Reduced plastid genomes of colorless facultative pathogens Prototheca (Chlorophyta) are retained for membrane transport genes
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
39696433
PubMed Central
PMC11657870
DOI
10.1186/s12915-024-02089-4
PII: 10.1186/s12915-024-02089-4
Knihovny.cz E-zdroje
- Klíčová slova
- Prototheca, Chlorophyta, Colorless plastids, Plastid genomes,
- MeSH
- fotosyntéza genetika MeSH
- fylogeneze * MeSH
- genom plastidový * MeSH
- molekulární evoluce MeSH
- Prototheca * genetika MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Plastids are usually involved in photosynthesis, but the secondary loss of this function is a widespread phenomenon in various lineages of algae and plants. In addition to the loss of genes associated with photosynthesis, the plastid genomes of colorless algae are frequently reduced further. To understand the pathways of reductive evolution associated with the loss of photosynthesis, it is necessary to study a number of closely related strains. Prototheca, a chlorophyte genus of facultative pathogens, provides an excellent opportunity to study this process with its well-sampled array of diverse colorless strains. RESULTS: We have sequenced the plastid genomes of 13 Prototheca strains and reconstructed a comprehensive phylogeny that reveals evolutionary patterns within the genus and among its closest relatives. Our phylogenomic analysis revealed three independent losses of photosynthesis among the Prototheca strains and varied protein-coding gene content in their ptDNA. Despite this diversity, all Prototheca strains retain the same key plastid functions. These include processes related to gene expression, as well as crucial roles in fatty acid and cysteine biosynthesis, and membrane transport. CONCLUSIONS: The retention of vestigial genomes in colorless plastids is typically associated with the biosynthesis of secondary metabolites. In contrast, the remarkable conservation of plastid membrane transport system components in the nonphotosynthetic genera Prototheca and Helicosporidium provides an additional constraint against the loss of ptDNA in this lineage. Furthermore, these genes can potentially serve as targets for therapeutic intervention, indicating their importance beyond the evolutionary context.
Zobrazit více v PubMed
Archibald JM. The puzzle of plastid evolution. Curr Biol. 2009;19:R81–8. 10.1016/j.cub.2008.11.067. PubMed DOI
de Vries J, Archibald JM. Endosymbiosis: did plastids evolve from a freshwater cyanobacterium? Curr Biol. 2017;27:R103–5. 10.1016/j.cub.2016.12.006. PubMed DOI
Lim L, McFadden GI. The evolution, metabolism and functions of the apicoplast. Phil Trans R Soc B. 2010;365:749–63. 10.1098/rstb.2009.0273. PubMed DOI PMC
Maciszewski K, Karnkowska A. Should I stay or should I go? Retention and loss of components in vestigial endosymbiotic organelles. Curr Opin Genet Dev. 2019;58–9:33–9. 10.1016/j.gde.2019.07.013. PubMed DOI
Novák Vanclová AMG, Zoltner M, Kelly S, Soukal P, Záhonová K, Füssy Z, Ebenezer TE, Lacová Dobáková E, Eliáš M, Lukeš J, Field MC, Hampl V. Metabolic quirks and the colourful history of the PubMed DOI
Hadariová L, Vesteg M, Hampl V, Krajčovič J. Reductive evolution of chloroplasts in non-photosynthetic plants, algae and protists. Curr Genet. 2018;64:365–87. 10.1007/s00294-017-0761-0. PubMed DOI
Gornik SG, Febrimarsa, Cassin AM, MacRae JI, Ramaprasad A, Rchiad Z, McConville MJ, Bacic A, McFadden GI, Pain A, Waller RF. Endosymbiosis undone by stepwise elimination of the plastid in a parasitic dinoflagellate. Proc Natl Acad Sci USA. 2015;112:5767–72. 10.1073/pnas.1423400112. PubMed DOI PMC
Janouškovec J, Gavelis GS, Burki F, Dinh D, Bachvaroff TR, Gornik SG, Bright KJ, Imanian B, Strom SL, Delwiche CF, Waller RF, Fensome RA, Leander BS, Rohwer FL, Saldarriaga JF. Major transitions in dinoflagellate evolution unveiled by phylotranscriptomics. Proc Natl Acad Sci USA. 2017;114:E171–80. 10.1073/pnas.1614842114. PubMed DOI PMC
Allen JF. The CoRR hypothesis for genes in organelles. J Theor Biol. 2017;434:50–7. 10.1016/j.jtbi.2017.04.008. PubMed DOI
Figueroa-Martinez F, Nedelcu AM, Smith DR, Reyes-Prieto A. When the lights go out: the evolutionary fate of free-living colorless green algae. New Phytol. 2014;206:972–82. 10.1111/nph.13279. PubMed DOI PMC
Kayama M, Maciszewski K, Yabuki A, Miyashita H, Karnkowska A, Kamikawa R. Highly reduced plastid genomes of the non-photosynthetic dictyochophyceans Pteridomonas spp. (Ochrophyta, SAR) are retained for tRNA-Glu-based organellar heme biosynthesis. Front Plant Sci. 2020;11:602455. 10.3389/fpls.2020.602455. PubMed DOI PMC
Smith DR. Plastid genomes hit the big time. New Phytol. 2018;219:491–5. 10.1111/nph.15134. PubMed DOI
Smith DR. Lost in the light: Plastid genome evolution in nonphotosynthetic algae. In: Chaw SM, Jansen RK, editors. Advances in Botanical Research. Elsevier Ltd.; 2018. p. 29–53. 10.1016/bs.abr.2017.10.001
Smith DR, Lee RW. A plastid without a genome: evidence from the nonphotosynthetic green algal genus PubMed DOI PMC
Salomaki ED, Kolísko M. There is treasure everywhere: reductive plastid evolution in Apicomplexa in light of their close relatives. Biomolecules. 2019;9:378. 10.3390/biom9080378. PubMed DOI PMC
Sibbald SJ, Archibald JM. Genomic insights into plastid evolution. Genome Biol Evol. 2020;12:978–90. 10.1093/gbe/evaa096. PubMed DOI PMC
Barrett CF, Sinn BT, Kennedy AH. Unprecedented parallel photosynthetic losses in a heterotrophic orchid genus. Mol Biol Evol. 2019;36:1884–901. 10.1093/molbev/msz111. PubMed DOI PMC
Kim GH, Jeong HJ, Yoo YD, Kim S, Han JH, Han JW, Zuccarello GC. Photosynthetic genes in the heterotrophic dinoflagellate PubMed DOI PMC
Kamikawa R, Yubuki N, Yoshida M, Taira M, Nakamura N, Ishida KI, Leander BS, Miyashita H, Hashimoto T, Mayama S, Inagaki Y. Multiple losses of photosynthesis in DOI
Sato S. The apicomplexan plastid and its evolution. Cell Mol Life Sci. 2011;68:1285–96. 10.1007/s00018-011-0646-1. PubMed DOI PMC
de Koning AP, Keeling PJ. Nucleus-encoded genes for plastid-targeted proteins in PubMed DOI PMC
de Koning AP, Keeling PJ. The complete plastid genome sequence of the parasitic green alga Helicosporidium sp. is highly reduced and structured. BMC Biol. 2006;4:12. 10.1186/1741-7007-4-12. PubMed DOI PMC
Sun Y, Pombert JF. Helicosporidia: a genomic snapshot of an early transition to parasitism. Acta Soc Bot Pol. 2014;83:377–85. 10.5586/asbp.2014.039. DOI
Tartar A. The non-photosynthetic algae Helicosporidium spp.: emergence of a novel group of insect pathogens. Insects. 2013;4:375. 10.3390/insects4030375. PubMed DOI PMC
Borza T, Popescu CE, Lee RW. Multiple metabolic roles for the nonphotosynthetic plastid of the green alga PubMed DOI PMC
Guo J, Jian J, Wang L, Xiong L, Lin H, Zhou Z, Sonnenschein EC, Wu W. Genome sequences of two strains of PubMed DOI PMC
Jagielski T, Bakuła Z, Gawor J, Maciszewski K, Kusber WH, Dyląg M, Nowakowska J, Gromadka R, Karnkowska A. The genus DOI
Jagielski T, Gawor J, Bakuła Z, Decewicz P, Maciszewski K, Karnkowska A. Cytb as a new genetic marker for differentiation of PubMed PMC
Bakuła Z, Siedlecki P, Gromadka R, Gawor J, Gromadka A, Pomorski JJ, Panagiotopoulou H, Jagielski T. A first insight into the genome of PubMed DOI PMC
Pombert JF, Blouin NA, Lane C, Boucias D, Keeling PJ. A lack of parasitic reduction in the obligate parasitic green alga PubMed DOI PMC
Yan D, Wang Y, Murakami T, Shen Y, Gong J, Jiang H, Smith DR, Pombert JF, Dai J, Wu Q. PubMed DOI PMC
Suzuki S, Endoh R, Manabe RI, Ohkuma M, Hirakawa Y. Multiple losses of photosynthesis and convergent reductive genome evolution in the colourless green algae PubMed DOI PMC
Figueroa-Martinez F, Nedelcu AM, Smith DR, Reyes-Prieto A. The plastid genome of PubMed DOI PMC
Pánek T, Barcytė D, Treitli SC, Záhonová K, Sokol M, Ševčíková T, Zadrobílková E, Jaške K, Yubuki N, Čepička I, Eliáš M. A new lineage of non-photosynthetic green algae with extreme organellar genomes. BMC Biol. 2022;20:66. 10.1186/s12915-022-01263-w. PubMed DOI PMC
Molina J, Hazzouri KM, Nickrent D, Geisler M, Meyer RS, Pentony MM, Flowers JM, Pelser P, Barcelona J, Inovejas SA, Uy I, Yuan W, Wilkins O, Michel CI, Locklear S, Concepcion GP, Purugganan MD. Possible loss of the chloroplast genome in the parasitic flowering plant PubMed DOI PMC
Kamikawa R, Azuma T, Ishii KI, Matsuno Y, Miyashita H. Diversity of organellar genomes in non-photosynthetic diatoms. Protist. 2018;169:351–61. 10.1016/j.protis.2018.04.009. PubMed DOI
Shave CD, Millyard L, May RC. Now for something completely different: PubMed DOI PMC
Sheiner L, Vaidya AB, McFadden GI. The metabolic roles of the endosymbiotic organelles of PubMed DOI PMC
Mukherjee A, Sadhukhan GC. Anti-malarial drug design by targeting apicoplasts: new perspectives. J Pharmacopuncture. 2016;19:7–15. 10.3831/KPI.2016.19.001. PubMed DOI PMC
Dong SS, Wang YL, Xia NH, Liu Y, Liu M, Lian L, Li N, Li LF, Lang XA, Gong YQ, Chen L, Wu E, Zhang SZ. Plastid and nuclear phylogenomic incongruences and biogeographic implications of Magnolia s.l. (Magnoliaceae). J Syst Evol. 2021;60:1–15. 10.1111/jse.12727. DOI
Favre A, Paule J, Ebersbach J. Incongruences between nuclear and plastid phylogenies challenge the identification of correlates of diversification in DOI
Gonçalves DJP, Simpson BB, Ortiz EM, Shimizu GH, Jansen RK. Incongruence between gene trees and species trees and phylogenetic signal variation in plastid genes. Mol Phylogenetic Evol. 2019;138:219–32. 10.1016/j.ympev.2019.05.022. PubMed DOI
Zhang R, Wang YH, Jin JJ, Stull GW, Bruneau A, Cardoso D, Paganucci De Queiroz L, Moore MJ, Zhang SD, Chen SY, Wang J, Li DZ, Yi TS. Exploration of plastid phylogenomic conflict yields new insights into the deep relationships of Leguminosae. Syst Biol. 2020;69:613–22. 10.1093/sysbio/syaa013. PubMed DOI PMC
Jagielski T, Iskra M, Bakuła Z, Rudna J, Roeske K, Nowakowska J, Bielecki J, Krukowski H. Occurrence of PubMed DOI PMC
Kunthiphun S, Endoh R, Takashima M, Ohkuma M, Tanasupawat S, Savarajara A. Prototheca paracutis sp. nov., a novel oleaginous achlorophyllous microalga isolated from a mangrove forest. Mycoscience. 2019;60:165–9. 10.1016/j.myc.2019.02.003. DOI
Börner T, Aleynikova AY, Zubo YO, Kusnetsov VV. Chloroplast RNA polymerases: role in chloroplast biogenesis. Biochim Biophys Acta Bioenergetics. 2015;1847:761–9. 10.1016/j.bbabio.2015.02.004. PubMed DOI
Chen J, Yu R, Dai J, Liu Y, Zhou R. The loss of photosynthesis pathway and genomic locations of the lost plastid genes in a holoparasitic plant PubMed DOI PMC
Graham SW, Lam VKY, Merckx VSFT. Plastomes on the edge: the evolutionary breakdown of mycoheterotroph plastid genomes. New Phytol. 2017;214:48–55. 10.1111/nph.14398. PubMed DOI
Mohanta TK, Mishra AK, Khan A, Hashem A, Abd-Allah EF, Al-Harrasi A. Gene loss and evolution of the plastome. Genes. 2020;11:1133. 10.3390/genes11101133. PubMed DOI PMC
Donaher N, Tanifuji G, Onodera NT, Malfatti SA, Chain PSG, Hara Y, Archibald JM. The complete plastid genome sequence of the secondarily nonphotosynthetic alga PubMed DOI PMC
Kamikawa R, Tanifuji G, Ishikawa SA, Ishii KI, Matsuno Y, Onodera NT, Ishida KI, Hashimoto T, Miyashita H, Mayama S, Inagaki Y. Proposal of a twin arginine translocator system-mediated constraint against loss of ATP synthase genes from nonphotosynthetic plastid genomes. Mol Biol Evol. 2015;32:2598–604. 10.1093/molbev/msv134. PubMed DOI
Logacheva MD, Schelkunov MI, Nuraliev MS, Samigullin TH, Penin AA. The plastid genome of mycoheterotrophic monocot PubMed DOI PMC
de Vries J, Sousa FL, Bölter B, Soll J, Gould SB. YCF1: A Green TIC? Plant Cell. 2015;27:1827–33. 10.1105/tpc.114.135541. PubMed DOI PMC
Smith DR. Can green algal plastid genome size be explained by DNA repair mechanisms? Genome Biol Evol. 2020;12:3797–802. 10.1093/gbe/evaa012. PubMed DOI PMC
Barbrook AC, Santucci N, Plenderleith LJ, Hiller RG, Howe CJ. Comparative analysis of dinoflagellate chloroplast genomes reveals rRNA and tRNA genes. BMC Genomics. 2006;7:297. 10.1186/1471-2164-7-297. PubMed DOI PMC
Severgnini M, Lazzari B, Capra E, Chessa S, Luini M, Bordoni R, Castiglioni B, Ricchi M, Cremonesi P. Genome sequencing of PubMed DOI PMC
Nakai M. The TIC complex uncovered: The alternative view on the molecular mechanism of protein translocation across the inner envelope membrane of chloroplasts. Biochim Biophys Acta Bioenergetics. 2015;1847:957–67. 10.1016/j.bbabio.2015.02.011. PubMed DOI
Kadirjan-Kalbach D, Yoder DW, Ruckle ME, Larkin RM, Osteryoung KW. FtsHi1/ARC1 is an essential gene in PubMed DOI
Lindahl M, Spetea C, Hundal T, Oppenheim AB, Adam Z, Andersson B. The thylakoid FtsH protease plays a role in the light-induced turnover of the photosystem II D1 protein. Plant Cell. 2000;12:419–31. 10.1105/tpc.12.3.419. PubMed DOI PMC
Itoh R, Takano H, Ohta N, Miyagishima S, Kuroiwa H, Kuroiwa T. Two ftsH-family genes encoded in the nuclear and chloroplast genomes of the primitive red alga PubMed DOI
Kikuchi S, Asakura Y, Imai M, Nakahira Y, Kotani Y, Hashiguchi Y, Nakai Y, Takafuji K, Bédard J, Hirabayashi-Ishioka Y, Mori H, Shiina T, Nakai M. A Ycf2-FtsHi heteromeric AAA-ATPase complex is required for chloroplast protein import. Plant Cell. 2018;30:2677–703. 10.1105/tpc.18.00357. PubMed DOI PMC
Liu H, Li A, Rochaix JD, Liu Z. Architecture of chloroplast TOC–TIC translocon supercomplex. Nature. 2023;615:349–57. 10.1038/s41586-023-05744-y. PubMed DOI
Ramundo S, Asakura Y, Salomé PA, Strenkert D, Boone M, Mackinder LCM, Takafuji K, Dinc E, Rahire M, Crèvecoeur M, Magneschi L, Schaad O, Hippler M, Jonikas MC, Merchant S, Nakai M, Rochaix JD, Walter P. Coexpressed subunits of dual genetic origin define a conserved supercomplex mediating essential protein import into chloroplasts. Proc Natl Acad Sci USA. 2020;117:32739–49. 10.1073/pnas.2014294117. PubMed DOI PMC
Jin Z, Wan L, Zhang Y, Li X, Cao Y, Liu H, Fan S, Cao D, Wang Z, Li X, Pan J, Dong MQ, Wu J, Yan Z. Structure of a TOC-TIC supercomplex spanning two chloroplast envelope membranes. Cell. 2020;185:4788–800. 10.1016/j.cell.2022.10.030. PubMed DOI
Baek S, Imamura S, Higa T, Nakai Y, Tanaka K, Nakai M. A distinct class of GTP-binding proteins mediates chloroplast protein import in Rhodophyta. Proc Natl Acad Sci USA. 2022;119:e2208277119. 10.1073/pnas.2208277119. PubMed DOI PMC
Xing J, Pan J, Yi H, Lv K, Gan Q, Wang M, Ge H, Huang X, Huang F, Wang Y, Rochaix JD, Yang W. The plastid-encoded protein Orf2971 is required for protein translocation and chloroplast quality control. Plant Cell. 2022;34:3383–99. 10.1093/plcell/koac180. PubMed DOI PMC
Nadakavukaren MJ, McCracken DA. An ultrastructural survey of the genus PubMed DOI
Logacheva MD, Schelkunov MI, Penin AA. Sequencing and analysis of plastid genome in mycoheterotrophic orchid PubMed DOI PMC
Wickett NJ, Zhang Y, Hansen SK, Roper JM, Kuehl JV, Plock SA, Wolf PG, DePamphilis CW, Boore JL, Goffinet B. Functional gene losses occur with minimal size reduction in the plastid genome of the parasitic liverwort PubMed DOI
Martin W. Gene transfer from organelles to the nucleus: Frequent and in big chunks. Proc Natl Acad Sci USA. 2003;100(15):8612–4. 10.1073/pnas.1633606100. PubMed DOI PMC
Kelly S. The economics of organellar gene loss and endosymbiotic gene transfer. Genome Biol. 2021;22:345. 10.1186/s13059-021-02567-w. PubMed DOI PMC
Howe CJ. Chloroplast genome. In: eLS. Chichester: Wiley; 2016. 10.1002/9780470015902.a0002016.pub3
Wicke S, Müller KF, dePamphilis CW, Quandt D, Wickett NJ, Zhang Y, Renner SS, Schneeweiss GM. Mechanisms of functional and physical genome reduction in photosynthetic and nonphotosynthetic parasitic plants of the broomrape family. Plant Cell. 2013;25:3711–25. 10.1105/tpc.113.113373. PubMed DOI PMC
Barrett CF, Freudenstein JV, Li J, Mayfield-Jones DR, Perez L, Pires JC, Santos C. Investigating the path of plastid genome degradation in an early-transitional clade of heterotrophic orchids, and implications for heterotrophic angiosperms. Mol Biol Evol. 2014;31:3095–112. 10.1093/molbev/msu252. PubMed DOI
Bellot S, Renner SS. The plastomes of two species in the endoparasite genus PubMed DOI PMC
Jagielski T, Gawor J, Bakuła Z, Zuchniewicz K, Żak I, Gromadka R. An optimized method for high quality DNA extraction from microalga PubMed DOI PMC
Andrews S. FastQC: A Quality Control Tool for High Throughput Sequence Data [Online]. 2010. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ [WWW Document].
Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20. 10.1093/bioinformatics/btu170. PubMed DOI PMC
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77. 10.1089/cmb.2012.0021. PubMed DOI PMC
Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics. 2013;29:1072–5. 10.1093/bioinformatics/btt086. PubMed DOI PMC
Laetsch DR, Blaxter ML. BlobTools: Interrogation of genome assemblies. F1000Res. 2017;6:1287. 10.12688/f1000research.12232.1. DOI
Karlicki M, Antonowicz S, Karnkowska A. Tiara: deep learning-based classification system for eukaryotic sequences. Bioinformatics. 2022;38:344–50. 10.1093/bioinformatics/btab672. PubMed DOI PMC
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10. 10.1016/S0022-2836(05)80360-2. PubMed DOI
Dierckxsens N, Mardulyn P, Smits G. NOVOPlasty: De novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 2017;45: e18. 10.1093/nar/gkw955. PubMed DOI PMC
Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer ELL, Tosatto SCE, Paladin L, Raj S, Richardson LJ, Finn RD, Bateman A. Pfam: The protein families database in 2021. Nucleic Acids Res. 2021;49:D412–9. 10.1093/nar/gkaa913. PubMed DOI PMC
Zimmermann L, Stephens A, Nam SZ, Rau D, Kübler J, Lozajic M, Gabler F, Söding J, Lupas AN, Alva V. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J Mol Biol. 2018;430:2237–43. 10.1016/j.jmb.2017.12.007. PubMed DOI
Greiner S, Lehwark P, Bock R. OrganellarGenomeDRAW (OGDRAW) version 1.3.1: Expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res. 2019;47:W59-64. 10.1093/nar/gkz238. PubMed DOI PMC
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol. 2013;30:772–80. 10.1093/molbev/mst010. PubMed DOI PMC
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–3. 10.1093/bioinformatics/btp348. PubMed DOI PMC
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R, Teeling E. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37:1530–4. 10.1093/molbev/msaa015. PubMed DOI PMC
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61:539–42. 10.1093/sysbio/sys029. PubMed DOI PMC
Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol Biol Evol. 2021;38(10):4647–54. 10.1093/molbev/msab199. PubMed DOI PMC
Suyama M, Torrents D, Bork P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 2006;34:W609–12. 10.1093/nar/gkl315. PubMed DOI PMC
Xu B, Yang Z. PAMLX: a graphical user interface for PAML. Mol Biol Evol. 2013;30:2723–4. 10.1093/molbev/mst179. PubMed DOI
Maciszewski K, Karnkowska A. Supplementary data for Reduced plastid genomes of colorless facultative pathogens PubMed PMC