A new lineage of non-photosynthetic green algae with extreme organellar genomes

. 2022 Mar 17 ; 20 (1) : 66. [epub] 20220317

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35296310
Odkazy

PubMed 35296310
PubMed Central PMC8928634
DOI 10.1186/s12915-022-01263-w
PII: 10.1186/s12915-022-01263-w
Knihovny.cz E-zdroje

BACKGROUND: The plastid genomes of the green algal order Chlamydomonadales tend to expand their non-coding regions, but this phenomenon is poorly understood. Here we shed new light on organellar genome evolution in Chlamydomonadales by studying a previously unknown non-photosynthetic lineage. We established cultures of two new Polytoma-like flagellates, defined their basic characteristics and phylogenetic position, and obtained complete organellar genome sequences and a transcriptome assembly for one of them. RESULTS: We discovered a novel deeply diverged chlamydomonadalean lineage that has no close photosynthetic relatives and represents an independent case of photosynthesis loss. To accommodate these organisms, we establish the new genus Leontynka, with two species (L. pallida and L. elongata) distinguishable through both their morphological and molecular characteristics. Notable features of the colourless plastid of L. pallida deduced from the plastid genome (plastome) sequence and transcriptome assembly include the retention of ATP synthase, thylakoid-associated proteins, the carotenoid biosynthesis pathway, and a plastoquinone-based electron transport chain, the latter two modules having an obvious functional link to the eyespot present in Leontynka. Most strikingly, the ~362 kbp plastome of L. pallida is by far the largest among the non-photosynthetic eukaryotes investigated to date due to an extreme proliferation of sequence repeats. These repeats are also present in coding sequences, with one repeat type found in the exons of 11 out of 34 protein-coding genes, with up to 36 copies per gene, thus affecting the encoded proteins. The mitochondrial genome of L. pallida is likewise exceptionally large, with its >104 kbp surpassed only by the mitogenome of Haematococcus lacustris among all members of Chlamydomonadales hitherto studied. It is also bloated with repeats, though entirely different from those in the L. pallida plastome, which contrasts with the situation in H. lacustris where both the organellar genomes have accumulated related repeats. Furthermore, the L. pallida mitogenome exhibits an extremely high GC content in both coding and non-coding regions and, strikingly, a high number of predicted G-quadruplexes. CONCLUSIONS: With its unprecedented combination of plastid and mitochondrial genome characteristics, Leontynka pushes the frontiers of organellar genome diversity and is an interesting model for studying organellar genome evolution.

Zobrazit více v PubMed

Hadariová L, Vesteg M, Hampl V, Krajčovič J. Reductive evolution of chloroplasts in non-photosynthetic plants, algae and protists. Curr Genet. 2018;64:365–387. PubMed

Sibbald SJ, Archibald JM. Genomic insights into plastid evolution. Genome Biol Evol. 2020;12:978–990. PubMed PMC

Figueroa-Martinez F, Nedelcu AM, Smith DR, Reyes-Prieto A. When the lights go out: the evolutionary fate of free-living colorless green algae. New Phytol. 2015;206:972–982. PubMed PMC

Suzuki S, Endoh R, Manabe RI, Ohkuma M, Hirakawa Y. Multiple losses of photosynthesis and convergent reductive genome evolution in the colourless green algae Prototheca. Sci Rep. 2018;8:940. PubMed PMC

Ettl H. Chlorophyta I: Phytomonadina. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D, editors. Süßwasserflora von Mitteleuropa. Band 9. Stuttgart: Gustav Fischer Verlag; 1983. p. 807.

Kayama M, Chen JF, Nakada T, Nishimura Y, Shikanai T, Azuma T, Miyashita H, Takaichi S, Kashiyama Y, Kamikawa R. A non-photosynthetic green alga illuminates the reductive evolution of plastid electron transport systems. BMC Biol. 2020;18:126. PubMed PMC

Smith DR, Lee RW. A plastid without a genome: evidence from the nonphotosynthetic green algal genus Polytomella. Plant Physiol. 2014;164:1812–1819. PubMed PMC

Figueroa-Martinez F, Nedelcu AM, Smith DR, Reyes-Prieto A. The plastid genome of Polytoma uvella is the largest known among colorless algae and plants and reflects contrasting evolutionary paths to nonphotosynthetic lifestyles. Plant Physiol. 2017;173:932–943. PubMed PMC

Bauman N, Akella S, Hann E, Morey R, Schwartz AS, Brown R, Richardson TH. Next-generation sequencing of Haematococcus lacustris reveals an extremely large 1.35-megabase chloroplast genome. Genome Announc. 2018;6:e00181–e001818. PubMed PMC

Smith DR. Haematococcus lacustris: the makings of a giant-sized chloroplast genome. AoB Plants. 2018;10:ply058. PubMed PMC

Zhang X, Bauman N, Brown R, Richardson TH, Akella S, Hann E, Morey R, Smith DR. The mitochondrial and chloroplast genomes of the green alga Haematococcus are made up of nearly identical repetitive sequences. Curr Biol. 2019;29:R736–R737. PubMed

Nakada T, Misawa K, Nozaki H. Molecular systematics of Volvocales (Chlorophyceae, Chlorophyta) based on exhaustive 18S rRNA phylogenetic analyses. Mol Phylogenet Evol. 2008;48:281–291. PubMed

Turland NJ, Wiersema JH, Barrie FR, Greuter W, Hawksworth DL, Herendeen PS, Knapp S, Kusber WH, Li DZ, Marhold K, et al. Koeltz botanical books. 2018. International Code of Nomenclature for algae, fungi, and plants (Shenzhen Code) adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017.

Brugerolle G, Bricheux G, Philippe H, Coffea G. Collodictyon triciliatum and Diphylleia rotans (=Aulacomonas submarina) form a new family of flagellates (Collodictyonidae) with tubular mitochondrial cristae that is phylogenetically distant from other flagellate groups. Protist. 2002;153:59–70. PubMed

Brown MW, Heiss AA, Kamikawa R, Inagaki Y, Yabuki A, Tice AK, Shiratori T, Ishida KI, Hashimoto T, Simpson AGB, et al. Phylogenomics places orphan protistan lineages in a novel eukaryotic super-group. Genome Biol Evol. 2018;10:427–433. PubMed PMC

Sonneborn TM. Methods in the general biology and genetics of Paramecium aurelia. J Exp Zool. 1950;113:87–147.

Reynolds ES. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963;17:208–212. PubMed PMC

Medlin L, Elwood HJ, Stickel S, Sogin ML. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene. 1998;71:491–499. PubMed

Katana A, Kwiatowski J, Spalik K, Zakryś B, Szalacha E, Szymańska H. Phylogenetic position of Koliella (Chlorophyta) as inferred from nuclear and chloroplast small subunit rDNA. J Phycol. 2001;37:443–451.

Kipp V. Biodiversität und phylogenetische Stellung eukaryotischer Algen in kalzifizierenden Biofilmen. Diploma thesis, Universität Göttingen; 2004.

Helms G, Friedl T, Rambold G, Mayrhofer H. Identification of photobionts from the lichen family Physciaceae using algal-specific ITS rDNA sequencing. Lichenologist. 2001;33:73–86.

Blattner FR. Direct amplification of the entire ITS region from poorly preserved plant material using recombinant PCR. BioTechniques. 1999;27:1180–1186. PubMed

Karnkowska A, Vacek V, Zubáčová Z, Treitli SC, Petrželková R, Eme L, Novák L, Žárský V, Barlow LD, Herman EK, et al. A eukaryote without a mitochondrial organelle. Curr Biol. 2016;26:1274–1284. PubMed

Turmel M, Lemieux C. Chapter six - evolution of the plastid genome in green algae. Adv Bot Res. 2018;85:157–193.

Kamikawa R, Tanifuji G, Ishikawa SA, Ishii K, Matsuno Y, Onodera NT, Ishida K, Hashimoto T, Miyashita H, Mayama S, et al. Proposal of a twin arginine translocator system-mediated constraint against loss of ATP synthase genes from nonphotosynthetic plastid genomes. [Corrected] Mol Biol Evol. 2015;32:2598–2604. PubMed

Schünemann D. Mechanisms of protein import into thylakoids of chloroplasts. Biol Chem. 2007;388:907–915. PubMed

Skalitzky CA, Martin JR, Harwood JH, Beirne JJ, Adamczyk BJ, Heck GR, Cline K, Fernandez DE. Plastids contain a second sec translocase system with essential functions. Plant Physiol. 2011;155:354–369. PubMed PMC

Ziehe D, Dünschede B, Schünemann D. From bacteria to chloroplasts: evolution of the chloroplast SRP system. Biol Chem. 2017;398:653–661. PubMed

Mechela A, Schwenkert S, Soll J. A brief history of thylakoid biogenesis. Open Biol. 2019;9:180237. PubMed PMC

Böhm M, Kreimer G. Orient in the world with a single eye: the green algal eyespot and phototaxis. In: Cánovas FM, Lüttge U, Risueño MC, Pretzsch H, editors. Progress in botany. Cham: Springer; 2020.

Petroutsos D. Chlamydomonas photoreceptors: cellular functions and impact on physiology. In: Hippler M, editor. Chlamydomonas: biotechnology and biomedicine. Microbiology monographs. Cham: Springer; 2017.

Smith DR, Craig RJ. Does mitochondrial DNA replication in Chlamydomonas require a reverse transcriptase? New Phytol. 2021;229:1192–1195. PubMed

Boer PH, Gray MW. Scrambled ribosomal RNA gene pieces in Chlamydomonas reinhardtii mitochondrial DNA. Cell. 1988;55:399–411. PubMed

Denovan-Wright EM, Lee RW. Comparative structure and genomic organization of the discontinuous mitochondrial ribosomal RNA genes of Chlamydomonas eugametos and Chlamydomonas reinhardtii. J Mol Biol. 1994;241:298–311. PubMed

Fan J, Schnare MN, Lee RW. Characterization of fragmented mitochondrial ribosomal RNAs of the colorless green alga Polytomella parva. Nucleic Acids Res. 2003;31:769–778. PubMed PMC

Del Vasto M, Figueroa-Martinez F, Featherston J, González MA, Reyes-Prieto A, Durand PM, Smith DR. Massive and widespread organelle genomic expansion in the green algal genus Dunaliella. Genome Biol Evol. 2015;7:656–663. PubMed PMC

Smith DR, Hua J, Lee RW. Evolution of linear mitochondrial DNA in three known lineages of Polytomella. Curr Genet. 2010;56:427–438. PubMed

Smith DR, Hua J, Archibald JM, Lee RW. Palindromic genes in the linear mitochondrial genome of the nonphotosynthetic green alga Polytomella magna. Genome Biol Evol. 2013;5:1661–1667. PubMed PMC

Hecht J, Grewe F, Knoop V. Extreme RNA editing in coding islands and abundant microsatellites in repeat sequences of Selaginella moellendorffii mitochondria: the root of frequent plant mtDNA recombination in early tracheophytes. Genome Biol Evol. 2011;3:344–358. PubMed PMC

Smith DR. Updating our view of organelle genome nucleotide landscape. Front Genet. 2012;3:175. PubMed PMC

Lavrov DV, Adamski M, Chevaldonne P, Adamska M. Extensive mitochondrial mRNA editing and unusual mitochondrial genome organization in calcaronean sponges. Curr Biol. 2016;26:86–92. PubMed

Burge S, Parkinson GN, Hazel P, Todd AK, Neidle S. Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res. 2006;34:5402–5415. PubMed PMC

Coleman AW. The significance of a coincidence between evolutionary landmarks found in mating affinity and a DNA sequence. Protist. 2000;151:1–9. PubMed

Wolf M, Chen S, Song J, Ankenbrand M, Müller T. Compensatory base changes in ITS2 secondary structures correlate with the biological species concept despite intragenomic variability in ITS2 sequences--a proof of concept. PLoS One. 2013;8:e66726. PubMed PMC

Lang NJ. Electron microscopic demonstration of plastids in Polytoma. J Protozool. 1963;10:333–339. PubMed

Siu C, Swift H, Chiang K. Characterization of cytoplasmic and nuclear genomes in the colorless alga Polytoma. I. Ultrastructural analysis of organelles. J Cell Biol. 1976;69:352–370. PubMed PMC

Gaffal KP, Schneider GJ. Numerical, morphological and topographical heterogeneity of the chondriome during the vegetative life cycle of Polytoma papillatum. J Cell Sci. 1980;46:299–312. PubMed

Dudkina NV, Oostergetel GT, Lewejohann D, Braun HP, Boekema EJ. Row-like organization of ATP synthase in intact mitochondria determined by cryo-electron tomography. Biochim Biophys Acta Bioenerg. 2010;1797:272–277. PubMed

Pánek T, Eliáš M, Vancová M, Lukeš J, Hashimi H. Returning to the fold for lessons in mitochondrial crista diversity and evolution. Curr Biol. 2020;30:R575–R588. PubMed

Webster DA, Hackett DP, Park RB. The respiratory chain of colorless algae: III. Electron microscopy. J Ultrastruct Res. 1968;21:514–523. PubMed

Lamb MR, Dutcher SK, Worley CK, Dieckmann CL. Eyespot-assembly mutants in Chlamydomonas reinhardtii. Genetics. 1999;153:721–729. PubMed PMC

Asmail SR, Smith DR. Retention, erosion, and loss of the carotenoid biosynthetic pathway in the nonphotosynthetic green algal genus Polytomella. New Phytol. 2016;209:899–903. PubMed

Kreimer G. Cell biology of phototaxis in flagellate algae. Int Rev Cytol. 1994;148:229–310.

Herron MD, Hackett JD, Aylward FO, Michod RE. Triassic origin and early radiation of multicellular volvocine algae. Proc Natl Acad Sci USA. 2009;106:3254–3258. PubMed PMC

Kamikawa R, Moog D, Zauner S, Tanifuji G, Ishida KI, Miyashita H, Mayama S, Hashimoto T, Maier UG, Archibald JM, et al. A non-photosynthetic diatom reveals early steps of reductive evolution in plastids. Mol Biol Evol. 2017;34:2355–2366. PubMed

Schmidt M, Luff M, Mollwo A, Kaminski M, Mittag M, Kreimer G. Evidence for a specialized localization of the chloroplast ATP-synthase subunits α, β, and γ in the eyespot apparatus of Chlamydomonas reinhardtii (Chlorophyceae) J Phycol. 2007;43:284–294.

Muñoz-Gómez SA, Mejía-Franco FG, Durnin K, Colp M, Grisdale CJ, Archibald JM, Slamovits CH. The new red algal subphylum Proteorhodophytina comprises the largest and most divergent plastid genomes known. Curr Biol. 2017;27:1677–1684.e4. PubMed

Gaouda H, Hamaji T, Yamamoto K, Kawai-Toyooka H, Suzuki M, Noguchi H, Minakuchi Y, Toyoda A, Fujiyama A, Nozaki H, et al. Exploring the limits and causes of plastid genome expansion in volvocine green algae. Genome Biol Evol. 2018;10:2248–2254. PubMed PMC

Smith DR. Can green algal plastid genome size be explained by DNA repair mechanisms? Genome Biol Evol. 2020;12:3797–3802. PubMed PMC

Smith DR. Common repeat elements in the mitochondrial and plastid genomes of green algae. Front Genet. 2020;11:465. PubMed PMC

Hänsel-Hertsch R, Beraldi D, Lensing SV, Marsico G, Zyner K, Parry A, Di Antonio M, Pike J, Kimura H, Narita M, et al. G-quadruplex structures mark human regulatory chromatin. Nat Genet. 2016;48:1267–1272. PubMed

Falabella M, Fernandez RJ, Johnson FB, Kaufman BA. Potential roles for G-quadruplexes in mitochondria. Curr Med Chem. 2019;26:2918–2932. PubMed PMC

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. PubMed PMC

Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27:722–736. PubMed PMC

Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402. PubMed PMC

Loman NJ, Quick J, Simpson JT. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat Methods. 2015;12:733–735. PubMed

Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014;9:e112963. PubMed PMC

Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol. 2017;13:e1005595. PubMed PMC

Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint arXiv:1303.3997. 2013.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–2079. PubMed PMC

Milne I, Bayer M, Stephen G, Cardle L, Marshall D. Tablet: visualizing next-generation sequence assemblies and mappings. Methods Mol Biol. 2016;1374:253–268. PubMed

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–477. PubMed PMC

Kim D, Langmead B, Salzberg S. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12:357–360. PubMed PMC

Bushmanova E, Antipov D, Lapidus A, Prjibelski AD. rnaSPAdes: a de novo transcriptome assembler and its application to RNA-Seq data. GigaScience. 2019;8:giz100. PubMed PMC

Zimmermann L, Stephens A, Nam SZ, Rau D, Kübler J, Lozajic M, Gabler F, Söding J, Lupas AN, Alva V. A completely reimplemented MPI Bioinformatics Toolkit with a new HHpred server at its core. J Mol Biol. 2018;430:2237–2243. PubMed

Chan PP, Lowe TM. tRNAscan-SE: searching for tRNA genes in genomic sequences. Methods Mol Biol. 2019;1962:1–14. PubMed PMC

Greiner S, Lehwark P, Bock R. OrganellarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res. 2019;47:W59–W64. PubMed PMC

Brázda V, Kolomazník J, Lýsek J, Bartas M, Fojta M, Šťastný J, Mergny J. G4Hunter web application: a web server for G-quadruplex prediction. Bioinformatics. 2019;35:3493–3495. PubMed PMC

Brázda V, Kolomazník J, Lýsek J, Hároníková L, Coufal J, Št'astný J. Palindrome analyser - a new web-based server for predicting and evaluating inverted repeats in nucleotide sequences. Biochem Biophys Res Commun. 2016;478:1739–1745. PubMed

Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015;10:845–858. PubMed PMC

Caisová L, Marin B, Melkonian M. A consensus secondary structure of ITS2 in the Chlorophyta identified by phylogenetic reconstruction. Protist. 2013;164:482–496. PubMed

Darty K, Denise A, Ponty Y. VARNA: interactive drawing and editing of the RNA secondary structure. Bioinformatics. 2009;25:1974–1975. PubMed PMC

Almagro Armenteros JJ, Salvatore M, Emanuelsson O, Winther O, von Heijne G, Elofsson A, Nielsen H. Detecting sequence signals in targeting peptides using deep learning. Life Sci Alliance. 2019;2:e201900429. PubMed PMC

Tardif M, Atteia A, Specht M, Cogne G, Rolland N, Brugière S, Hippler M, Ferro M, Bruley C, Peltier G, Vallon O, Cournac L. PredAlgo: a new subcellular localization prediction tool dedicated to green algae. Mol Biol Evol. 2012;29:3625–3639. PubMed

Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 2019;20:1160–1166. PubMed PMC

Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–274. PubMed PMC

Fučíková K, Lewis PO, Neupane S, Karol KG, Lewis LA. Order, please! Uncertainty in the ordinal-level classification of Chlorophyceae. PeerJ. 2019;7:e6899. PubMed PMC

Turmel M, Otis C, Vincent AT, Lemieux C. The complete mitogenomes of the green algae Jenufa minuta and Jenufa perforata (Chlorophyceae, incertae sedis) reveal a variant genetic code previously unrecognized in the Chlorophyceae. Mitochondrial DNA B. 2020;5:1516–1518.

Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–780. PubMed PMC

Lartillot N, Rodrigue N, Stubbs D, Richer J. PhyloBayes MPI: phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst Biol. 2013;62:611–615. PubMed

Leontynka pallida small subunit ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence, and 28S rRNA, partial sequence. https://www.ncbi.nlm.nih.gov/nuccore/OM501587.1. Accessed 2 Feb 2022.

Leontynka elongata small subunit ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence, and 28S rRNA, partial sequence. https://www.ncbi.nlm.nih.gov/nuccore/OM501588.1. Accessed 2 Feb 2022.

Leontynka pallida mitochondrion, complete genome. https://www.ncbi.nlm.nih.gov/nuccore/OM479424.1. Accessed 2 Feb 2022.

Leontynka pallida plastid, complete genome. https://www.ncbi.nlm.nih.gov/nuccore/OM479425.1. Accessed 2 Feb 2022.

A new lineage of non-photosynthetic green algae with extreme organellar genomes. https://www.ncbi.nlm.nih.gov/bioproject/PRJNA799256. Accessed 2 Feb 2022. PubMed PMC

Metatranscriptome of Leontynka pallida strain AMAZONIE; monoeukaryotic culture containing various prokaryotes. Figshare. 10.6084/m9.figshare.19111328.v1. Accessed 2 Feb 2022.

Mitophylogenomics of Chlamydomonadales. Figshare. 10.6084/m9.figshare.19110290. Accessed 2 Feb 2022.

Phylogenomic analysis of Chlamydomonadales based on plastid-encoded proteins. Figshare. 10.6084/m9.figshare.19111043. Accessed 2 Feb 2022.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...