A cryptic plastid and a novel mitochondrial plasmid in Leucomyxa plasmidifera gen. and sp. nov. (Ochrophyta) push the frontiers of organellar biology

. 2024 Oct ; 14 (10) : 240022. [epub] 20241030

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39474867

Grantová podpora
European Regional Development Fund
Grantová Agentura České Republiky
Univerzita Karlova v Praze

Complete plastid loss seems to be very rare among secondarily non-photosynthetic eukaryotes. Leukarachnion sp. PRA-24, an amoeboid colourless protist related to the photosynthetic algal class Synchromophyceae (Ochrophyta), is a candidate for such a case based on a previous investigation by transmission electron microscopy. Here, we characterize this organism in further detail and describe it as Leucomyxa plasmidifera gen. et sp. nov., additionally demonstrating it is the first known representative of a broader clade of non-photosynthetic ochrophytes. We recovered its complete plastid genome, exhibiting a reduced gene set similar to plastomes of other non-photosynthetic ochrophytes, yet being even more extreme in sequence divergence. Identification of components of the plastid protein import machinery in the L. plasmidifera transcriptome assembly corroborated that the organism possesses a cryptic plastid organelle. According to our bioinformatic reconstruction, the plastid contains a unique combination of biosynthetic pathways producing haem, a folate precursor and tocotrienols. As another twist to its organellar biology, L. plasmidifera turned out to contain an unusual long insertion in its mitogenome related to a newly discovered mitochondrial plasmid exhibiting unprecedented features in terms of its size and coding capacity. Combined, our work uncovered further striking outcomes of the evolutionary course of semiautonomous organelles in protists.

Zobrazit více v PubMed

Hadariová L, Vesteg M, Hampl V, Krajčovič J. 2018. Reductive evolution of chloroplasts in non-photosynthetic plants, algae and protists. Curr. Genet. 64 , 365–387. (10.1007/s00294-017-0761-0) PubMed DOI

Grant J, Tekle YI, Anderson OR, Patterson DJ, Katz LA. 2009. Multigene evidence for the placement of a heterotrophic amoeboid lineage Leukarachnion sp. among photosynthetic stramenopiles. Protist 160 , 376–385. (10.1016/j.protis.2009.01.001) PubMed DOI

Geitler L. 1942. Ein neue filarplasmodialer organismus, Leukarachnion batrachospermi, und seine lebensweise. Biol. Zentralbl. 62 , 541–549.

Berney C, Geisen S, Van Wichelen J, Nitsche F, Vanormelingen P, Bonkowski M, Bass D. 2015. Expansion of the ‘reticulosphere’: diversity of novel branching and network-forming amoebae helps to define Variosea (Amoebozoa). Protist 166 , 271–295. (10.1016/j.protis.2015.04.001) PubMed DOI

Dorrell RG, et al. . 2019. Principles of plastid reductive evolution illuminated by nonphotosynthetic chrysophytes. Proc. Natl Acad. Sci. USA 116 , 6914–6923. (10.1073/pnas.1819976116) PubMed DOI PMC

Frankovich TA, Ashworth MP, Sullivan MJ, Theriot EC, Stacy NI. 2018. Epizoic and apochlorotic Tursiocola species (Bacillariophyta) from the skin of Florida manatees (Trichechus manatus latirostris). Protist 169 , 539–568. (10.1016/j.protis.2018.04.002) PubMed DOI

Onyshchenko A, Ruck EC, Nakov T, Alverson AJ. 2019. A single loss of photosynthesis in the diatom order Bacillariales (Bacillariophyta). Am. J. Bot. 106 , 560–572. (10.1002/ajb2.1267) PubMed DOI

Sekiguchi H, Moriya M, Nakayama T, Inouye I. 2002. Vestigial chloroplasts in heterotrophic stramenopiles Pteridomonas danica and Ciliophrys infusionum (Dictyochophyceae). Protist 153 , 157–167. (10.1078/1434-4610-00094) PubMed DOI

Kayama M, Maciszewski K, Yabuki A, Miyashita H, Karnkowska A, Kamikawa R. 2020. Highly reduced plastid genomes of the non-photosynthetic dictyochophyceans Pteridomonas spp. (Ochrophyta, SAR) are retained for tRNA-glu-based organellar heme biosynthesis. Front. Plant Sci. 11 , 602455. (10.3389/fpls.2020.602455) PubMed DOI PMC

Heesch S, Peters AF, Broom JE, Hurd CL. 2008. Affiliation of the parasite Herpodiscus durvillaeae (Phaeophyceae) with the Sphacelariales based on DNA sequence comparisons and morphological observations . Eur. J. Phycol. 43 , 283–295. (10.1080/09670260801911157) DOI

Bringloe TT, Sauermann R, Krause-Jensen D, Olesen B, Klimova A, Klochkova TA, Verbruggen H. 2021. High-throughput sequencing of the kelp Alaria (Phaeophyceae) reveals epi-endobiotic associations, including a likely phaeophycean parasite . Eur. J. Phycol. 56 , 494–504. (10.1080/09670262.2021.1882704) DOI

Guillou L, Chrétiennot-Dinet MJ, Boulben S, Moon-van der V, Staay SY, Vaulot D. 1999. Symbiomonas scintillans genet sp. nov. and Picophagus flagellatus gen. et sp. nov. (Heterokonta): two new heterotrophic flagellates of picoplanktonic size. Protist 150 , 383–398. (10.1016/S1434-4610(99)70040-4) PubMed DOI

Kamikawa R, et al. . 2015. Proposal of a twin aarginine translocator system-mediated constraint against loss of ATP synthase genes from nonphotosynthetic plastid genomes. Mol. Biol. Evol. 32 , 2598–2604. (10.1093/molbev/msv134) PubMed DOI

Kamikawa R, et al. . 2017. A non-photosynthetic diatom reveals early steps of reductive evolution in plastids. Mol. Biol. Evol. 34 , 2355–2366. (10.1093/molbev/msx172) PubMed DOI

Kamikawa R, Azuma T, Ishii KI, Matsuno Y, Miyashita H. 2018. Diversity of organellar genomes in non-photosynthetic diatoms. Protist 169 , 351–361. (10.1016/j.protis.2018.04.009) PubMed DOI

Azuma T, et al. . 2022. An enigmatic stramenopile sheds light on early evolution in ochrophyta plastid organellogenesis. Mol. Biol. Evol. 39 , msac065. (10.1093/molbev/msac065) PubMed DOI PMC

Koch C, Brumme B, Schmidt M, Flieger K, Schnetter R, Wilhelm C. 2011. The life cycle of the amoeboid alga Synchroma grande (Synchromophyceae, Heterokontophyta)—highly adapted yet equally equipped for rapid diversification in benthic habitats. Plant Biol. 13 , 801–808. (10.1111/j.1438-8677.2010.00427.x) PubMed DOI

Andersen RA. 1990. The three-dimensional structure of the flagellar apparatus of Chrysosphaerella brevispina (Chrysophyceae) as viewed by high voltage electron microscopy stereo pairs. Phycologia 29 , 86–97. (10.2216/i0031-8884-29-1-86.1) DOI

Hibberd DJ. 1979. The structure and phylogenetic significance of the flagellar transition region in the chlorophyll c-containing algae. BioSystems 11 , 243–261. (10.1016/0303-2647(79)90025-x) PubMed DOI

Schmidt M, Horn S, Ehlers K, Wilhelm C, Schnetter R. 2015. Guanchochroma wildpretii gen. et spec. nov. (Ochrophyta) provides new insights into the diversification and evolution of the algal class Synchromophyceae. PLoS One 10 , e0131821. (10.1371/journal.pone.0131821) PubMed DOI PMC

Shiryev SA, Agarwala R. 2024. Indexing and searching petabase-scale nucleotide resources. Nat. Methods. 21 , 994–1002. (10.1038/s41592-024-02280-z) PubMed DOI PMC

Dutilh BE, et al. . 2011. FACIL: fast and accurate genetic code inference and logo. Bioinformatics 27 , 1929–1933. (10.1093/bioinformatics/btr316) PubMed DOI PMC

Pánek T, et al. . 2022. A new lineage of non-photosynthetic green algae with extreme organellar genomes. BMC Biol. 20 , 66. (10.1186/s12915-022-01263-w) PubMed DOI PMC

Salomaki ED, Nickles KR, Lane CE. 2015. The ghost plastid of Choreocolax polysiphoniae. J. Phycol. 51 , 217–221. (10.1111/jpy.12283) PubMed DOI

Preuss M, Verbruggen H, Zuccarello GC. 2020. The organelle genomes in the photosynthetic red algal parasite Pterocladiophila hemisphaerica (Florideophyceae, Rhodophyta) have elevated substitution rates and extreme gene loss in the plastid genome . J. Phycol. 56 , 1006–1018. (10.1111/jpy.12996) PubMed DOI

Tanifuji G, Kamikawa R, Moore CE, Mills T, Onodera NT, Kashiyama Y, Archibald JM, Inagaki Y, Hashimoto T. 2020. Comparative plastid genomics of Cryptomonas species reveals fine-scale genomic responses to loss of photosynthesis. Genome Biol. Evol. 12 , 3926–3937. (10.1093/gbe/evaa001) PubMed DOI PMC

Mathur V, Kolísko M, Hehenberger E, Irwin NAT, Leander BS, Kristmundsson Á, Freeman MA, Keeling PJ. 2019. Multiple independent origins of apicomplexan-like parasites. Curr. Biol. 29 , 2936–2941.(10.1016/j.cub.2019.07.019) PubMed DOI

Valach M, Burger G, Gray MW, Lang BF. 2014. Widespread occurrence of organelle genome-encoded 5S rRNAs including permuted molecules. Nucleic Acids Res. 42 , 13764–13777. (10.1093/nar/gku1266) PubMed DOI PMC

Ševčíková T, Yurchenko T, Fawley KP, Amaral R, Strnad H, Santos LMA, Fawley MW, Eliáš M. 2019. Plastid genomes and proteins illuminate the evolution of eustigmatophyte algae and their bacterial endosymbionts. Genome Biol. Evol. 11 , 362–379. (10.1093/gbe/evz004) PubMed DOI PMC

Han KY, Maciszewski K, Graf L, Yang JH, Andersen RA, Karnkowska A, Yoon HS. 2019. Dictyochophyceae plastid genomes reveal unusual variability in their organization. J. Phycol. 55 , 1166–1180. (10.1111/jpy.12904) PubMed DOI

Kim JI, Jeong M, Archibald JM, Shin W. 2020. Comparative plastid genomics of non-photosynthetic chrysophytes: genome reduction and compaction. Front. Plant Sci. 11 , 572703. (10.3389/fpls.2020.572703) PubMed DOI PMC

Barcytė D, Eikrem W, Engesmo A, Seoane S, Wohlmann J, Horák A, Yurchenko T, Eliáš M. 2021. Olisthodiscus represents a new class of Ochrophyta. J. Phycol. 57 , 1094–1118. (10.1111/jpy.13155) PubMed DOI

Di Franco A, Baurain D, Glöckner G, Melkonian M, Philippe H. 2022. Lower statistical support with larger data sets: insights from the Ochrophyta radiation. Mol. Biol. Evol. 39 , msab300. (10.1093/molbev/msab300) PubMed DOI PMC

Barcytė D, et al. . 2022. Redefining Chlorobotryaceae as one of the principal and most diverse lineages of eustigmatophyte algae. Mol. Phylogenet. Evol. 177 , 107607. (10.1016/j.ympev.2022.107607) PubMed DOI

Keeling PJ, et al. . 2014. The marine microbial eukaryote transcriptome sequencing project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol. 12 , e1001889. (10.1371/journal.pbio.1001889) PubMed DOI PMC

Donaher N, Tanifuji G, Onodera NT, Malfatti SA, Chain PSG, Hara Y, Archibald JM. 2009. The complete plastid genome sequence of the secondarily nonphotosynthetic alga Cryptomonas paramecium: reduction, compaction, and accelerated evolutionary rate. Genome Biol. Evol. 1 , 439–448. (10.1093/gbe/evp047) PubMed DOI PMC

Záhonová K, Füssy Z, Oborník M, Eliáš M, Yurchenko V. 2016. RuBisCO in non-photosynthetic alga Euglena longa: divergent features, transcriptomic analysis and regulation of complex formation. PLoS One 11 , e0158790. (10.1371/journal.pone.0158790) PubMed DOI PMC

Muñoz-Gómez SA, Susko E, Williamson K, Eme L, Slamovits CH, Moreira D, López-García P, Roger AJ. 2022. Site-and-branch-heterogeneous analyses of an expanded dataset favour mitochondria as sister to known Alphaproteobacteria. Nat. Ecol. Evol. 6 , 253–262. (10.1038/s41559-021-01638-2) PubMed DOI

Janouškovec J, Paskerova GG, Miroliubova TS, Mikhailov KV, Birley T, Aleoshin VV, Simdyanov TG. 2019. Apicomplexan-like parasites are polyphyletic and widely but selectively dependent on cryptic plastid organelles. eLife 8 , e49662. (10.7554/eLife.49662) PubMed DOI PMC

Nishimura K, van Wijk KJ. 2015. Organization, function and substrates of the essential Clp protease system in plastids. Biochim. Biophys. Acta 1847 , 915–930. (10.1016/j.bbabio.2014.11.012) PubMed DOI

Ševčíková T, et al. . 2015. Updating algal evolutionary relationships through plastid genome sequencing: did alveolate plastids emerge through endosymbiosis of an ochrophyte? Sci. Rep. 5 , 10134. (10.1038/srep10134) PubMed DOI PMC

Dorrell RG, Bowler C. 2017. Secondary plastids of stramenopiles. Adv. Bot. Res. 84 , 57–103. (10.1016/bs.abr.2017.06.003) DOI

Maier UG, Zauner S, Hempel F. 2015. Protein import into complex plastids: cellular organization of higher complexity. Eur. J. Cell Biol. 94 , 340–348. (10.1016/j.ejcb.2015.05.008) PubMed DOI

Patron NJ, Waller RF. 2007. Transit peptide diversity and divergence: a global analysis of plastid targeting signals. Bioessays 29 , 1048–1058. (10.1002/bies.20638) PubMed DOI

Gruber A, Vugrinec S, Hempel F, Gould SB, Maier UG, Kroth PG. 2007. Protein targeting into complex diatom plastids: functional characterisation of a specific targeting motif. Plant Mol. Biol. 64 , 519–530. (10.1007/s11103-007-9171-x) PubMed DOI

Sheiner L, Demerly JL, Poulsen N, Beatty WL, Lucas O, Behnke MS, White MW, Striepen B. 2011. A systematic screen to discover and analyze apicoplast proteins identifies a conserved and essential protein import factor. PLoS Pathog. 7 , e1002392. (10.1371/journal.ppat.1002392) PubMed DOI PMC

Baek S, Imamura S, Higa T, Nakai Y, Tanaka K, Nakai M. 2022. A distinct class of GTP-binding proteins mediates chloroplast protein import in Rhodophyta. Proc. Natl Acad. Sci. USA 119 , e2208277119. (10.1073/pnas.2208277119) PubMed DOI PMC

Gile GH, Moog D, Slamovits CH, Maier UG, Archibald JM. 2015. Dual organellar targeting of aminoacyl-tRNA synthetases in diatoms and cryptophytes. Genome Biol. Evol. 7 , 1728–1742. (10.1093/gbe/evv095) PubMed DOI PMC

Gould SB, Magiera J, García CG, Raval PK. 2024. Performance of localization prediction algorithms decreases rapidly with the evolutionary distance to the training set increasing. bioRxiv (10.1101/2023.12.18.572050) DOI

Dorrell RG, et al. . 2017. Chimeric origins of ochrophytes and haptophytes revealed through an ancient plastid proteome. eLife 6 , e23717. (10.7554/eLife.23717) PubMed DOI PMC

Río Bártulos C, et al. . 2018. Mitochondrial glycolysis in a major lineage of eukaryotes. Genome Biol. Evol. 10 , 2310–2325. (10.1093/gbe/evy164) PubMed DOI PMC

Hanke G, Mulo P. 2013. Plant type ferredoxins and ferredoxin-dependent metabolism. Plant Cell Environ. 36 , 1071–1084. (10.1111/pce.12046) PubMed DOI

Füssy Z, Záhonová K, Tomčala A, Krajčovič J, Yurchenko V, Oborník M, Eliáš M. 2020. The cryptic plastid of Euglena longa defines a new type of nonphotosynthetic plastid organelle. mSphere 5 , e00675-20. (10.1128/mSphere.00675-20) PubMed DOI PMC

Przybyla-Toscano J, Couturier J, Remacle C, Rouhier N. 2021. Occurrence, evolution and specificities of iron-sulfur proteins and maturation factors in chloroplasts from algae. Int. J. Mol. Sci. 22 , 3175. (10.3390/ijms22063175) PubMed DOI PMC

Pombert JF, Blouin NA, Lane C, Boucias D, Keeling PJ. 2014. A lack of parasitic reduction in the obligate parasitic green alga Helicosporidium. PLoS Genet. 10 , e1004355. (10.1371/journal.pgen.1004355) PubMed DOI PMC

Janouškovec J, Tikhonenkov DV, Burki F, Howe AT, Kolísko M, Mylnikov AP, Keeling PJ. 2015. Factors mediating plastid dependency and the origins of parasitism in apicomplexans and their close relatives. Proc. Natl Acad. Sci. USA 112 , 10200–10207. (10.1073/pnas.1423790112) PubMed DOI PMC

Novák Vanclová AMG, et al. . 2020. Metabolic quirks and the colourful history of the Euglena gracilis secondary plastid. New Phytol. 225 , 1578–1592. (10.1111/nph.16237) PubMed DOI

Sato S. 2011. The apicomplexan plastid and its evolution. Cell. Mol. Life Sci. 68 , 1285–1296. (10.1007/s00018-011-0646-1) PubMed DOI PMC

Yoshihara A, Kobayashi K. 2022. Lipids in photosynthetic protein complexes in the thylakoid membrane of plants, algae, and cyanobacteria. J. Exp. Bot. 73 , 2735–2750. (10.1093/jxb/erac017) PubMed DOI

Michaud M, Prinz WA, Jouhet J. 2017. Glycerolipid synthesis and lipid trafficking in plant mitochondria. FEBS J. 284 , 376–390. (10.1111/febs.13812) PubMed DOI PMC

Botté CY, Maréchal E. 2014. Plastids with or without galactoglycerolipids. Trends Plant Sci. 19 , 71–78. (10.1016/j.tplants.2013.10.004) PubMed DOI

Li C, Wang Y, Liu L, Hu Y, Zhang F, Mergen S, Wang G, Schläppi MR, Chu C. 2011. A rice plastidial nucleotide sugar epimerase is involved in galactolipid biosynthesis and improves photosynthetic efficiency. PLoS Genet. 7 , e1002196. (10.1371/journal.pgen.1002196) PubMed DOI PMC

Goddard-Borger ED, Williams SJ. 2017. Sulfoquinovose in the biosphere: occurrence, metabolism and functions. Biochem. J. 474 , 827–849. (10.1042/BCJ20160508) PubMed DOI

Kamikawa R, et al. . 2022. Genome evolution of a nonparasitic secondary heterotroph, the diatom Nitzschia putrida Sci. Adv. 8 , eabi5075. (10.1126/sciadv.abi5075) PubMed DOI PMC

Patron NJ, Durnford DG, Kopriva S. 2008. Sulfate assimilation in eukaryotes: fusions, relocations and lateral transfers. BMC Evol. Biol. 8 , 39. (10.1186/1471-2148-8-39) PubMed DOI PMC

Niu Z, Ye S, Liu J, Lyu M, Xue L, Li M, Lyu C, Zhao J, Shen B. 2022. Two apicoplast dwelling glycolytic enzymes provide key substrates for metabolic pathways in the apicoplast and are critical for Toxoplasma growth. PLoS Pathog. 18 , e1011009. (10.1371/journal.ppat.1011009) PubMed DOI PMC

Mori N, Moriyama T, Sato N. 2019. Uncommon properties of lipid biosynthesis of isolated plastids in the unicellular red alga Cyanidioschyzon merolae . FEBS Open Bio 9 , 114–128. (10.1002/2211-5463.12551) PubMed DOI PMC

Block MA, Jouhet J. 2015. Lipid trafficking at endoplasmic reticulum-chloroplast membrane contact sites. Curr. Opin. Cell Biol. 35 , 21–29. (10.1016/j.ceb.2015.03.004) PubMed DOI

Cihlář J, Füssy Z, Oborník M. 2019. Evolution of tetrapyrrole pathway in eukaryotic phototrophs. Adv. Bot. Res. 90 , 273–309. (10.1016/bs.abr.2018.12.003) DOI

Richards TA, Dacks JB, Campbell SA, Blanchard JL, Foster PG, McLeod R, Roberts CW. 2006. Evolutionary origins of the eukaryotic shikimate pathway: gene fusions, horizontal gene transfer, and endosymbiotic replacements. Eukaryotic Cell 5 , 1517–1531. (10.1128/EC.00106-06) PubMed DOI PMC

Tzin V, Galili G, Aharoni A. 2012. Shikimate pathway and aromatic amino acid biosynthesis. In ELS. Chichester, UK: John Wiley & Sons. (10.1002/9780470015902.a0001315.pub2) DOI

Henn-Sax M, Thoma R, Schmidt S, Hennig M, Kirschner K, Sterner R. 2002. Two (βα)8-barrel enzymes of histidine and tryptophan biosynthesis have similar reaction mechanisms and common strategies for protecting their labile substrates. Biochemistry 41 , 12032–12042. (10.1021/bi026092h) PubMed DOI

Darimont B, Stehlin C, Szadkowski H, Kirschner K. 1998. Mutational analysis of the active site of indoleglycerol phosphate synthase from Escherichia coli. Protein Sci. 7 , 1221–1232. (10.1002/pro.5560070518) PubMed DOI PMC

Jeffery CJ. 2019. The demise of catalysis, but new functions arise: pseudoenzymes as the phoenixes of the protein world. Biochem. Soc. Trans. 47 , 371–379. (10.1042/BST20180473) PubMed DOI

Mène-Saffrané L. 2007. Vitamin E biosynthesis and its regulation in plants. Antioxidants (Basel). 7 , 2. (10.3390/antiox7010002) PubMed DOI PMC

Ševčíková T, Klimeš V, Zbránková V, Strnad H, Hroudová M, Vlček Č, Eliáš M. 2016. A comparative analysis of mitochondrial genomes in eustigmatophyte algae. Genome Biol. Evol. 8 , 705–722. (10.1093/gbe/evw027) PubMed DOI PMC

Sibbald SJ, Lawton M, Archibald JM. 2021. Mitochondrial genome evolution in pelagophyte algae. Genome Biol. Evol. 13 , evab018. (10.1093/gbe/evab018) PubMed DOI PMC

Mukhopadhyay J, Hausner G. 2021. Organellar introns in fungi, algae, and plants. Cells 10 , 2001. (10.3390/cells10082001) PubMed DOI PMC

Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25 , 3389–3402. (10.1093/nar/25.17.3389) PubMed DOI PMC

Giegé R, Eriani G. 2023. The tRNA identity landscape for aminoacylation and beyond. Nucleic Acids Res. 51 , 1528–1570. (10.1093/nar/gkad007) PubMed DOI PMC

Hausner G. 2012. Introns, mobile elements, and plasmids. In Organelle genetics (ed. Bullerwell CE), pp. 329–385. Berlin, Germany: Springer. (10.1007/978-3-642-22380-8_13) DOI

Swart EC, et al. . 2012. The Oxytricha trifallax mitochondrial genome. Genome Biol. Evol. 4 , 136–154. (10.1093/gbe/evr136) PubMed DOI PMC

Nishimura Y, Shiratori T, Ishida K ichiro, Hashimoto T, Ohkuma M, Inagaki Y. 2019. Horizontally-acquired genetic elements in the mitochondrial genome of a centrohelid Marophrys sp. SRT127. Sci. Rep. 9 , 4850. (10.1038/s41598-019-41238-6) PubMed DOI PMC

Drew D, North RA, Nagarathinam K, Tanabe M. 2021. Structures and general transport mechanisms by the major facilitator superfamily (MFS). Chem. Rev. 121 , 5289–5335. (10.1021/acs.chemrev.0c00983) PubMed DOI PMC

Shutt TE, Gray MW. 2006. Bacteriophage origins of mitochondrial replication and transcription proteins. Trends Genet. 22 , 90–95. (10.1016/j.tig.2005.11.007) PubMed DOI

Harada R, Hirakawa Y, Yabuki A, Kim E, Yazaki E, Kamikawa R, Nakano K, Eliáš M, Inagaki Y. 2024. Encyclopedia of family a DNA polymerases localized in organelles: evolutionary contribution of bacteria including the proto-mitochondrion. Mol. Biol. Evol. 41 , msae014. (10.1093/molbev/msae014) PubMed DOI PMC

Nieuwenhuis M, Groeneveld J, Aanen DK. 2023. Horizontal transfer of tRNA genes to mitochondrial plasmids facilitates gene loss from fungal mitochondrial DNA. Curr. Genet. 69 , 55–65. (10.1007/s00294-022-01259-7) PubMed DOI PMC

Dellaporta SL, Wood J, Hicks JB. 1983. A plant DNA minipreparation: version II. Plant Mol. Biol. Rep. 1 , 19–21. (10.1007/BF02712670) DOI

Song L, Florea L. 2015. Rcorrector: efficient and accurate error correction for illumina RNA-seq reads. GigaScience 4 , 48. (10.1186/s13742-015-0089-y) PubMed DOI PMC

Haas BJ, et al. . 2013. De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis. Nat. Protoc. 8 , 1494–1512. (10.1038/nprot.2013.084) PubMed DOI PMC

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 30 , 2114–2120. (10.1093/bioinformatics/btu170) PubMed DOI PMC

Bankevich A, et al. . 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19 , 455–477. (10.1089/cmb.2012.0021) PubMed DOI PMC

Milne I, Bayer M, Stephen G, Cardle L, Marshall D. 2016. Tablet: visualizing next-generation sequence assemblies and mappings. Methods Mol. Biol. 1374 , 253–268. (10.1007/978-1-4939-3167-5_14) PubMed DOI

Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37 , 907–915. (10.1038/s41587-019-0201-4) PubMed DOI PMC

Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. 2021. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol. Biol. Evol. 38 , 4647–4654. (10.1093/molbev/msab199) PubMed DOI PMC

Lang BF, Beck N, Prince S, Sarrasin M, Rioux P, Burger G. 2023. Mitochondrial genome annotation with MFannot: a critical analysis of gene identification and gene model prediction. Front. Plant Sci. 14 , 1222186. (10.3389/fpls.2023.1222186) PubMed DOI PMC

Chan PP, Lowe TM. 2019. tRNAscan-SE: searching for tRNA genes in genomic sequences. Methods Mol. Biol. 1962 , 1–14. (10.1007/978-1-4939-9173-0_1) PubMed DOI PMC

Darty K, Denise A, Ponty Y. 2009. VARNA: interactive drawing and editing of the RNA secondary structure. Bioinformatics 25 , 1974–1975. (10.1093/bioinformatics/btp250) PubMed DOI PMC

Nawrocki EP, Eddy SR. 2013. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29 , 2933–2935. (10.1093/bioinformatics/btt509) PubMed DOI PMC

Eddy SR. 2011. Accelerated profile HMM searches. PLoS Comput. Biol. 7 , e1002195. (10.1371/journal.pcbi.1002195) PubMed DOI PMC

Zimmermann L, et al. . 2018. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J. Mol. Biol. 430 , 2237–2243. (10.1016/j.jmb.2017.12.007) PubMed DOI

Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. 2015. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10 , 845–858. (10.1038/nprot.2015.053) PubMed DOI PMC

Richter DJ, Berney C, Strassert JFH, Poh YP, Herman EK, Muñoz-Gómez SA, Wideman JG, Burki F, de Vargas C. 2022. EukProt: a database of genome-scale predicted proteins across the diversity of eukaryotes. Peer. Community. J. 2 , e56. (10.24072/pcjournal.173) DOI

Jumper J. 2021. Highly accurate protein structure prediction with alphafold. Nature 596 , 583–589. (10.1038/s41586-021-03819-2) PubMed DOI PMC

van Kempen M, Kim SS, Tumescheit C, Mirdita M, Lee J, Gilchrist CLM, Söding J, Steinegger M. 2023. Fast and accurate protein structure search with Foldseek. Nat. Biotechnol. 42 , 243–246. (10.1038/s41587-023-01773-0) PubMed DOI PMC

Greiner S, Lehwark P, Bock R. 2019. OrganellarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res. 47 , W59–W64. (10.1093/nar/gkz238) PubMed DOI PMC

Mistry J, et al. . 2021. Pfam: the protein families database in 2021. Nucleic Acids Res. 49 , D412–D419. (10.1093/nar/gkaa913) PubMed DOI PMC

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30 , 772–780. (10.1093/molbev/mst010) PubMed DOI PMC

Almagro Armenteros JJ, Salvatore M, Emanuelsson O, Winther O, von Heijne G, Elofsson A, Nielsen H. 2019. Detecting sequence signals in targeting peptides using deep learning. Life Sci. Alliance 2 , e201900429. (10.26508/lsa.201900429) PubMed DOI PMC

Small I, Peeters N, Legeai F, Lurin C. 2004. Predotar: a tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics 4 , 1581–1590. (10.1002/pmic.200300776) PubMed DOI

Petsalaki EI, Bagos PG, Litou ZI, Hamodrakas SJ. 2006. PredSL: a tool for the N-terminal sequence-based prediction of protein subcellular localization. Genom. Proteom. Bioinform. 4 , 48–55. (10.1016/S1672-0229(06)60016-8) PubMed DOI PMC

Hiller K, Grote A, Scheer M, Munch R, Jahn D. 2004. PrediSi: prediction of signal peptides and their cleavage positions. Nucleic Acids Res. 32 , W375–W379. (10.1093/nar/gkh378) PubMed DOI PMC

Thumuluri V, Almagro Armenteros JJ, Johansen AR, Nielsen H, Winther O. 2022. DeepLoc 2.0: multi-label subcellular localization prediction using protein language models. Nucleic Acids Res. 50 , W228–W234. (10.1093/nar/gkac278) PubMed DOI PMC

Fukasawa Y, Tsuji J, Fu SC, Tomii K, Horton P, Imai K. 2015. MitoFates: improved prediction of mitochondrial targeting sequences and their cleavage sites. Mol. Cell Proteomics 14 , 1113–1126. (10.1074/mcp.M114.043083) PubMed DOI PMC

Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R. 2020. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37 , 1530–1534. (10.1093/molbev/msaa015) PubMed DOI PMC

Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25 , 1972–1973. (10.1093/bioinformatics/btp348) PubMed DOI PMC

Kück P, Meusemann K. 2010. FASconCAT: convenient handling of data matrices. Mol. Phylogenet. Evol. 56 , 1115–11188. (10.1016/j.ympev.2010.04024) PubMed DOI

Rambaut A. 2009. FigTree version 1.4.4 [computer program]. See http://tree.bio.ed.ac.uk.

Letunic I, Bork P. 2021. Interactive Tree of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49 , W293–W296. (10.1093/nar/gkab301) PubMed DOI PMC

Barcytė D. 2024. Data from: Leucomyxa. Figshare. (10.6084/m9.figshare.25878799) DOI

Barcytė D, Jaške K, Pánek T, Yurchenko T, Ševčíková T, Eliášová A, Eliáš M. 2024. Data from: A cryptic plastid and a novel mitochondrial plasmid in Leucomyxa plasmidifera gen. and sp. nov. (Ochrophyta) push the frontiers of organellar biology. Figshare. (10.6084/m9.figshare.c.7461920) PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...