Reduced plastid genomes of colorless facultative pathogens Prototheca (Chlorophyta) are retained for membrane transport genes

. 2024 Dec 18 ; 22 (1) : 294. [epub] 20241218

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39696433
Odkazy

PubMed 39696433
PubMed Central PMC11657870
DOI 10.1186/s12915-024-02089-4
PII: 10.1186/s12915-024-02089-4
Knihovny.cz E-zdroje

BACKGROUND: Plastids are usually involved in photosynthesis, but the secondary loss of this function is a widespread phenomenon in various lineages of algae and plants. In addition to the loss of genes associated with photosynthesis, the plastid genomes of colorless algae are frequently reduced further. To understand the pathways of reductive evolution associated with the loss of photosynthesis, it is necessary to study a number of closely related strains. Prototheca, a chlorophyte genus of facultative pathogens, provides an excellent opportunity to study this process with its well-sampled array of diverse colorless strains. RESULTS: We have sequenced the plastid genomes of 13 Prototheca strains and reconstructed a comprehensive phylogeny that reveals evolutionary patterns within the genus and among its closest relatives. Our phylogenomic analysis revealed three independent losses of photosynthesis among the Prototheca strains and varied protein-coding gene content in their ptDNA. Despite this diversity, all Prototheca strains retain the same key plastid functions. These include processes related to gene expression, as well as crucial roles in fatty acid and cysteine biosynthesis, and membrane transport. CONCLUSIONS: The retention of vestigial genomes in colorless plastids is typically associated with the biosynthesis of secondary metabolites. In contrast, the remarkable conservation of plastid membrane transport system components in the nonphotosynthetic genera Prototheca and Helicosporidium provides an additional constraint against the loss of ptDNA in this lineage. Furthermore, these genes can potentially serve as targets for therapeutic intervention, indicating their importance beyond the evolutionary context.

Zobrazit více v PubMed

Archibald JM. The puzzle of plastid evolution. Curr Biol. 2009;19:R81–8. 10.1016/j.cub.2008.11.067. PubMed DOI

de Vries J, Archibald JM. Endosymbiosis: did plastids evolve from a freshwater cyanobacterium? Curr Biol. 2017;27:R103–5. 10.1016/j.cub.2016.12.006. PubMed DOI

Lim L, McFadden GI. The evolution, metabolism and functions of the apicoplast. Phil Trans R Soc B. 2010;365:749–63. 10.1098/rstb.2009.0273. PubMed DOI PMC

Maciszewski K, Karnkowska A. Should I stay or should I go? Retention and loss of components in vestigial endosymbiotic organelles. Curr Opin Genet Dev. 2019;58–9:33–9. 10.1016/j.gde.2019.07.013. PubMed DOI

Novák Vanclová AMG, Zoltner M, Kelly S, Soukal P, Záhonová K, Füssy Z, Ebenezer TE, Lacová Dobáková E, Eliáš M, Lukeš J, Field MC, Hampl V. Metabolic quirks and the colourful history of the PubMed DOI

Hadariová L, Vesteg M, Hampl V, Krajčovič J. Reductive evolution of chloroplasts in non-photosynthetic plants, algae and protists. Curr Genet. 2018;64:365–87. 10.1007/s00294-017-0761-0. PubMed DOI

Gornik SG, Febrimarsa, Cassin AM, MacRae JI, Ramaprasad A, Rchiad Z, McConville MJ, Bacic A, McFadden GI, Pain A, Waller RF. Endosymbiosis undone by stepwise elimination of the plastid in a parasitic dinoflagellate. Proc Natl Acad Sci USA. 2015;112:5767–72. 10.1073/pnas.1423400112. PubMed DOI PMC

Janouškovec J, Gavelis GS, Burki F, Dinh D, Bachvaroff TR, Gornik SG, Bright KJ, Imanian B, Strom SL, Delwiche CF, Waller RF, Fensome RA, Leander BS, Rohwer FL, Saldarriaga JF. Major transitions in dinoflagellate evolution unveiled by phylotranscriptomics. Proc Natl Acad Sci USA. 2017;114:E171–80. 10.1073/pnas.1614842114. PubMed DOI PMC

Allen JF. The CoRR hypothesis for genes in organelles. J Theor Biol. 2017;434:50–7. 10.1016/j.jtbi.2017.04.008. PubMed DOI

Figueroa-Martinez F, Nedelcu AM, Smith DR, Reyes-Prieto A. When the lights go out: the evolutionary fate of free-living colorless green algae. New Phytol. 2014;206:972–82. 10.1111/nph.13279. PubMed DOI PMC

Kayama M, Maciszewski K, Yabuki A, Miyashita H, Karnkowska A, Kamikawa R. Highly reduced plastid genomes of the non-photosynthetic dictyochophyceans Pteridomonas spp. (Ochrophyta, SAR) are retained for tRNA-Glu-based organellar heme biosynthesis. Front Plant Sci. 2020;11:602455. 10.3389/fpls.2020.602455. PubMed DOI PMC

Smith DR. Plastid genomes hit the big time. New Phytol. 2018;219:491–5. 10.1111/nph.15134. PubMed DOI

Smith DR. Lost in the light: Plastid genome evolution in nonphotosynthetic algae. In: Chaw SM, Jansen RK, editors. Advances in Botanical Research. Elsevier Ltd.; 2018. p. 29–53. 10.1016/bs.abr.2017.10.001

Smith DR, Lee RW. A plastid without a genome: evidence from the nonphotosynthetic green algal genus PubMed DOI PMC

Salomaki ED, Kolísko M. There is treasure everywhere: reductive plastid evolution in Apicomplexa in light of their close relatives. Biomolecules. 2019;9:378. 10.3390/biom9080378. PubMed DOI PMC

Sibbald SJ, Archibald JM. Genomic insights into plastid evolution. Genome Biol Evol. 2020;12:978–90. 10.1093/gbe/evaa096. PubMed DOI PMC

Barrett CF, Sinn BT, Kennedy AH. Unprecedented parallel photosynthetic losses in a heterotrophic orchid genus. Mol Biol Evol. 2019;36:1884–901. 10.1093/molbev/msz111. PubMed DOI PMC

Kim GH, Jeong HJ, Yoo YD, Kim S, Han JH, Han JW, Zuccarello GC. Photosynthetic genes in the heterotrophic dinoflagellate PubMed DOI PMC

Kamikawa R, Yubuki N, Yoshida M, Taira M, Nakamura N, Ishida KI, Leander BS, Miyashita H, Hashimoto T, Mayama S, Inagaki Y. Multiple losses of photosynthesis in DOI

Sato S. The apicomplexan plastid and its evolution. Cell Mol Life Sci. 2011;68:1285–96. 10.1007/s00018-011-0646-1. PubMed DOI PMC

de Koning AP, Keeling PJ. Nucleus-encoded genes for plastid-targeted proteins in PubMed DOI PMC

de Koning AP, Keeling PJ. The complete plastid genome sequence of the parasitic green alga Helicosporidium sp. is highly reduced and structured. BMC Biol. 2006;4:12. 10.1186/1741-7007-4-12. PubMed DOI PMC

Sun Y, Pombert JF. Helicosporidia: a genomic snapshot of an early transition to parasitism. Acta Soc Bot Pol. 2014;83:377–85. 10.5586/asbp.2014.039. DOI

Tartar A. The non-photosynthetic algae Helicosporidium spp.: emergence of a novel group of insect pathogens. Insects. 2013;4:375. 10.3390/insects4030375. PubMed DOI PMC

Borza T, Popescu CE, Lee RW. Multiple metabolic roles for the nonphotosynthetic plastid of the green alga PubMed DOI PMC

Guo J, Jian J, Wang L, Xiong L, Lin H, Zhou Z, Sonnenschein EC, Wu W. Genome sequences of two strains of PubMed DOI PMC

Jagielski T, Bakuła Z, Gawor J, Maciszewski K, Kusber WH, Dyląg M, Nowakowska J, Gromadka R, Karnkowska A. The genus DOI

Jagielski T, Gawor J, Bakuła Z, Decewicz P, Maciszewski K, Karnkowska A. Cytb as a new genetic marker for differentiation of PubMed PMC

Bakuła Z, Siedlecki P, Gromadka R, Gawor J, Gromadka A, Pomorski JJ, Panagiotopoulou H, Jagielski T. A first insight into the genome of PubMed DOI PMC

Pombert JF, Blouin NA, Lane C, Boucias D, Keeling PJ. A lack of parasitic reduction in the obligate parasitic green alga PubMed DOI PMC

Yan D, Wang Y, Murakami T, Shen Y, Gong J, Jiang H, Smith DR, Pombert JF, Dai J, Wu Q. PubMed DOI PMC

Suzuki S, Endoh R, Manabe RI, Ohkuma M, Hirakawa Y. Multiple losses of photosynthesis and convergent reductive genome evolution in the colourless green algae PubMed DOI PMC

Figueroa-Martinez F, Nedelcu AM, Smith DR, Reyes-Prieto A. The plastid genome of PubMed DOI PMC

Pánek T, Barcytė D, Treitli SC, Záhonová K, Sokol M, Ševčíková T, Zadrobílková E, Jaške K, Yubuki N, Čepička I, Eliáš M. A new lineage of non-photosynthetic green algae with extreme organellar genomes. BMC Biol. 2022;20:66. 10.1186/s12915-022-01263-w. PubMed DOI PMC

Molina J, Hazzouri KM, Nickrent D, Geisler M, Meyer RS, Pentony MM, Flowers JM, Pelser P, Barcelona J, Inovejas SA, Uy I, Yuan W, Wilkins O, Michel CI, Locklear S, Concepcion GP, Purugganan MD. Possible loss of the chloroplast genome in the parasitic flowering plant PubMed DOI PMC

Kamikawa R, Azuma T, Ishii KI, Matsuno Y, Miyashita H. Diversity of organellar genomes in non-photosynthetic diatoms. Protist. 2018;169:351–61. 10.1016/j.protis.2018.04.009. PubMed DOI

Shave CD, Millyard L, May RC. Now for something completely different: PubMed DOI PMC

Sheiner L, Vaidya AB, McFadden GI. The metabolic roles of the endosymbiotic organelles of PubMed DOI PMC

Mukherjee A, Sadhukhan GC. Anti-malarial drug design by targeting apicoplasts: new perspectives. J Pharmacopuncture. 2016;19:7–15. 10.3831/KPI.2016.19.001. PubMed DOI PMC

Dong SS, Wang YL, Xia NH, Liu Y, Liu M, Lian L, Li N, Li LF, Lang XA, Gong YQ, Chen L, Wu E, Zhang SZ. Plastid and nuclear phylogenomic incongruences and biogeographic implications of Magnolia s.l. (Magnoliaceae). J Syst Evol. 2021;60:1–15. 10.1111/jse.12727. DOI

Favre A, Paule J, Ebersbach J. Incongruences between nuclear and plastid phylogenies challenge the identification of correlates of diversification in DOI

Gonçalves DJP, Simpson BB, Ortiz EM, Shimizu GH, Jansen RK. Incongruence between gene trees and species trees and phylogenetic signal variation in plastid genes. Mol Phylogenetic Evol. 2019;138:219–32. 10.1016/j.ympev.2019.05.022. PubMed DOI

Zhang R, Wang YH, Jin JJ, Stull GW, Bruneau A, Cardoso D, Paganucci De Queiroz L, Moore MJ, Zhang SD, Chen SY, Wang J, Li DZ, Yi TS. Exploration of plastid phylogenomic conflict yields new insights into the deep relationships of Leguminosae. Syst Biol. 2020;69:613–22. 10.1093/sysbio/syaa013. PubMed DOI PMC

Jagielski T, Iskra M, Bakuła Z, Rudna J, Roeske K, Nowakowska J, Bielecki J, Krukowski H. Occurrence of PubMed DOI PMC

Kunthiphun S, Endoh R, Takashima M, Ohkuma M, Tanasupawat S, Savarajara A. Prototheca paracutis sp. nov., a novel oleaginous achlorophyllous microalga isolated from a mangrove forest. Mycoscience. 2019;60:165–9. 10.1016/j.myc.2019.02.003. DOI

Börner T, Aleynikova AY, Zubo YO, Kusnetsov VV. Chloroplast RNA polymerases: role in chloroplast biogenesis. Biochim Biophys Acta Bioenergetics. 2015;1847:761–9. 10.1016/j.bbabio.2015.02.004. PubMed DOI

Chen J, Yu R, Dai J, Liu Y, Zhou R. The loss of photosynthesis pathway and genomic locations of the lost plastid genes in a holoparasitic plant PubMed DOI PMC

Graham SW, Lam VKY, Merckx VSFT. Plastomes on the edge: the evolutionary breakdown of mycoheterotroph plastid genomes. New Phytol. 2017;214:48–55. 10.1111/nph.14398. PubMed DOI

Mohanta TK, Mishra AK, Khan A, Hashem A, Abd-Allah EF, Al-Harrasi A. Gene loss and evolution of the plastome. Genes. 2020;11:1133. 10.3390/genes11101133. PubMed DOI PMC

Donaher N, Tanifuji G, Onodera NT, Malfatti SA, Chain PSG, Hara Y, Archibald JM. The complete plastid genome sequence of the secondarily nonphotosynthetic alga PubMed DOI PMC

Kamikawa R, Tanifuji G, Ishikawa SA, Ishii KI, Matsuno Y, Onodera NT, Ishida KI, Hashimoto T, Miyashita H, Mayama S, Inagaki Y. Proposal of a twin arginine translocator system-mediated constraint against loss of ATP synthase genes from nonphotosynthetic plastid genomes. Mol Biol Evol. 2015;32:2598–604. 10.1093/molbev/msv134. PubMed DOI

Logacheva MD, Schelkunov MI, Nuraliev MS, Samigullin TH, Penin AA. The plastid genome of mycoheterotrophic monocot PubMed DOI PMC

de Vries J, Sousa FL, Bölter B, Soll J, Gould SB. YCF1: A Green TIC? Plant Cell. 2015;27:1827–33. 10.1105/tpc.114.135541. PubMed DOI PMC

Smith DR. Can green algal plastid genome size be explained by DNA repair mechanisms? Genome Biol Evol. 2020;12:3797–802. 10.1093/gbe/evaa012. PubMed DOI PMC

Barbrook AC, Santucci N, Plenderleith LJ, Hiller RG, Howe CJ. Comparative analysis of dinoflagellate chloroplast genomes reveals rRNA and tRNA genes. BMC Genomics. 2006;7:297. 10.1186/1471-2164-7-297. PubMed DOI PMC

Severgnini M, Lazzari B, Capra E, Chessa S, Luini M, Bordoni R, Castiglioni B, Ricchi M, Cremonesi P. Genome sequencing of PubMed DOI PMC

Nakai M. The TIC complex uncovered: The alternative view on the molecular mechanism of protein translocation across the inner envelope membrane of chloroplasts. Biochim Biophys Acta Bioenergetics. 2015;1847:957–67. 10.1016/j.bbabio.2015.02.011. PubMed DOI

Kadirjan-Kalbach D, Yoder DW, Ruckle ME, Larkin RM, Osteryoung KW. FtsHi1/ARC1 is an essential gene in PubMed DOI

Lindahl M, Spetea C, Hundal T, Oppenheim AB, Adam Z, Andersson B. The thylakoid FtsH protease plays a role in the light-induced turnover of the photosystem II D1 protein. Plant Cell. 2000;12:419–31. 10.1105/tpc.12.3.419. PubMed DOI PMC

Itoh R, Takano H, Ohta N, Miyagishima S, Kuroiwa H, Kuroiwa T. Two ftsH-family genes encoded in the nuclear and chloroplast genomes of the primitive red alga PubMed DOI

Kikuchi S, Asakura Y, Imai M, Nakahira Y, Kotani Y, Hashiguchi Y, Nakai Y, Takafuji K, Bédard J, Hirabayashi-Ishioka Y, Mori H, Shiina T, Nakai M. A Ycf2-FtsHi heteromeric AAA-ATPase complex is required for chloroplast protein import. Plant Cell. 2018;30:2677–703. 10.1105/tpc.18.00357. PubMed DOI PMC

Liu H, Li A, Rochaix JD, Liu Z. Architecture of chloroplast TOC–TIC translocon supercomplex. Nature. 2023;615:349–57. 10.1038/s41586-023-05744-y. PubMed DOI

Ramundo S, Asakura Y, Salomé PA, Strenkert D, Boone M, Mackinder LCM, Takafuji K, Dinc E, Rahire M, Crèvecoeur M, Magneschi L, Schaad O, Hippler M, Jonikas MC, Merchant S, Nakai M, Rochaix JD, Walter P. Coexpressed subunits of dual genetic origin define a conserved supercomplex mediating essential protein import into chloroplasts. Proc Natl Acad Sci USA. 2020;117:32739–49. 10.1073/pnas.2014294117. PubMed DOI PMC

Jin Z, Wan L, Zhang Y, Li X, Cao Y, Liu H, Fan S, Cao D, Wang Z, Li X, Pan J, Dong MQ, Wu J, Yan Z. Structure of a TOC-TIC supercomplex spanning two chloroplast envelope membranes. Cell. 2020;185:4788–800. 10.1016/j.cell.2022.10.030. PubMed DOI

Baek S, Imamura S, Higa T, Nakai Y, Tanaka K, Nakai M. A distinct class of GTP-binding proteins mediates chloroplast protein import in Rhodophyta. Proc Natl Acad Sci USA. 2022;119:e2208277119. 10.1073/pnas.2208277119. PubMed DOI PMC

Xing J, Pan J, Yi H, Lv K, Gan Q, Wang M, Ge H, Huang X, Huang F, Wang Y, Rochaix JD, Yang W. The plastid-encoded protein Orf2971 is required for protein translocation and chloroplast quality control. Plant Cell. 2022;34:3383–99. 10.1093/plcell/koac180. PubMed DOI PMC

Nadakavukaren MJ, McCracken DA. An ultrastructural survey of the genus PubMed DOI

Logacheva MD, Schelkunov MI, Penin AA. Sequencing and analysis of plastid genome in mycoheterotrophic orchid PubMed DOI PMC

Wickett NJ, Zhang Y, Hansen SK, Roper JM, Kuehl JV, Plock SA, Wolf PG, DePamphilis CW, Boore JL, Goffinet B. Functional gene losses occur with minimal size reduction in the plastid genome of the parasitic liverwort PubMed DOI

Martin W. Gene transfer from organelles to the nucleus: Frequent and in big chunks. Proc Natl Acad Sci USA. 2003;100(15):8612–4. 10.1073/pnas.1633606100. PubMed DOI PMC

Kelly S. The economics of organellar gene loss and endosymbiotic gene transfer. Genome Biol. 2021;22:345. 10.1186/s13059-021-02567-w. PubMed DOI PMC

Howe CJ. Chloroplast genome. In: eLS. Chichester: Wiley; 2016. 10.1002/9780470015902.a0002016.pub3

Wicke S, Müller KF, dePamphilis CW, Quandt D, Wickett NJ, Zhang Y, Renner SS, Schneeweiss GM. Mechanisms of functional and physical genome reduction in photosynthetic and nonphotosynthetic parasitic plants of the broomrape family. Plant Cell. 2013;25:3711–25. 10.1105/tpc.113.113373. PubMed DOI PMC

Barrett CF, Freudenstein JV, Li J, Mayfield-Jones DR, Perez L, Pires JC, Santos C. Investigating the path of plastid genome degradation in an early-transitional clade of heterotrophic orchids, and implications for heterotrophic angiosperms. Mol Biol Evol. 2014;31:3095–112. 10.1093/molbev/msu252. PubMed DOI

Bellot S, Renner SS. The plastomes of two species in the endoparasite genus PubMed DOI PMC

Jagielski T, Gawor J, Bakuła Z, Zuchniewicz K, Żak I, Gromadka R. An optimized method for high quality DNA extraction from microalga PubMed DOI PMC

Andrews S. FastQC: A Quality Control Tool for High Throughput Sequence Data [Online]. 2010. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ [WWW Document].

Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20. 10.1093/bioinformatics/btu170. PubMed DOI PMC

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77. 10.1089/cmb.2012.0021. PubMed DOI PMC

Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics. 2013;29:1072–5. 10.1093/bioinformatics/btt086. PubMed DOI PMC

Laetsch DR, Blaxter ML. BlobTools: Interrogation of genome assemblies. F1000Res. 2017;6:1287. 10.12688/f1000research.12232.1. DOI

Karlicki M, Antonowicz S, Karnkowska A. Tiara: deep learning-based classification system for eukaryotic sequences. Bioinformatics. 2022;38:344–50. 10.1093/bioinformatics/btab672. PubMed DOI PMC

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10. 10.1016/S0022-2836(05)80360-2. PubMed DOI

Dierckxsens N, Mardulyn P, Smits G. NOVOPlasty: De novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 2017;45: e18. 10.1093/nar/gkw955. PubMed DOI PMC

Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer ELL, Tosatto SCE, Paladin L, Raj S, Richardson LJ, Finn RD, Bateman A. Pfam: The protein families database in 2021. Nucleic Acids Res. 2021;49:D412–9. 10.1093/nar/gkaa913. PubMed DOI PMC

Zimmermann L, Stephens A, Nam SZ, Rau D, Kübler J, Lozajic M, Gabler F, Söding J, Lupas AN, Alva V. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J Mol Biol. 2018;430:2237–43. 10.1016/j.jmb.2017.12.007. PubMed DOI

Greiner S, Lehwark P, Bock R. OrganellarGenomeDRAW (OGDRAW) version 1.3.1: Expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res. 2019;47:W59-64. 10.1093/nar/gkz238. PubMed DOI PMC

Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol. 2013;30:772–80. 10.1093/molbev/mst010. PubMed DOI PMC

Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–3. 10.1093/bioinformatics/btp348. PubMed DOI PMC

Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R, Teeling E. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37:1530–4. 10.1093/molbev/msaa015. PubMed DOI PMC

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61:539–42. 10.1093/sysbio/sys029. PubMed DOI PMC

Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol Biol Evol. 2021;38(10):4647–54. 10.1093/molbev/msab199. PubMed DOI PMC

Suyama M, Torrents D, Bork P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 2006;34:W609–12. 10.1093/nar/gkl315. PubMed DOI PMC

Xu B, Yang Z. PAMLX: a graphical user interface for PAML. Mol Biol Evol. 2013;30:2723–4. 10.1093/molbev/mst179. PubMed DOI

Maciszewski K, Karnkowska A. Supplementary data for Reduced plastid genomes of colorless facultative pathogens PubMed PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...