Reductive evolution of chloroplasts in non-photosynthetic plants, algae and protists

. 2018 Apr ; 64 (2) : 365-387. [epub] 20171012

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid29026976

Grantová podpora
1/0535/17 Scientific Grant Agency of the Slovak Ministry of Education and the Academy of Sciences
Project BIOCEV-FAR LQ1604 Ministry of Education, Youth and Sports of CR within the National Sustainability Program II
CZ.1.05/1.1.00/02.0109 BIOCEV
16-25280S Czech Science foundation
ITMS 26210120024 ERDF

Odkazy

PubMed 29026976
DOI 10.1007/s00294-017-0761-0
PII: 10.1007/s00294-017-0761-0
Knihovny.cz E-zdroje

Chloroplasts are generally known as eukaryotic organelles whose main function is photosynthesis. They perform other functions, however, such as synthesizing isoprenoids, fatty acids, heme, iron sulphur clusters and other essential compounds. In non-photosynthetic lineages that possess plastids, the chloroplast genomes have been reduced and most (or all) photosynthetic genes have been lost. Consequently, non-photosynthetic plastids have also been reduced structurally. Some of these non-photosynthetic or "cryptic" plastids were overlooked or unrecognized for decades. The number of complete plastid genome sequences and/or transcriptomes from non-photosynthetic taxa possessing plastids is rapidly increasing, thus allowing prediction of the functions of non-photosynthetic plastids in various eukaryotic lineages. In some non-photosynthetic eukaryotes with photosynthetic ancestors, no traces of plastid genomes or of plastids have been found, suggesting that they have lost the genomes or plastids completely. This review summarizes current knowledge of non-photosynthetic plastids, their genomes, structures and potential functions in free-living and parasitic plants, algae and protists. We introduce a model for the order of plastid gene losses which combines models proposed earlier for land plants with the patterns of gene retention and loss observed in protists. The rare cases of plastid genome loss and complete plastid loss are also discussed.

Zobrazit více v PubMed

J Theor Biol. 1993 Dec 21;165(4):609-31 PubMed

Plant J. 2011 Apr;66(1):34-44 PubMed

Plant Cell. 1995 Nov;7(11):1899-1911 PubMed

Plant Physiol Biochem. 2015 Jan;86:166-173 PubMed

Plant Cell. 2015 Jul;27(7):1827-33 PubMed

Trends Genet. 1998 Aug;14(8):307-11 PubMed

Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10154-61 PubMed

Nat Rev Mol Cell Biol. 2011 Jan;12(1):48-59 PubMed

Mol Plant. 2017 Jan 9;10(1):219-221 PubMed

J Mol Evol. 2005 Feb;60(2):183-95 PubMed

Genome Biol Evol. 2011;3:365-71 PubMed

Protist. 2003 Apr;154(1):99-145 PubMed

Microbiol Mol Biol Rev. 2012 Jun;76(2):444-95 PubMed

Bioessays. 2012 Mar;34(3):226-35 PubMed

Sci Rep. 2015 Sep 25;5:14465 PubMed

Mol Biol Evol. 2008 Apr;25(4):748-61 PubMed

PLoS One. 2008 May 21;3(5):e2205 PubMed

Eur J Cell Biol. 2015 Jul-Sep;94(7-9):340-8 PubMed

Genome Biol Evol. 2016 Jan 06;8(2):345-63 PubMed

Genome Biol Evol. 2011;3:1296-303 PubMed

J Mol Biol. 1996 Aug 16;261(2):155-72 PubMed

Protist. 2002 Jun;153(2):157-67 PubMed

Proc Natl Acad Sci U S A. 1985 Jul;82(13):4443-7 PubMed

PLoS One. 2016 Jul 08;11(7):e0158790 PubMed

Am J Bot. 2012 Sep;99(9):1513-23 PubMed

Science. 2013 Feb 1;339(6119):571-4 PubMed

Protist. 2002 Sep;153(3):293-302 PubMed

Protist. 2004 Mar;155(1):11-2 PubMed

Genome Biol Evol. 2017 Feb 1;9(2):473-479 PubMed

BMC Plant Biol. 2007 Aug 22;7:45 PubMed

Mol Biol Evol. 2008 Mar;25(3):536-48 PubMed

Protist. 2000 Dec;151(4):347-51 PubMed

Nature. 2003 Mar 6;422(6927):72-6 PubMed

Nature. 1998 May 14;393(6681):162-5 PubMed

Curr Genet. 2008 Sep;54(3):111-21 PubMed

J Mol Evol. 2008 Dec;67(6):696-704 PubMed

Curr Biol. 2017 Feb 6;27(3):386-391 PubMed

Biochimie. 2014 May;100:3-17 PubMed

Mol Biol Evol. 2004 May;21(5):809-18 PubMed

J Cell Sci. 1969 Sep;5(2):479-93 PubMed

Genome Biol Evol. 2014 Mar;6(3):666-84 PubMed

Protist. 2000 Aug;151(2):103-9 PubMed

Genome Biol Evol. 2014 Jan;6(1):238-46 PubMed

BMC Biol. 2007 Dec 13;5:55 PubMed

Mol Biol Evol. 2008 Feb;25(2):393-401 PubMed

Science. 2005 Jul 1;309(5731):134-7 PubMed

Eur J Protistol. 2007 Jun;43(2):163-7 PubMed

Philos Trans R Soc Lond B Biol Sci. 2003 Jan 29;358(1429):19-37; discussion 37-8 PubMed

Protist. 2005 Dec;156(4):425-32 PubMed

Parasit Vectors. 2016 Nov 29;9(1):611 PubMed

Cold Spring Harb Perspect Biol. 2014 May 01;6(5):a016147 PubMed

Int Rev Cytol. 2005;244:1-68 PubMed

Proc Natl Acad Sci U S A. 2017 Jan 10;114(2):E171-E180 PubMed

Science. 1995 Jun 16;268(5217):1622-4 PubMed

Genome Biol Evol. 2015 Jan 28;7(4):1179-91 PubMed

Protist. 2004 Mar;155(1):13-4 PubMed

Mol Biol Evol. 2014 Apr;31(4):793-803 PubMed

PLoS One. 2016 Mar 02;11(3):e0150718 PubMed

PLoS Biol. 2011 Aug;9(8):e1001138 PubMed

Annu Rev Genet. 2009;43:251-64 PubMed

Plant Cell. 2015 Jul;27(7):1834-8 PubMed

Int J Parasitol. 2017 Feb;47(2-3):137-144 PubMed

Annu Rev Biochem. 1983;52:507-35 PubMed

Plant Biol (Stuttg). 2010 Jul 1;12(4):639-49 PubMed

Annu Rev Biophys Biophys Chem. 1990;19:369-403 PubMed

Nat Ecol Evol. 2017 Apr 1;1(4):0092 PubMed

PLoS One. 2013;8(3):e58747 PubMed

Gene. 2003 Oct 16;316:33-8 PubMed

Malar J. 2016 Nov 15;15(1):556 PubMed

Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13207-12 PubMed

Annu Rev Plant Biol. 2013;64:583-607 PubMed

Mol Biol Evol. 1996 Jul;13(6):873-82 PubMed

J Bacteriol. 1988 Aug;170(8):3584-92 PubMed

PLoS One. 2012;7(3):e33746 PubMed

Curr Genet. 2011 Jun;57(3):151-68 PubMed

Curr Biol. 2008 Mar 25;18(6):410-8 PubMed

New Phytol. 2014 Oct;204(1):7-11 PubMed

Microbiol Mol Biol Rev. 1997 Mar;61(1):1-16 PubMed

Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10648-52 PubMed

Nat Commun. 2015 Mar 11;6:6421 PubMed

Biol Rev Camb Philos Soc. 2005 Feb;80(1):129-53 PubMed

J Phycol. 2015 Apr;51(2):217-21 PubMed

Protist. 2007 Jan;158(1):119-30 PubMed

Nucleic Acids Res. 1993 Jul 25;21(15):3537-44 PubMed

J Phycol. 2014 Jun;50(3):462-71 PubMed

PLoS One. 2013 Nov 12;8(11):e79204 PubMed

Plant Cell. 2013 Oct;25(10):3711-25 PubMed

Plant Cell. 1995 Jul;7(7):957-70 PubMed

Plant Physiol Biochem. 2010 Aug;48(8):636-45 PubMed

Sci Rep. 2016 Jul 25;6:30042 PubMed

Int J Syst Evol Microbiol. 2001 May;51(Pt 3):783-791 PubMed

Mol Biol Evol. 2015 Oct;32(10):2598-604 PubMed

Mol Biol Evol. 2000 May;17(5):718-29 PubMed

Gene. 2003 Dec 4;321:39-46 PubMed

Mol Biol Evol. 2008 Jun;25(6):1167-79 PubMed

Int Rev Cell Mol Biol. 2010;281:161-228 PubMed

J Exp Bot. 2013 Feb;64(4):977-89 PubMed

J Mol Evol. 2007 Dec;65(6):725-9 PubMed

Plant Cell Physiol. 2003 Jan;44(1):93-5 PubMed

Eukaryot Cell. 2005 Dec;4(12):2087-97 PubMed

Curr Genet. 2015 Nov;61(4):665-77 PubMed

Curr Genet. 1994 Sep;26(3):256-62 PubMed

Curr Genet. 1996 May;29(6):572-81 PubMed

Trends Genet. 2002 Nov;18(11):577-84 PubMed

PLoS Genet. 2014 May 08;10(5):e1004355 PubMed

Curr Biol. 2009 Jan 27;19(2):R81-8 PubMed

Nat Rev Microbiol. 2004 Mar;2(3):203-16 PubMed

Mol Biol Evol. 2010 Feb;27(2):235-48 PubMed

EMBO J. 1996 Jun 3;15(11):2802-9 PubMed

Science. 2004 Jul 16;305(5682):354-60 PubMed

Trends Plant Sci. 2006 Feb;11(2):101-8 PubMed

Curr Genet. 2016 Feb;62(1):165-72 PubMed

Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10139-46 PubMed

Protist. 2007 Jan;158(1):105-17 PubMed

Mol Biol Evol. 2010 Jul;27(7):1698-709 PubMed

Curr Biol. 2004 Mar 9;14(5):354-62 PubMed

Nature. 2004 Dec 9;432(7018):779-82 PubMed

Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10200-7 PubMed

J Cell Biol. 1963 Dec;19:613-29 PubMed

Protist. 2002 Jun;153(2):123-32 PubMed

Mol Biol Evol. 2012 Sep;29(9):2095-9 PubMed

Elife. 2017 Mar 16;6: PubMed

Genome Biol Evol. 2009 Nov 13;1:439-48 PubMed

Mol Biol Evol. 2014 Dec;31(12):3095-112 PubMed

Genome Biol Evol. 2011;3:44-54 PubMed

Mol Biol Evol. 2008 Jul;25(7):1297-306 PubMed

Curr Genet. 2017 May;63(2):331-341 PubMed

J Phycol. 2008 Feb;44(1):164-72 PubMed

Curr Genet. 2010 Oct;56(5):427-38 PubMed

Plant Physiol. 2014 Apr;164(4):1812-9 PubMed

Proc Natl Acad Sci U S A. 2006 Jun 20;103(25):9566-71 PubMed

Curr Biol. 2016 May 23;26(10):1274-84 PubMed

Proc Natl Acad Sci U S A. 2003 Jul 22;100(15):8828-33 PubMed

BMC Evol Biol. 2008 Jul 15;8:203 PubMed

Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10147-53 PubMed

Eukaryot Cell. 2004 Oct;3(5):1198-205 PubMed

Front Plant Sci. 2017 Jul 24;8:1248 PubMed

Parasit Vectors. 2015 Oct 16;8:543 PubMed

Curr Opin Microbiol. 2013 Aug;16(4):424-31 PubMed

Int J Syst Evol Microbiol. 2002 Mar;52(Pt 2):297-354 PubMed

Nature. 1991 Mar 14;350(6314):148-51 PubMed

J Eukaryot Microbiol. 1997 Jul-Aug;44(4):314-20 PubMed

Parasitol Res. 2014 Mar;113(3):823-8 PubMed

Biochimie. 2000 Jun-Jul;82(6-7):647-54 PubMed

BMC Biol. 2006 Apr 21;4:12 PubMed

Protist. 2009 Aug;160(3):376-85 PubMed

Mol Biol Evol. 2001 Sep;18(9):1810-22 PubMed

Theory Biosci. 2012 May;131(1):1-18 PubMed

Genome Biol Evol. 2015 Jul 13;7(8):2220-36 PubMed

Am J Bot. 2016 Jun;103(6):1129-37 PubMed

PLoS One. 2014 May 05;9(5):e96258 PubMed

Adv Parasitol. 2003;54:9-68 PubMed

Mol Biochem Parasitol. 2016 Sep - Oct;209(1-2):46-57 PubMed

Biol Direct. 2013 Jul 11;8:18 PubMed

Proc Natl Acad Sci U S A. 1990 Feb;87(4):1531-5 PubMed

Mol Biol Evol. 1998 Oct;15(10):1243-58 PubMed

Trends Plant Sci. 2013 Dec;18(12):673-9 PubMed

Plant Physiol. 2017 Feb;173(2):932-943 PubMed

Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13624-9 PubMed

Curr Genet. 2016 Nov;62(4):791-798 PubMed

Nucleic Acids Res. 1991 Jun 25;19(12):3431-4 PubMed

J Eukaryot Microbiol. 1999 Jul-Aug;46(4):347-66 PubMed

J Biotechnol. 2015 May 20;202:135-45 PubMed

Eukaryot Cell. 2005 Feb;4(2):253-61 PubMed

J Eukaryot Microbiol. 2012 Sep;59(5):429-93 PubMed

Proc Natl Acad Sci U S A. 2015 May 5;112(18):5767-72 PubMed

Mol Biol Evol. 2011 Jul;28(7):2077-86 PubMed

Annu Rev Plant Biol. 2009;60:115-38 PubMed

Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5340-5 PubMed

Science. 1999 Mar 5;283(5407):1476-81 PubMed

J Cell Biol. 1962 Jun;13:383-91 PubMed

J Eukaryot Microbiol. 2007 Jan-Feb;54(1):66-72 PubMed

Mol Biol Evol. 2017 Jun 1;34(6):1335-1351 PubMed

Mol Biol Evol. 2005 Dec;22(12):2343-53 PubMed

New Phytol. 2010 Feb;185(3):605-9 PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Reduced plastid genomes of colorless facultative pathogens Prototheca (Chlorophyta) are retained for membrane transport genes

. 2024 Dec 18 ; 22 (1) : 294. [epub] 20241218

A cryptic plastid and a novel mitochondrial plasmid in Leucomyxa plasmidifera gen. and sp. nov. (Ochrophyta) push the frontiers of organellar biology

. 2024 Oct ; 14 (10) : 240022. [epub] 20241030

New plastids, old proteins: repeated endosymbiotic acquisitions in kareniacean dinoflagellates

. 2024 Apr ; 25 (4) : 1859-1885. [epub] 20240318

A new lineage of non-photosynthetic green algae with extreme organellar genomes

. 2022 Mar 17 ; 20 (1) : 66. [epub] 20220317

Organellar Evolution: A Path from Benefit to Dependence

. 2022 Jan 07 ; 10 (1) : . [epub] 20220107

Editorial: Mixotrophic, Secondary Heterotrophic, and Parasitic Algae

. 2021 ; 12 () : 798555. [epub] 20211125

The Cryptic Plastid of Euglena longa Defines a New Type of Nonphotosynthetic Plastid Organelle

. 2020 Oct 21 ; 5 (5) : . [epub] 20201021

Endosymbiotic Evolution of Algae, Secondary Heterotrophy and Parasitism

. 2019 Jul 08 ; 9 (7) : . [epub] 20190708

Subcellular Compartments Interplay for Carbon and Nitrogen Allocation in Chromera velia and Vitrella brassicaformis

. 2019 Jul 01 ; 11 (7) : 1765-1779.

Peculiar features of the plastids of the colourless alga Euglena longa and photosynthetic euglenophytes unveiled by transcriptome analyses

. 2018 Nov 19 ; 8 (1) : 17012. [epub] 20181119

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...