
Kück P, Meusemann K. 2010. FASconCAT: convenient handling of data matrices. Mol. Phylogenet. Evol. 56 , 1115–11188. (10.1016/j.ympev.2010.04024) PubMed DOI
Rambaut A. 2009. FigTree version 1.4.4 [computer program]. See http://tree.bio.ed.ac.uk.
Letunic I, Bork P. 2021. Interactive Tree of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49 , W293–W296. (10.1093/nar/gkab301) PubMed DOI PMC
Barcytė D. 2024. Data from: Leucomyxa. Figshare. (10.6084/m9.figshare.25878799) DOI
Barcytė D, Jaške K, Pánek T, Yurchenko T, Ševčíková T, Eliášová A, Eliáš M. 2024. Data from: A cryptic plastid and a novel mitochondrial plasmid in Leucomyxa plasmidifera gen. and sp. nov. (Ochrophyta) push the frontiers of organellar biology. Figshare. (10.6084/m9.figshare.c.7461920) PubMed DOI PMC